
MODERN STATISTICAL METHODS Part III
Example Sheet 2 (of 4) RDS/Michaelmas 2018

1. Let Y ∈ Rn be a vector of responses, Φ ∈ Rn×d a design matrix, J : [0,∞) → [0,∞) a
strictly increasing function and c : Rn × Rn some cost function. Set K = ΦΦT . Show,
without using the representer theorem, that θ̂ minimises

Q1(θ) := c(Y,Φθ) + J(‖θ‖22)

over θ ∈ Rd if and only if Φθ̂ = Kα̂ and α̂ minimises

Q2(α) := c(Y,Kα) + J(αTKα)

over α ∈ Rn. Hint: Consider Π, the orthogonal projection on to the row space of Φ.

2. Let x, x′ ∈ Rp and let ψ ∈ {−1, 1}p be a random vector with independent components tak-
ing the values −1, 1 each with probability 1/2. Show that E(ψTxψTx′) = xTx′. Construct
a random feature map φ̂ : Rp → R such that E{φ̂(x)φ̂(x′)} = (xTx′)2.

3. Let X be the set of all subsets of {1, . . . , p} and let z, z′ ∈ X . Let k be the Jaccard similarity
kernel. Let π be a random permutation of {1, . . . , p}. Let M = min{π(j) : j ∈ z},
M ′ = min{π(j) : j ∈ z′}. Show that

P(M = M ′) = k(z, z′)

when z, z′ 6= ∅. Now let ψ ∈ {−1, 1}p be a random vector with i.i.d. components taking
the values -1 or 1, each with probability 1/2. By considering E(ψMψM ′) show that the
Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to
approximate kernel ridge regression with Jaccard similarity, when n is very large (you
may assume that none of the data points are the empty set).

4. Consider the logistic regression model where we assume Y1, . . . , Yn ∈ {−1, 1} are indepen-
dent and

log

(
P(Yi = 1)

P(Yi = −1)

)
= xTi β

0.

Show that the maximum likelihood estimate β̂ minimises

n∑
i=1

log{1 + exp(−YixTi β)}

over β ∈ Rp.

5∗. Consider the following algorithm for model selection when we have a response Y ∈ Rn
and matrix of predictors X ∈ Rn×p.

(a) First centre Y and all the columns of X. Initialise the current model M ⊆ {1, . . . , p}
to be ∅ and set the current residual R to be Y .

(b) Find the variable k∗ in M c having the highest correlation in absolute value with
the current residual R. Set M to be M ∪ {k∗}. Replace R with the residual from
regressing R on Xk∗ . Further replace each variable in M c with the residual from
regressing itself on Xk∗ .
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(c) Continue the previous step until R = 0.

Show that this algorithm is equivalent to forward selection. Hint: Use induction on the
iteration m of the algorithm. Consider strengthening the natural inductive hypothesis that
the model at iteration m is the same as that selected after m steps of forward selection.

6. Show that if W is mean-zero and sub-Gaussian with parameter σ, then Var(W ) ≤ σ2.

7. Verify Hoeffding’s lemma for the special case where W is a Rademacher random variable,
so W takes the values −1, 1 each with probability 1/2.

8. (a) Let W ∼ χ2
d. Show that

P(|W/d− 1| ≥ t) ≤ 2e−dt
2/8

for t ∈ (0, 1). You may use the facts that the mgf of a χ2
1 random variable is

1/
√

1− 2α for α < 1/2, and e−α/
√

1− 2α ≤ e2α2
when |α| < 1/4.

(b) Let A ∈ Rd×p have i.i.d. standard normal entries. Fix u ∈ Rp. Use the result above
to conclude that

P
(∣∣∣∣‖Au‖22d‖u‖22

− 1

∣∣∣∣ ≥ t) ≤ 2e−dt
2/8.

(c) Suppose we have (data) u1, . . . , un ∈ Rp (note each ui is a vector), with p large and
n ≥ 2. Show that for a given ε ∈ (0, 1) and d > 16 log(n/

√
ε)/t2, each data point

may be compressed down to ui 7→ Aui/
√
d = wi whilst approximately preserving the

distances between the points:

P
(

1− t ≤ ‖wi − wj‖
2
2

‖ui − uj‖22
≤ 1 + t for all i, j ∈ {1, . . . , n}, i 6= j

)
≥ 1− ε.

This is the famous Johnson–Lindenstrauss Lemma.

In the following questions assume that X ∈ Rn×p has had its columns centred and scaled to
have `2-norm

√
n, and that Y ∈ Rn is also centred.

9. Show that any two Lasso solutions when λ > 0 must have the same `1-norm.

10. A convex combination of a set of points S = {v1, . . . , vm} ⊆ Rd′ is any point of the form

α1v1 + · · ·+ αmvm,

where αj ∈ R and αj ≥ 0 for j = 1, . . . ,m, and
∑m

j=1 αj = 1. Carathéodory’s Lemma
states that if S is in a subspace of dimension d, any v that is a convex combination of
points in S can be expressed as a convex combination of d + 1 points from S i.e. there
exist j1, . . . , jd+1 ∈ {1, . . . ,m} and non-negative reals α1, . . . , αd+1 summing to 1 with

v = α1vj1 + · · ·+ αd+1vjd+1
.

With this knowledge, show that for any value of λ, there is always a Lasso solution with
no more than n non-zero coefficients.

11. Show that if λ ≥ λmax := ‖XTY ‖∞/n, then β̂Lλ = 0.

12. Show that when the columns of X are orthogonal (so necessarily p ≤ n) and scaled to
have `2-norm

√
n, the kth component of the Lasso estimator is given by

β̂Lλ,k = (|β̂OLS
k | − λ)+sgn(β̂OLS

k )

where (·)+ = max(0, ·). What is the corresponding estimator if the `1 penalty ‖β‖1 in the
Lasso objective is replaced by the `0 penalty ‖β‖0 := |{k : βk 6= 0}|?
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