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Questions 6 and 11 will be marked.

1. Consider the setup of Theorem 7 but where (Y1, x1), . . . , (Yn, xn) are i.i.d., E(εi |xi) =
0 and Var(εi |xi) = σ2. Suppose each xi ∼ U [0, 1]. Suppose further that the RKHS
associated with the kernel k is such that ∥f0∥H ≤ σ.

(a) For the Gaussian kernel k with unit bandwidth, there exist universal constants C1, c1 >
0 such that the resulting integral operator has jth eigenvalue µj ≤ C1 exp(−c1j) (and
each has multiplicity 1). Show that for a tuning parameter choice λn that you should
specify, there exists a universal constant C > 0 such that

1

n
E
{ n∑

i=1

(
f̂λn(xi)− f0(xi)

)2} ≤ Cσ2
log(en)

n

for all n ∈ N.
(b) Now consider the case where k is the second-order Sobolev kernel, where it is known

that the jth eigenvalue µj ≤ {(j − 1)π}−4 (and each has multiplicity 1). For a
tuning parameter choice λn that you should specify, show that there exists a universal
constant C > 0 such that

1

n
E
{ n∑

i=1

(
f̂λn(xi)− f0(xi)

)2} ≤ Cσ2n−4/5

for all n ∈ N.

2. Consider the setup of Question 1 but where we only know Var(εi |xi) ≤ σ2. Show that

1

n
E

(
n∑

i=1

(f0(xi)− f̂λ(xi))
2 |x1, . . . , xn

)
≤ σ2

λ

1

n

n∑
i=1

min(di/4, λ) + ∥f0∥2H
λ

4n
.

3. In the setting of Question 2, suppose that σ2 ≤ cσ and ∥f0∥2H ≤ cf for some cσ, cf > 0
known to the practitioner. Consider the data-driven choice of tuning parameter given by

λ̂ := argmin
λ>0

{
cσ
n

n∑
i=1

d2i
(di + λ)2

+
λcf
4n

}
.

Show that

1

n
E
{ n∑

i=1

(
f̂λ̂(xi)− f0(xi)

)2} ≤ 1

4
max

(
cσ
σ2
,

cf
∥f0∥2H

)
inf
γ>0

(
σ2ϕ(γ)

nγ
+ γ∥f0∥2H

)
,

where
ϕ(γ) :=

∑
j∈J

min(4γ, µj).

4. Let x, x′ ∈ Rp and let ψ ∈ {−1, 1}p be a random vector with independent components tak-
ing the values −1, 1 each with probability 1/2. Show that E(ψ⊤xψ⊤x′) = x⊤x′. Construct
a random feature map ϕ̂ : Rp → R such that E{ϕ̂(x)ϕ̂(x′)} = (x⊤x′)2.
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5. Let X be the set of all subsets of {1, . . . , p} and let z, z′ ∈ X . Let k be the Jaccard similarity
kernel. Let π be a random permutation of {1, . . . , p}. Let M = min{π(j) : j ∈ z},
M ′ = min{π(j) : j ∈ z′}. Show that

P(M =M ′) = k(z, z′),

when z, z′ ̸= ∅. Now let ψ ∈ {−1, 1}p be a random vector with i.i.d. components taking
the values -1 or 1, each with probability 1/2. By considering E(ψMψM ′) show that the
Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to
approximate kernel ridge regression with Jaccard similarity, when n is very large (you
may assume that none of the data points are the empty set).

6. (a) Let W ∼ χ2
d. Show that

P(|W/d− 1| ≥ t) ≤ 2e−dt2/8

for t ∈ (0, 1). You may use the facts that the mgf of a χ2
1 random variable is

1/
√
1− 2α for α < 1/2, and e−α/

√
1− 2α ≤ e2α

2
when |α| < 1/4.

(b) Let A ∈ Rd×p have i.i.d. standard normal entries. Fix u ∈ Rp. Use the result above
to conclude that

P
(∣∣∣∣∥Au∥22d∥u∥22

− 1

∣∣∣∣ ≥ t

)
≤ 2e−dt2/8.

(c) Suppose we have (data) u1, . . . , un ∈ Rp (note each ui is a vector), with p large and
n ≥ 2. Show that for a given ϵ ∈ (0, 1) and d > 16 log(n/

√
ϵ)/t2, each data point

may be compressed down to ui 7→ Aui/
√
d = wi whilst approximately preserving the

distances between the points:

P
(
1− t ≤ ∥wi − wj∥22

∥ui − uj∥22
≤ 1 + t for all i, j ∈ {1, . . . , n}, i ̸= j

)
≥ 1− ϵ.

This result is known as the Johnson–Lindenstrauss Lemma.

In the following questions, assume that X ∈ Rn×p is a column-centred matrix of predictors with
each column additionally scaled to have the same ℓ2-norm.

7. A convex combination of a set of points S = {v1, . . . , vm} ⊆ Rd′ is any point of the form

α1v1 + · · ·+ αmvm,

where αj ∈ R and αj ≥ 0 for j = 1, . . . ,m, and
∑m

j=1 αj = 1. Carathéodory’s Lemma
states that if S is in a subspace of dimension d, any v that is a convex combination of
points in S can be expressed as a convex combination of d + 1 points from S i.e. there
exist j1, . . . , jd+1 ∈ {1, . . . ,m} and non-negative reals α1, . . . , αd+1 summing to 1 with

v = α1vj1 + · · ·+ αd+1vjd+1
.

With this knowledge, show that given a column-centred matrix of predictors X ∈ Rn×p

and response Y ∈ Rn, for any value of λ ≥ 0, there is always a Lasso solution with no
more than n non-zero coefficients.
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8. Show that when the columns of X are orthogonal (so necessarily p ≤ n) and scaled to
have ℓ2-norm

√
n, the kth component of the Lasso estimator is given by

β̂Lλ,k = (|β̂OLS
k | − λ)+sgn(β̂

OLS
k )

where (·)+ = max(0, ·). What is the corresponding estimator if the ℓ1 penalty ∥β∥1 in the
Lasso objective is replaced by the ℓ0 penalty ∥β∥0 := |{k : βk ̸= 0}|?

9. Show that any two Lasso solutions when λ > 0 must have the same ℓ1-norm.

10. Show that if λ ≥ λmax := ∥X⊤Y ∥∞/n, then β̂Lλ = 0.

11. When proving the theorems on the prediction error of the Lasso, we started with the
so-called basic inequality that

1

2n
∥X(β0 − β̂)∥22 ≤

1

n
ε⊤X(β̂ − β0) + λ∥β0∥1 − λ∥β̂∥1.

Show that in fact we can improve this to

1

n
∥X(β0 − β̂)∥22 ≤

1

n
ε⊤X(β̂ − β0) + λ∥β0∥1 − λ∥β̂∥1.

12. Consider a setup where the Lasso solution is unique for all λ > 0. Let β̂Lλ1
and β̂Lλ2

be two Lasso solutions at different values of the regularisation parameter. Suppose that
sgn(β̂Lλ1

) = sgn(β̂Lλ2
). Show that then for all t ∈ [0, 1],

tβ̂Lλ1
+ (1− t)β̂Lλ2

= β̂Ltλ1+(1−t)λ2
.

[Hint: Check the KKT conditions.] Conclude that the solution path λ 7→ β̂Lλ is piecewise
linear with a finite number of knots (points λ where the solution path is not linear at λ)
and these occur when the sign of the Lasso solution changes.
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