MODERN STATISTICAL METHODS Example Sheet 2 (of 4)

1. Let $Y \in \mathbb{R}^n$ be a vector of responses, $\Phi \in \mathbb{R}^{n \times d}$ a design matrix, $J : [0, \infty) \to [0, \infty)$ a strictly increasing function and $c : \mathbb{R}^n \times \mathbb{R}^n$ some cost function. Set $K = \Phi \Phi^T$. Show, without using the representer theorem, that $\hat{\theta}$ minimises

$$Q_1(\theta) := c(Y, \Phi\theta) + J(\|\theta\|_2^2)$$

over $\theta \in \mathbb{R}^d$ if and only if $\Phi \hat{\theta} = K \hat{\alpha}$ and $\hat{\alpha}$ minimises

$$Q_2(\alpha) := c(Y, K\alpha) + J(\alpha^T K\alpha)$$

over $\alpha \in \mathbb{R}^n$. Hint: Consider Π , the orthogonal projection on to the row space of Φ .

- 2. Let $x, x' \in \mathbb{R}^p$ and let $\psi \in \{-1, 1\}^p$ be a random vector with independent components taking the values -1, 1 each with probability 1/2. Show that $\mathbb{E}(\psi^T x \psi^T x') = x^T x'$. Construct a random feature map $\hat{\phi} : \mathbb{R}^p \to \mathbb{R}$ such that $\mathbb{E}\{\hat{\phi}(x)\hat{\phi}(x')\} = (x^T x')^2$.
- 3. Let \mathcal{X} be the set of all subsets of $\{1, \ldots, p\}$ and let $z, z' \in \mathcal{X}$. Let k be the Jaccard similarity kernel. Let π be a random permutation of $\{1, \ldots, p\}$. Let $M = \min\{\pi(j) : j \in z\}$, $M' = \min\{\pi(j) : j \in z'\}$. Show that

$$\mathbb{P}(M = M') = k(z, z')$$

when $z, z' \neq \emptyset$. Now let $\psi \in \{-1, 1\}^p$ be a random vector with i.i.d. components taking the values -1 or 1, each with probability 1/2. By considering $\mathbb{E}(\psi_M \psi_{M'})$ show that the Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to approximate kernel ridge regression with Jaccard similarity, when *n* is very large (you may assume that none of the data points are the empty set).

4. Consider the logistic regression model where we assume $Y_1, \ldots, Y_n \in \{-1, 1\}$ are independent and

$$\log\left(\frac{\mathbb{P}(Y_i=1)}{\mathbb{P}(Y_i=-1)}\right) = x_i^T \beta^0.$$

Show that the maximum likelihood estimate $\hat{\beta}$ minimises

$$\sum_{i=1}^{n} \log\{1 + \exp(-Y_i x_i^T \beta)\}$$

over $\beta \in \mathbb{R}^p$.

- 5*. Consider the following algorithm for model selection when we have a response $Y \in \mathbb{R}^n$ and matrix of predictors $X \in \mathbb{R}^{n \times p}$.
 - (a) First centre Y and all the columns of X. Initialise the current model $M \subseteq \{1, \ldots, p\}$ to be \emptyset and set the current residual R to be Y.
 - (b) Find the variable k^* in M^c having the highest correlation in absolute value with the current residual R. Set M to be $M \cup \{k^*\}$. Replace R with the residual from regressing R on X_{k^*} . Further replace each variable in M^c with the residual from regressing itself on X_{k^*} .

(c) Continue the previous step until R = 0.

Show that this algorithm is equivalent to forward selection. *Hint: Use induction on the iteration m of the algorithm. Consider strengthening the natural inductive hypothesis that the model at iteration m is the same as that selected after m steps of forward selection.*

- 6. Show that if W is mean-zero and sub-Gaussian with parameter σ , then $\operatorname{Var}(W) \leq \sigma^2$.
- 7. Verify Hoeffding's lemma for the special case where W is a Rademacher random variable, so W takes the values -1, 1 each with probability 1/2.
- 8. (a) Let $W \sim \chi_d^2$. Show that

$$\mathbb{P}(|W/d - 1| \ge t) \le 2e^{-dt^2/8}$$

for $t \in (0, 1)$. You may use the facts that the mgf of a χ_1^2 random variable is $1/\sqrt{1-2\alpha}$ for $\alpha < 1/2$, and $e^{-\alpha}/\sqrt{1-2\alpha} \le e^{2\alpha^2}$ when $|\alpha| < 1/4$.

(b) Let $A \in \mathbb{R}^{d \times p}$ have i.i.d. standard normal entries. Fix $u \in \mathbb{R}^p$. Use the result above to conclude that

$$\mathbb{P}\left(\left|\frac{\|Au\|_{2}^{2}}{d\|u\|_{2}^{2}}-1\right| \ge t\right) \le 2e^{-dt^{2}/8}.$$

(c) Suppose we have (data) $u_1, \ldots, u_n \in \mathbb{R}^p$ (note each u_i is a vector), with p large and $n \geq 2$. Show that for a given $\epsilon \in (0, 1)$ and $d > 16 \log(n/\sqrt{\epsilon})/t^2$, each data point may be compressed down to $u_i \mapsto Au_i/\sqrt{d} = w_i$ whilst approximately preserving the distances between the points:

$$\mathbb{P}\left(1-t \le \frac{\|w_i - w_j\|_2^2}{\|u_i - u_j\|_2^2} \le 1 + t \text{ for all } i, j \in \{1, \dots, n\}, \ i \ne j\right) \ge 1-\epsilon.$$

This is the famous Johnson–Lindenstrauss Lemma.

In the following questions assume that $X \in \mathbb{R}^{n \times p}$ has had its columns centred and scaled to have ℓ_2 -norm \sqrt{n} , and that $Y \in \mathbb{R}^n$ is also centred.

- 9. Show that any two Lasso solutions when $\lambda > 0$ must have the same ℓ_1 -norm.
- 10. A convex combination of a set of points $S = \{v_1, \ldots, v_m\} \subseteq \mathbb{R}^{d'}$ is any point of the form

$$\alpha_1 v_1 + \dots + \alpha_m v_m,$$

where $\alpha_j \in \mathbb{R}$ and $\alpha_j \geq 0$ for j = 1, ..., m, and $\sum_{j=1}^m \alpha_j = 1$. Carathéodory's Lemma states that if S is in a subspace of dimension d, any v that is a convex combination of points in S can be expressed as a convex combination of d + 1 points from S i.e. there exist $j_1, \ldots, j_{d+1} \in \{1, \ldots, m\}$ and non-negative reals $\alpha_1, \ldots, \alpha_{d+1}$ summing to 1 with

$$v = \alpha_1 v_{j_1} + \dots + \alpha_{d+1} v_{j_{d+1}}.$$

With this knowledge, show that for any value of λ , there is always a Lasso solution with no more than n non-zero coefficients.

- 11. Show that if $\lambda \geq \lambda_{\max} := \|X^T Y\|_{\infty}/n$, then $\hat{\beta}_{\lambda}^{\mathrm{L}} = 0$.
- 12. Show that when the columns of X are orthogonal (so necessarily $p \leq n$) and scaled to have ℓ_2 -norm \sqrt{n} , the kth component of the Lasso estimator is given by

$$\hat{\beta}_{\lambda,k}^{L} = (|\hat{\beta}_{k}^{\text{OLS}}| - \lambda) + \operatorname{sgn}(\hat{\beta}_{k}^{\text{OLS}})$$

where $(\cdot)_{+} = \max(0, \cdot)$. What is the corresponding estimator if the ℓ_1 penalty $\|\beta\|_1$ in the Lasso objective is replaced by the ℓ_0 penalty $\|\beta\|_0 := |\{k : \beta_k \neq 0\}|$?