MODERN STATISTICAL METHODS Part ITI
Example Sheet 2 (of 4) RDS/Michaelmas 2025

Questions 6 and 11 will be marked.

1. Consider the setup of Theorem 7 but where (Y1,x1),..., (Y, x,) are iid., E(g;|z;) =
0 and Var(g; |z;) = o2. Suppose each z; ~ U[0,1]. Suppose further that the RKHS
associated with the kernel k is such that || f°[|x < o.

(a) For the Gaussian kernel k£ with unit bandwidth, there exist universal constants Cy, ¢; >
0 such that the resulting integral operator has jth eigenvalue p; < C exp(—cij) (and
each has multiplicity 1). Show that for a tuning parameter choice A, that you should
specify, there exists a universal constant C' > 0 such that

;E{;(mxi) - @)’} < o
for all n € N.

(b) Now consider the case where k is the second-order Sobolev kernel, where it is known
that the jth eigenvalue p; < {(j — 1)7}~* (and each has multiplicity 1). For a
tuning parameter choice A, that you should specify, show that there exists a universal
constant C' > 0 such that

;E{;(ﬁn (@)= (@)} < CaPu
for all n € N.

2. Consider the setup of Question [1| but where we only know Var(e; | z;) < o2. Show that
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3. In the setting of Question [2| suppose that 0 < ¢, and || f°||3, < ¢y for some ¢5,cp > 0
known to the practitioner. Consider the data-driven choice of tuning parameter given by

R Co n d? Acy
A= argmin { 2S5 4% 2L
v { w2 G }
Show that

n ) c 0.2
22{ S (o) - @)’} < pmax( 5 fOfH%) it ()05, ).

=1

$(y) ==Y min(4y, ).

jed

4. Let z, 2’ € RP and let 1) € {—1,1}? be a random vector with independent components tak-
ing the values —1,1 each with probability 1/2. Show that E(¢ T2y Ta2") = 272, Construct
a random feature map ¢ : R? — R such that E{¢(z)p(z)} = (z"2")2.



5. Let X be the set of all subsets of {1,...,p} and let z, 2’ € X. Let k be the Jaccard similarity
kernel. Let 7w be a random permutation of {1,...,p}. Let M = min{n(j) : j € z},
M'" = min{n(j) : j € 2’}. Show that

P(M = M") = k(z,27),

when z, 2" # (). Now let ¢» € {—1,1}? be a random vector with i.i.d. components taking
the values -1 or 1, each with probability 1/2. By considering E(¢prtps) show that the
Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to
approximate kernel ridge regression with Jaccard similarity, when n is very large (you
may assume that none of the data points are the empty set).

6. (a) Let W ~ x2. Show that
P(|W/d—1| > t) < 2e~%/8

for t € (0,1). You may use the facts that the mgf of a x? random variable is
1/vT=2a for a < 1/2, and e*//T — 2a < €2*” when |a| < 1/4.

(b) Let A € R¥™P have i.i.d. standard normal entries. Fix u € RP. Use the result above

to conclude that )
p( |l - 1' 1) <z
d||ull3

(¢) Suppose we have (data) uq,...,u, € RP (note each u; is a vector), with p large and
n > 2. Show that for a given € € (0,1) and d > 16log(n/\/€)/t?, each data point
may be compressed down to u; — Au;/ V/d = w; whilst approximately preserving the
distances between the points:

2
Wi — W
M <l+tforalli,je{l,...,n}, i#j) >1—e.
i — ujll3
This result is known as the Johnson—Lindenstrauss Lemma.

In the following questions, assume that X € R™*P is a column-centred matrix of predictors with
each column additionally scaled to have the same £o-norm.

7. A convex combination of a set of points S = {v1,..., v} C R% is any point of the form
QiU + - F QU

where aj € R and a; > 0 for j = 1,...,m, and Z;”Zl a; = 1. Carathéodory’s Lemma
states that if S is in a subspace of dimension d, any v that is a convex combination of
points in S can be expressed as a convex combination of d + 1 points from S i.e. there
exist ji,...,74+1 € {1,...,m} and non-negative reals oy, ..., ag+1; summing to 1 with

V= QU A g1V, -

With this knowledge, show that given a column-centred matrix of predictors X € R™*P
and response Y € R", for any value of A > 0, there is always a Lasso solution with no
more than n non-zero coefficients.
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11.

12.

. Show that when the columns of X are orthogonal (so necessarily p < n) and scaled to

have fo-norm /n, the kth component of the Lasso estimator is given by
B = (B = 2 +sen(B)

where (-)4 = max(0,-). What is the corresponding estimator if the ¢; penalty ||3]|1 in the
Lasso objective is replaced by the ¢y penalty ||5]lo := |{k : Bx # 0}|?

. Show that any two Lasso solutions when A > 0 must have the same ¢;-norm.

Show that if A > Amax := || X Y |e/n, then 8% = 0.

When proving the theorems on the prediction error of the Lasso, we started with the
so-called basic inequality that
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Show that in fact we can improve this to
1 A 1 . A
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Consider a setup where the Lasso solution is unique for all A > 0. Let B}l and B&Q
be two Lasso solutions at different values of the regularisation parameter. Suppose that
sgn(BY,) = sgn(BY,). Show that then for all ¢ € [0,1],
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[Hint: Check the KKT conditions.] Conclude that the solution path A — BI/\J is piecewise

linear with a finite number of knots (points A where the solution path is not linear at \)
and these occur when the sign of the Lasso solution changes.



