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5*.

. Let Y € R™ be a vector of responses, ® € R"*? a design matrix, J : [0,00) — [0,00) a

strictly increasing function and ¢ : R” x R™ some cost function. Set K = ®®T. Show,
without using the representer theorem, that # minimises

Q1(0) := (Y, @) + J(||9]13)
over § € R? if and only if 6 = K& and & minimises
Qa(a) == c(Y,Ka) + J(o' Ka)

over o € R™. Hint: Consider 11, the orthogonal projection on to the row space of ®.

. Let z,2' € RP and let ¢ € {—1,1}” be a random vector with independent components tak-

ing the values —1, 1 each with probability 1/2. Show that E(” z¢T2’) = 272, Construct
a random feature map ¢ : R? — R such that E{¢(z)p(2")} = (z72")2.

. Let X be the set of all subsets of {1,...,p} and let z, 2’ € X'. Let k be the Jaccard similarity

kernel. Let 7w be a random permutation of {1,...,p}. Let M = min{n(j) : j € z},
M’ = min{n(j) : j € 2’}. Show that

P(M = M'") = k(z,2)

when z,2" # (). Now let ) € {—1,1}? be a random vector with i.i.d. components taking
the values -1 or 1, each with probability 1/2. By considering E(¢3s15s) show that the
Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to
approximate kernel ridge regression with Jaccard similarity, when n is very large (you
may assume that none of the data points are the empty set).

. Consider the logistic regression model where we assume Y7, ...,Y, € {—1, 1} are indepen-

dent and

Show that the maximum likelihood estimate B minimises

> log{1 + exp(-Y;z] )}

i=1
over 3 € RP.

Consider the following algorithm for model selection when we have a response ¥ € R"
and matrix of predictors X € R™*P,

(a) First centre Y and all the columns of X. Initialise the current model M C {1,...,p}
to be @) and set the current residual R to be Y.

(b) Find the variable £* in M¢ having the highest correlation in absolute value with
the current residual R. Set M to be M U {k*}. Replace R with the residual from
regressing R on Xp«. Further replace each variable in M¢ with the residual from
regressing itself on Xj«.



8.

(c¢) Continue the previous step until R = 0.

Show that this algorithm is equivalent to forward selection. Hint: Use induction on the
iteration m of the algorithm. Consider strengthening the natural inductive hypothesis that
the model at iteration m is the same as that selected after m steps of forward selection.

. Show that if W is mean-zero and sub-Gaussian with parameter o, then Var(W) < o2.

Verify Hoeffding’s lemma for the special case where W is a Rademacher random variable,
so W takes the values —1,1 each with probability 1/2.

(a) Let W ~ x2. Show that
P(|W/d— 1| > t) < 2~ %°/8

for t € (0,1). You may use the facts that the mgf of a x? random variable is
1/v/T—=2a for a < 1/2, and e=*//T = 2a < €2*” when |a| < 1/4.

(b) Let A € R¥P have i.i.d. standard normal entries. Fix u € RP. Use the result above

to conclude that )
P( (| Aul|3 _ 1' > t> < 9p—dt*/8
dlull3
(c) Suppose we have (data) ui,...,u, € RP (note each u; is a vector), with p large and
n > 2. Show that for a given € € (0,1) and d > 16log(n/\/€)/t?, each data point
may be compressed down to u; — Au;/v/d = w; whilst approximately preserving the
distances between the points:

i — w3 - L,
Pll-t<-————=<1+tforalli,je{l,....n}, i#j|>1—¢

i =13

This is the famous Johnson—Lindenstrauss Lemma.

In the following questions assume that X € R™*P has had its columns centred and scaled to
have f3-norm +/n, and that Y € R"™ is also centred.

9.
10.

11.
12.

Show that any two Lasso solutions when A > 0 must have the same ¢;-norm.
A convex combination of a set of points S = {v1,..., v} C R? is any point of the form
Q1v1 + -+ U,

where a;j € R and a; > 0 for j = 1,...,m, and Z;n:l a; = 1. Carathéodory’s Lemma

states that if S is in a subspace of dimension d, any v that is a convex combination of

points in S can be expressed as a convex combination of d 4+ 1 points from S i.e. there

exist ji,...,74+1 € {1,...,m} and non-negative reals a, ..., ag+; summing to 1 with
V=1V - +Oéd+1vjd+1'

With this knowledge, show that for any value of A, there is always a Lasso solution with

no more than n non-zero coefficients.

Show that if A > Apax := || X7 Y ||oo/n, then BIX = 0.

Show that when the columns of X are orthogonal (so necessarily p < n) and scaled to
have fo-norm /n, the kth component of the Lasso estimator is given by

Bk = (1B = A)+sgn(6"°)

where (-)4+ = max(0,-). What is the corresponding estimator if the ¢; penalty ||3]|1 in the
Lasso objective is replaced by the ¢y penalty |50 := |[{k : Bx # 0}|?



