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1 Introduction

Consider a pair of random variables (X,Y) € X x ) with joint distribution F,, where X
is to be thought of as an input or vector of predictors, and Y as an output or response.
For instance X may represent a collection of disease risk factors (e.g. BMI, age, genetic
indicators etc.) for a subject randomly selected from a population and Y may represent
their disease status; or X could represent the number or bedrooms and other facilities in
a randomly selected house, and Y could be its price. In the former case we may take
Y = {—1, 1}, and this setting is known as the (two-class) classification setting. The latter
case where Y € R is an instance of a regression setting. We will take X = RP unless
otherwise specified. We refer to Y as the output, or response, and X as the input and its
components as predictors or variables.

It is of interest to predict the random Y from X; we may attempt to do this via a
(measurable) function h : X — ), known in the machine learning literature as a hypothesis.
To measure the quality of such a prediction we will introduce a loss function

: Yy xY—R

In the classification setting, loss ¢ given by the misclassification error is particularly rele-
vant:

0 if h(z) =y,

1 otherwise.

((h(x),y) = {

In this context A is also referred to as a classifier. In regression settings, the use of squared
error {(h(z),y) = (h(z) — y)* is common, and we will take this to be the case unless
specified otherwise. We will aim to pick a hypothesis h such that the risk

R(h) := /( @) ) aRg)

is smalll] For a deterministic b, R(h) = E/(h(X),Y).

Recall that the function A that minimises the risk in a regression setting is =z —»
E(Y | X = x), which we refer to as the regression function.

A classifier hg that minimises the misclassification risk is known as a Bayes classifier,
and its risk is called the Bayes risk. A key function in the classification context is

nz) =PY =1|X =x),

which is also known as the regression function here.

'Note that this is a different definition from the ‘risk’ you may have seen in Principles of Statistics.



Proposition 1. A Bayes classifier ho is given bif]

ho(a) = {1 if n(z)>1/2

—1 otherwise.

In most settings of interest, the joint distribution Py of (X, Y"), which determines the op-
timal h, will be unknown. Instead we will suppose we have i.i.d. copies (X1, Y1), ..., (Xn, Ya)
of the pair (X,Y), known as training data. Our task is to use this data to construct a

~ ~

classifier h such that R(h) or ER(h) is small.

~

Important point: R(h) is a random variable depending on the random training data:
R(h) = E(E(h(X), Y) | X1, Y, X, Vo).

A (classical) statistics approach to classification may attempt to model Py up to some
unknown parameters, estimate these parameters (e.g. by maximum likelihood), and thereby
obtain an estimate of the regression function. We will take a different approach and assume
that we are given a class H of hypotheses from which to pick our h. Possible choices of H
in the context of regression include for instance

e H=1{h:h(z)=p+a"3 where u € R, 3 € RP};

o H = {h ch(z) =p+ Z?Zl ©;(z)p; where p e R, € Rd} for a given set of what
are known in this context as basis functions ¢1,...,p4: X = R;

o H = {h th(z) = 2?21 w;pj(z) where w € RY, o, € B} for a given class B of func-
tions p : X — R.

In the classification setting, we may consider versions of the above composed with the sgn
function e.g. H = {h: h(z) = sgn(p + 2" 8) where u € R, 3 € RP}.

Technical note: In this course we will take sgn(0) = —1. (It does not matter much
whether we take sgn(0) = +1, but we need to specify a choice in order that the h listed
above are well-defined.)

Non-examinable material is enclosed in *stars*.

1.1 Brief review of conditional expectation

For many of the mathematical arguments in this course we will need to manipulate condi-
tional expectations.

2When n(x) = 1/2, we can equally well take ho(z) = 1 and achieve the same misclassification error.
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Recall that if Z € R and W = (Wy,...,W,;)" € R? are random variables with joint
probability density function (pdf) fzw with respect to measure p, then the conditional
pdf fzw of Z given W satisfies

fzw(z,w)/ fw(w) if fw(w) #0

0 otherwise,

fzw(z|lw) = {

where fy is the marginal pdf of W. When one or more of Z and W are discrete, we
typically work with probability mass functions.

Suppose E|Z| < oco. Then the conditional expectation function E(Z |W = w) is given
by

gw) =EZ|W =w) = /szW(z|w),u(dz). (1.1)
We write E(Z | W) for the random variable g(1V) (note this is a function of W, not Z).
This is not a fully general definition of conditional expectation (for that see the Stochas-

tic Financial Models course) and we will not use it. We will however make frequent use of
the following properties of conditional expectation.

(i) Role of independence: If Z and W are independent, then E(Z |W) = EZ. If
additionally for a random variable U, W is independent of (Z,U), then E(Z |U, W) =
E(Z|U).

(ii) Tower property: Let f: R? — R™ be a (measurable) function. Then
E{E(Z W) [ (W)} =E{Z[fF(W)}.

In particular, taking f = ¢ € R and using (i) gives us that E{E(Z |W)} = E(Z) (as
f(W) is a constant it is independent of any random variable).

(iii) Fixing what is known: We have
E{f(Wy,..., Wa) |Wy =wq,..., W, =w,}
:E{f(w17"'7w7‘7WT+17""Wd>|Wl:w17-‘-1W7‘:wr},

provided the r.h.s. is well-defined. In particular, if EZ? < oo and ¢ : R? — R is such
that E[{g(W)}?] < oo, then E{g(W)Z | W} = g(W)E(Z | W), a property sometimes
referred to as ‘taking out what is known’.

(iv) Best least squares predictor: With the conditions in (iii) above, we have
E{Z — g(W)}* = E{Z — E(Z|W)}* + E{E(Z | W) — g(W)}". (1.2)
Indeed, using the tower property,

E{Z —g(W)} =E{Z —E(Z|W)+E(Z|W) — g(W)}’
=E{Z -E(Z|W)} +E{E(Z|W) — g(W)}*
+2EE[{Z —E(Z|W)HE(Z|W) = g(W)} W],



but by ‘taking what is known’, half the final term is

E[E(Z|W) - g(W)} E{Z — E(Z|W)|W}] = 0.

-~
=0

Property (iv) verifies that the A : X — R minimising R(h) under squared loss is ho(z) =
EY|X =x).
Probabilistic results can be ‘applied conditionally’, for example:

Conditional Jensen. Recall that f: R — R is a convex function if
tf(x)+ (1 —=t)f(y) > f(tz + (1 —t)y) forall z,y € Randt e (0,1).

The conditional version of Jensen’s inequality states that if f : R — R is convex and
random variable Z has E|f(Z)| < oo, then

E(f(Z2)|W) > f(E(Z|W)).

1.2 Bayes risk
Proof of Proposition [l We have R(h) = P(Y # h(X)) = EP(Y # h(X)|X), so ho(x)
must minimise over h(z)
P(Y #h(X)|X =2) =P(Y = Lh(z) = —1| X =2) + P(Y = —1,h(z) = 1| X = )
=PY =1|X =2)lpp@=—1y + P(Y = 1| X = 2)Ljpw)=1)
= Lin@=—13(2) + =13 (1 = n(z)).
When n(z) > 1 — n(x) and so n(x) > 1/2, we must have ho(z) = 1, and similarly when

n(x) < 1/2, we must have ho(x) = —1. If n(xz) = 1/2, then the above is constant so any
h(z) minimises this. O

1.3 Empirical risk minimisation

Empirical risk minimisation replaces the expectation over the unknown F, in the definition
of the risk with the empirical distribution, and seeks to minimise the resulting objective
over h € H:

. 1 <& . .
R(h) =~ > U(h(X;),Y;),  h€argmin R(h).
i—1 heH

R(h) is the empirical risk or training error of h and h is the empirical risk minimiser
(ERM).



