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1 Introduction

Consider a pair of random variables (X,Y) € X x ) with joint distribution F,, where X
is to be thought of as an input or vector of predictors, and Y as an output or response.
For instance X may represent a collection of disease risk factors (e.g. BMI, age, genetic
indicators etc.) for a subject randomly selected from a population and Y may represent
their disease status; or X could represent the number or bedrooms and other facilities in
a randomly selected house, and Y could be its price. In the former case we may take
Y = {—1, 1}, and this setting is known as the (two-class) classification setting. The latter
case where Y € R is an instance of a regression setting. We will take X = RP unless
otherwise specified. We refer to Y as the output, or response, and X as the input and its
components as predictors or variables.

It is of interest to predict the random Y from X; we may attempt to do this via a
(measurable) function h : X — ), known in the machine learning literature as a hypothesis.
To measure the quality of such a prediction we will introduce a loss function

: Yy xY—R

In the classification setting, loss ¢ given by the misclassification error is particularly rele-
vant:

0 if h(z) =y,

1 otherwise.

((h(x),y) = {

In this context A is also referred to as a classifier. In regression settings, the use of squared
error {(h(z),y) = (h(z) — y)* is common, and we will take this to be the case unless
specified otherwise. We will aim to pick a hypothesis h such that the risk

R(h) := /( @) ) aRg)

is smalll] For a deterministic b, R(h) = E/(h(X),Y).

Recall that the function A that minimises the risk in a regression setting is =z —»
E(Y | X = x), which we refer to as the regression function.

A classifier hg that minimises the misclassification risk is known as a Bayes classifier,
and its risk is called the Bayes risk. A key function in the classification context is

nz) =PY =1|X =x),

which is also known as the regression function here.

'Note that this is a different definition from the ‘risk’ you may have seen in Principles of Statistics.



Proposition 1. A Bayes classifier ho is given bif]

ho(a) = {1 if n(z)>1/2

—1 otherwise.

In most settings of interest, the joint distribution Py of (X, Y"), which determines the op-
timal h, will be unknown. Instead we will suppose we have i.i.d. copies (X1, Y1), ..., (Xn, Ya)
of the pair (X,Y), known as training data. Our task is to use this data to construct a

~ ~

classifier h such that R(h) or ER(h) is small.

~

Important point: R(h) is a random variable depending on the random training data:
R(h) = E(E(h(X), Y) | X1, Y, X, Vo).

A (classical) statistics approach to classification may attempt to model Py up to some
unknown parameters, estimate these parameters (e.g. by maximum likelihood), and thereby
obtain an estimate of the regression function. We will take a different approach and assume
that we are given a class H of hypotheses from which to pick our h. Possible choices of H
in the context of regression include for instance

e H=1{h:h(z)=p+a"3 where u € R, 3 € RP};

o H = {h ch(z) =p+ Z?Zl ©;(z)p; where p e R, € Rd} for a given set of what
are known in this context as basis functions ¢1,...,p4: X = R;

o H = {h th(z) = 2?21 w;pj(z) where w € RY, o, € B} for a given class B of func-
tions p : X — R.

In the classification setting, we may consider versions of the above composed with the sgn
function e.g. H = {h: h(z) = sgn(p + 2" 8) where u € R, 3 € RP}.

Technical note: In this course we will take sgn(0) = —1. (It does not matter much
whether we take sgn(0) = +1, but we need to specify a choice in order that the h listed
above are well-defined.)

Non-examinable material is enclosed in *stars*.

1.1 Brief review of conditional expectation

For many of the mathematical arguments in this course we will need to manipulate condi-
tional expectations.

2When n(x) = 1/2, we can equally well take ho(z) = 1 and achieve the same misclassification error.
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Recall that if Z € R and W = (Wy,...,W,;)" € R? are random variables with joint
probability density function (pdf) fzw with respect to measure p, then the conditional
pdf fzw of Z given W satisfies

fzw(z,w)/ fw(w) if fw(w) #0

0 otherwise,

fzw(z|lw) = {

where fy is the marginal pdf of W. When one or more of Z and W are discrete, we
typically work with probability mass functions.

Suppose E|Z| < oco. Then the conditional expectation function E(Z |W = w) is given
by

gw) =EZ|W =w) = /szW(z|w),u(dz). (1.1)
We write E(Z | W) for the random variable g(1V) (note this is a function of W, not Z).
This is not a fully general definition of conditional expectation (for that see the Stochas-

tic Financial Models course) and we will not use it. We will however make frequent use of
the following properties of conditional expectation.

(i) Role of independence: If Z and W are independent, then E(Z |W) = EZ. If
additionally for a random variable U, W is independent of (Z,U), then E(Z |U, W) =
E(Z|U).

(ii) Tower property: Let f: R? — R™ be a (measurable) function. Then
E{E(Z W) [ (W)} =E{Z[fF(W)}.

In particular, taking f = ¢ € R and using (i) gives us that E{E(Z |W)} = E(Z) (as
f(W) is a constant it is independent of any random variable).

(iii) Fixing what is known: We have
E{f(Wy,..., Wa) |Wy =wq,..., W, =w,}
:E{f(w17"'7w7‘7WT+17""Wd>|Wl:w17-‘-1W7‘:wr},

provided the r.h.s. is well-defined. In particular, if EZ? < oo and ¢ : R? — R is such
that E[{g(W)}?] < oo, then E{g(W)Z | W} = g(W)E(Z | W), a property sometimes
referred to as ‘taking out what is known’.

(iv) Best least squares predictor: With the conditions in (iii) above, we have
E{Z — g(W)}* = E{Z — E(Z|W)}* + E{E(Z | W) — g(W)}". (1.2)
Indeed, using the tower property,

E{Z —g(W)} =E{Z —E(Z|W)+E(Z|W) — g(W)}’
=E{Z -E(Z|W)} +E{E(Z|W) — g(W)}*
+2EE[{Z —E(Z|W)HE(Z|W) = g(W)} W],



but by ‘taking what is known’, half the final term is
ERE(Z |W) —gW)}E{Z —E(Z|W)|W}] =0.

/

Vv
=0

Property (iv) verifies that the h : X — R minimising R(h) under squared loss is ho(z) =
EY|X =x).
Probabilistic results can be ‘applied conditionally’, for example:

Conditional Jensen. Recall that f: R — R is a convex function if
tf(x)+ (1 —=t)f(y) > f(te + (1 —t)y) forall z,y € Randt e (0,1).

The conditional version of Jensen’s inequality states that if f : R — R is convex and
random variable Z has E|f(Z)| < oo, then

E(f(Z2)|W) = f(E(Z|W)).

1.2 Bayes risk

Proof of Proposition 1l We have R(h) = Elyysnx)y = EE[L{y2nx)y | X].
Now

E[lysn0y | X] = E[Ly=iy L) =—13 + Liy=—13 Lncxy=1y | X]
= Linx)=—13n(X) + Linxo=13 (1 — n(X)).

When n(X) > 1 —n(x) and so n(X) > 1/2, this is minimised by taking h(X) = 1, and
similarly when n(X) < 1/2, this is minimised by taking h(X) = —1. If n(X) = 1/2, then
the above is constant so any h(X) minimises this. O

1.3 Empirical risk minimisation

Empirical risk minimisation replaces the expectation over the unknown F in the definition
of the risk with the empirical distribution, and seeks to minimise the resulting objective
over h € H:

. 1 < . .
R(Rh) := — ((h(X;),Y:), h € argmin R(h).
(0 5= - D (X, ¥ g min f(1)

f?(h) is the empirical risk or training error of h and h is the empirical Tisk minimiser
(ERM).

Example 1. Consider the regression setting with )V = R, squared error loss and ‘H =
{z = p+a"Bfor p € R, B € RP}. Then empirical risk minimisation is equivalent to
ordinary least squares, i.e. we have

n

A~

5 ; 1
h(z) = i+ B2 where (i, 3) € argmin — Z(YZ —u— X, B)2.

n
(H,ﬁ)ERXRP =1
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We can consider applying this more generally where

d
H= {x — Zgoj(x)ﬁj where (3 € Rd}
=1

and ¢; : R? — R for j = 1,...,d. For instance in the case where p = 1, we could have
¢j(r) = 297!, Then forming matrix ® € R™*? with entries ®;; = ¢;(X;) assumed to
be of full column rank, and writing ¢(x) = (¢1(z),...,¢q(z)), we have that the ERM
h:xz— BTo(z) where

B = (Q)T(I))_lq)TYi:n (13)

and Y., == (Y,...,Y,)". JAN

A good choice for the class ‘H will result in a low generalisation error R(ﬁ) This is a
measure of how well we can expect the ERM h to predict a new data point (X,Y) ~ B
given only knowledge of X. To understand the competing factors that drive this sort of
quantity, it is helpful to consider the case of squared error loss where, as we shall see, this
may be related to a sum of (squared) bias and variance terms.

1.4 Bias—variance tradeoff

Let us consider i = hp trained on data D = (X;, ;)™ formed of iid copies of an indepen-
dent random pair (X,Y’). We first consider its expected performance in terms of squared
error at X. To this end, it is helpful to introduce

h:az— E(hp(z)),
i.e. the average over the training data of hp, and the related function
Iy, @ = E(hp(z)| X1m).

Recall property (iv) of conditional expectations, that for random variables Z, W € R x W
and f: W — R, we have

E{Z — (W)} =E{Z - E(Z|W)}* + E{E(Z | W) - f(W)}*.
Using, this we have

E{Y — hp(X)}*| X]
= E{Y —E(Y | X, D)}*| X] + E{E(Y | X) — hp(X)}* | X]
=E(Y | X)
= Var(Y | X) + E[{hp(X) — E(hp(X) | X)}* | X] + E{E(Y | X) — R(X)}* | X].  (1.4)

=h(X)



Here, we have used the fact that
E(hp(X)| X =) =E(hp(z)| X = ) = h(x).
Thus, taking expectations:

ER(hp) = E{E(Y | X) — h(X)}* + EVar(hp(X) | X) + EVar(Y[X) . (L.5)

Vv
squared bias variance of A irreducible variance

If h were an ERM over class H, we would expect a rich class of hypotheses to result in a
smaller squared bias term. However, the variance would likely increase as empirical risk
minimisation may fit to the realised Y7,...,Y,, closely and so hp would be very sensitive
to the training data D.

To see this tradeoff more clearly, it is instructive to consider a related decomposition

to involving h: we have
E{Y —hp(X)}?| X = 2] = B{E(Y | X = 2)—hx, (2)+E{hp(x)—hx,, (z)}*+Var(Y | X = z).

We examine the middle term in more detail, and consider the special case where hp is the
ERM of Example [ given by (T.3), that is hip(z) = o(z) (@7 @)1 TV;,, with ¢(z) € R™
To facilitate our analysis, let us assume that Var(Y | X = x) =: 02 is constant in 2. Then
we have

El{hp(2) = hx,,, (2)} | X1un]

=E[{g(z)" ( )0 (Vi — E(Yin [ X1:0)) | X1

= ¢(2) (2" @)@ E[{Yin — E(Viin [ Xp:) {1 — E(Yin | X1n)} ' | X1 2(@7 @) 0(2).
Note that by property (i) of conditional expectations, E(Y; | X1.,) = E(Y; | X;) and also,

E[{Y; — E(Y; | X)) HYe — E(Ve | Xi)} | Xion] = B{Y; — E(Y; [ X5) H{Y: — E(YVa [ Xe)} [ X5, Xi]
= E(Y;Ye [ X;, Xi) — E(Y; [ X;)E(Ye [ Xi),

using the tower property in the final line. Now if j # k,

E(Y;Y | X;, Xp) = E{E(Y;Y, | V), X;, Xi) | X;, X3} (tower property)
=E{Y;E(Y:|Y;, X;, X&) | X, Xi} (taking out what is known)
—E{YE(Y:| X0 X, X} (property (i)
=EY; | X;)E(Y: | Xk) (taking out what is known and (i)).

Thus E[{Yln - E(Yi:n | Xln)}{Yin - E(}/l:n | Xl:n)}T | Xl:n] - 02]7 and 50

E[{hp(z) = hx,,, (@)} | X1a] = 0%0(2) (27®) o (x).



Consider now averaging this over the training points * = X1,..., X,,. Noting that ¢(X;)
is the ith row of ®, we may compute, using the ‘trace trick’ (and that trace is invariant to
cyclic permutations),

LS o) (@) (X)) = %tr(z so(Xi)so(Xi)T(ch@)-l)

s

v~

—oTo
o2d
—.

Thus the variance term increases linearly with d, while the squared bias should decrease
when adding further basis functions ¢;.

At least two questions may arise at this stage: how should we choose the number of
basis functions in practice in order to obtain a small expected risk? And, particularly in
multivariate settings, what are sensible ways of choosing the basis functions themselves?
We turn to the first of these questions next.

1.5 Cross-validation

The question of selecting the appropriate number of basis functions in a linear regression
may be seen as a special case of the following problem: given a number of competing
machine learning methods, select from these (ideally) the best one i.e. one that trades off
bias and variance most favourably. In the case of linear regression, each regression using a
given set of basis functions may be thought of as one of the competing methods.

Now let ﬁ(l), cee h(™ be a collection of machine learning methods: for instance h@
could correspond to performing linear regression using basis functions ¢1,...,¢;. Each
hU) takes as its argument i.i.d. training data (X;,Y;)", = D € (X x Y)" and outputs a
hypothesis, so ﬁg) : X = R. Given a loss function ¢ with associated risk R, we may ideally
want to pick a h@ such that the risk

R(hY)) = E{((h)(X).Y)| D} (1.6)

is minimised. Here (X,Y) € & x Y is independent of D and has the same distribution as

(X1,Y1). This h() is such that conditional on the original training data, it minimises the

expected loss on a new observation drawn from the same distribution as the training data.
A less ambitious goal is to find a j to minimise the expected risk

ER(hY) = E[E{((hY(X),Y)|D}] (1.7)

where compared with , we have taken a further expectation over the training data D.

We still have no way of computing directly, but we can attempt to estimate it.
The idea of v-fold cross-validation is to split the data into v groups or folds of roughly
equal size. Let D_j be all the data except that in the kth fold, and let Ay C {1,...,n}



be the observation indices corresponding to the kth fold. For each j we apply h@ to data
D_j, to obtain hypothesis h(_],)C = h%lk. We choose the value of j that minimises

V() == S S 9 (x), 7))

k=1 i€Ay

Writing j for the minimiser, we may take final selected hypothesis to be ﬁg).
Note that for each i € Ay,

E((hY)(X;),Y;) = E[E{¢(AY)(X;), Y;)|D_.}]. (1.8)

This is precisely the expected loss in but with training data D replaced with a training
data set of smaller size. If all the folds have the same size, then CV(j) is an average of
n identically distributed quantities, each with expected value as in . However, the
quantities being averaged are not independent as they share the same data.

Thus cross-validation gives a biased estimate of the expected prediction error. The
amount of the bias depends on the size of the folds, the case when the v = n, known as
leave-one-out cross-validation typically giving the least bias, though using this often comes
with an increased computational cost. Typical choices of v are 5 or 10.

2 Popular machine learning methods 1

2.1 Decision trees

We now have a way to select an appropriate subset of basis functions to use from a larger
collection, but how should we choose this collection in the first place? Decision trees (also
known as regression trees in the regression context we study here; there are also variants
for classification which we will not discuss) form a highly popular class of methods for
doing this in a data-driven fashion.

Regression trees use a set of basis functions consisting of indicator functions on rectan-
gular regions and take the form

T() = 3 2yln, (o) (2.1)

here R, are rectangular regions that form a partition of R? and the ~; are coefficients in
R.

The regions and coefficients are typically computed from data (X;,Y;)", using the
following recursive binary partitioning algorithm.

1. Input maximum number of regions .J. Initialise R = {R”}.



2. We now split one of the regions in R using an axis aligned split such that a particular
splitting criterion is minimised. In the regression case, it often makes sense to aim
to minimise the overall residual sum of squares (RSS) as follows.

(a) For each region R € R such that I := {i : X; € R} has |I| > 1, perform
the following. For each j = 1,...,p, let §; be the set of mid-points between
adjacent {X;;}ier. Find the predictor Jr and split point §x to minimise over
je{l,...,p}and s € S;,

. - 2 . - 2_ . - 2
min >, Vi-w)amin } o (Vi—w)'s mind (Yi—e)? . (22)
1€l:X;;<s 1€l:X;;>s R el

(. J/

-~

e . . .
RSS on I when splitting at s RSS on I without splitting

(b) Let R be the region yielding the lowest value of (2.2) and define
RL = {ZE < R : ‘rﬁﬁ < §R}7 ﬁR = [%\RL
Refine the partition via R < (R \ {R}) U{Ry, Rr}.
3. Repeat step 2 until |R| = J.

4. Writing R = {Rl, . ,RJ}, let fj ={i: X; € f%]} and

.1 }
R 2

iEfj

Output 7" : R? — R such that T(:p) = Z}]:1 %Il{wegj}~

Note that 7" is the ERM over the class of functions
J
710 = S it 0 e},
j=1

with the regions Rl, cee R, fixed. Note that although the regions were constructed in a
data-driven fashion, they were chosen greedily to minimise the RSS at each stage. Thus in
general, the fitted 7" will not coincide with the RSS-minimising function of the form (2.1).

The fitted T can be conveniently visualised in terms of a tree as indicated in Figur&
The regions fij correspond to the so-called leaves, those bottom nodes with only a single
edge emanating from them.

At first sight, it might appear that the minimisation in 2 (a) is computationally intensive
as it involves both a loop over j and for each s € S; performing a least squares regression.
To see how the computations may be arranged efficiently, let us consider, for notational
simplicity, the first split, so I = {1,...,n}, and where p = 1.
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(a) Rectangular regions constructed using the regression tree

algorithm fitted to a dataset with two predictors with num- (b) Visualisation of the fitted regression tree. The percentages
bers indicating the order in which the splits were made. give the proportion of data in the corresponding region and
Also shown are the contours of the true regression function also given is the average of the responses corresponding to
E(Y | X =z). those points.

Suppose that the {X;}", are sorted so X; < X5 < --- < X,,. The minimisation
problem above is equivalent to finding m to minimise @), + P,, where

m = min Y, — 2 and P, := min Y, — 2,
@ = min Km( VL) min i>m( Vr)

Note that

2 2
1 1
=Y (v iy =y L(xn),

i<m i<m i<m i<m

with a similar decomposition for P,,. Thus

2 2
- 1 1
Pm+Qm:iZIYi2_E ZYz’ T —m ZYi .

i<m i>m

As the first term does not depend on m, we may equivalently maximise

2 2
1 1
prll DR Bl DR

i<m i>m

over m. Let A,, = Zing; and B, := ), Y;. Then A, 11 = Ap, + Yyq1 and By =
By — Y41 Thusall Ay, ..., A,—; and By, ..., B,_1 may be computed in O(n) operations.
Thus we may compute the display above for all m = 1,...,n — 1 in O(n) operations, and

hence we may minimise it over m with the same cost.
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A further important point is that the minimisation in 2 (a) need only be performed for
the two new regions constructed in 2 (b) during the previous operation. The reason is that
we can store the value of the objective in 2 (a), as well as Jr and §g for all other regions
R, and these do not need to be recomputed.

In order to use a decision tree is practice, one must choose the number of regions J: a
large J might result in overfitting, while a small J may result in a large bias. Choosing .J
may be done via cross-validation. An alternative (typically preferred) approach is to grow
a very large tree, and then collapse regions together according to a pruning strategy; we
do not discuss this here.

2.2 Random forests

Whilst decision trees as above are a useful machine learning method in their own right,
they have a few disadvantages:

e The piecewise constant estimated regression functions they fit, while useful for visu-
alisation purposes (see Figure might not always deliver the best prediction error
particularly when the true regression function varies smoothly with the predictors.

e The process of building a tree is greedy and unstable. As a consequence, small
changes in the training data may lead to a very different tree; that is a fitted tree
can have high variance (over the training data).

The Random forest procedure is a highly successful algorithm that aims to remedy these
two deficiencies, though as we shall see, it does sacrifice interpretability of the fitted re-
gression function.

Consider the regression setting where Y; € R and we are using squared error loss. Let 1o
be a decision tree trained on data D := (X;, Y;)",. Also let T be given by T'(z) = ETp(x)
and let (X,Y) be independent of D with (X,Y) < (X;,Y}).

Recall the decomposition of the expected risk in Section :

ER(Tp) = E{E(Y | X) — T(X)}2 +EVar(Tp(X) | X) + EVar(Y | X) .
squar:;i bias variance:)rf the tree irreducib?g variance

If the number of regions J used by Tp is large, some of these regions will contain only
small numbers of observations in them so the corresponding coefficients 4; will by highly
variable and consequently EVar(Tp(X) | X) will tend to be large. On the other hand, the
squared bias above and hence R(T) may be low as a large J would allow T' to approximate
r—=EY | X =z) well.

Random forest effectively attempts to ‘estimate’ T and so improve upon the variance

of a single tree. If we had multiple independent datasets Dy, ..., Dp, we could form an
unbiased estimate via Zb 1 TDb Random forest samples the data D with replacement to
form new datasets Dj, ..., D} and performs the following.
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1. For each b = 1,..., B, grow a decision tree 7O = TDZ but when searching for
the best predictor to split on, randomly sample (without replacement) my,, of the p
predictors and choose the best split from among these variables.

2. Output fyf = 5 Eszl 7

One reason for sampling predictors is to try to make the T® more independent. To see why
this would be useful, suppose for b; # by and some x € RP that Corr(7®V)(z), T2 (2)) =
p > 0. Then

Var(fis(z)) = é\/ar(f(l)(x)) + —Q_I)Var(TA(l)(x))

_ - pVar(T(l)(ﬂc)) + pVar(TW(z)).

Whilst the first term can be made small for large B, the second term does not depend on B,
so we would like p to be small. The extra randomisation in the form of sampling predictors
can help to achieve this. On the other hand, we would expect the squared bias to increase
as Myyy is decreased. An appropriate value of my,, may be selected using cross-validation.

3 Statistical learning theory

In a regression setting, using OLS with a set of d basis functions as in Example [1] to give
hp (where D = (X7.,, Y1.,) is the training data) yields
o%d

ER(hp) — ER(hy, ) ~ —, (3.1)

assuming o2 := Var(Y | X = z) is constant in = (see example sheet and the discussion in
Section [1.4)).

Our goal now is to study a roughly analogous quantity to the LHS of ( in the
classification setting. For an ERM h over a class H, in general, z — E(hD( MXM) will
not be a classifier. Instead, we may compare the risk or expected risk of hp = h to

h* := argmin R(h),
heH

the bestf] hypothesis in H.
The quantity R(h) — R(h*) is sometimes known as the excess risk. Some questions of
interest are:

e How does the ‘complexity’ of H influence the excess risk?

3If there is no h* that achieves the associated infimum, we can consider an approximate minimiser with
R(h*) < infrey R(h) + € for arbitrary ¢ > 0 and all our analysis to follow will carry through. In fact
similar reasoning is applicable to the ERM h.
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e How does a change in the size n of the data affect the excess risk?

Statistical learning theory is the branch of machine learning devoted to these sorts of
considerations and in this course we aim to provide an introduction to some of the key
ideas in this area. Our starting point is the following decomposition of the excess risk:

R(h) — R(h*) = R(h) — R(h) + R(h) — R(h*) +R(h*) — R(h*)
<0

< sup{R(h) — R(h)} + R(h*) — R(h").
heH
We wish to bound either the tail probability or the expectation of the excess risk. To
motivate the developments to follow, consider the former case, for which it would be
helpful to upper bound

P <sup{R(h) — R(h)} > t)

heH

for a given ¢t > 0. Consider, for the time being, the setting where |H| is finite; ultimately
we would like to tackle the case where |H| is infinite. A union bound gives

P (maX{R(h) — R(h)} > t) = P(Unen{R(h) — R(h) > t})

<> P(R(h) — R(h) > t). (3.2)

heH

Now for each fixed h € H,

n

R(n) — R(h) =~ STIE{AC), YD)} — ((h(X,), V)]

=1

is an average of n i.i.d. mean-zero random variables. The central limit theorem (CLT) would
suggest that /n{R(h) — R(h)} should behave like a N(0, Var(¢(h(X;),Y1)))-distributed
random variable. However, in order to make use of this to bound , we would need a
uniform limiting result for all A € H. In order to trade off bias and variance favourably,
we may wish to increase the complexity of H, i.e. the size of |H|, for large n, so it is not
at all clear that such a uniform result should hold. Moreover, in order for to be
small, we would need to consider ¢ fairly large, so we would need such a limiting result
to provide a good approximation in the far right tail of the distribution of \/n{R(h) —
R(h)}. Such desiderata go far beyond what is offered by the CLT, and instead we turn to
concentration inequalities, an important area of probability theory that (for example) can
provide nonasymptotic tail bounds that mimic what we would have liked to obtain from
the CLT, for averages of certain types of independent random variables.
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