MATHEMATICS OF MACHINE LEARNING Part 11
Example Sheet 1 (of 3) Solutions RDS/Lent 2024

In the following questions, where appropriate, suppose (X1,Y1),...,(Xn,Ys) are i.i.d. and take values
in X x Y. We will take X = RP, ¥ = {—1,1} and the loss ¢ will be misclassification loss, unless it is
specified that a regression setting is being considered, in which case the loss will typically be squared
error. Assume that the computational complexity of inverting M € R™*™ is O(m?), and forming BC
where B € R**? and C € R"*¢ is O(abc).

1. Show that

where

-1 otherwise

ho() = {1 if n(z) > 1/2

and n(z) =P(Y =1|X =x).
Solution: We have

P(Y # h(X)|X = ) = Lin@)=——131(2) + Lin@)=13 (1 = n(x)),
S0,
P(Y # h(X)|X =) = P(Y # ho(X)|X = 2) = Lin(@)=1,ho(x)=—1} (1 = 20(2)) + L{n(z)=—1,ho(x)=1} (20(7) — 1)
= Lin(@)#ho()}2n(7) — 1]

using the definition of hg for the final equality. Taking expectations we then obtain the desired
result.

2. In each of the settings below, find a classifier that minimises the risk corresponding to the loss
functions given.

(a) Consider the weighted misclassification loss £ : {—1,1}* — R given by ¢(—1,—1) = ¢(1,1) =0
and {(—1,1) = «, £(1,—1) = 8 where o, 8 > 0.
Solution: Using the argument from the previous question, we have for any classifier h that

E((h(X),Y)|X =2) = algp@)y=—13n(x) + Blinm=13 (1 — n(x)).

To minimise the risk it suffices to pick h such that h(x) minimises the RHS of the above i.e.
we may take

h) = {1 if B(1 - n(z)) < an(a), (son(x) > B/(a+5))

-1 otherwise.

(b) Suppose Y ={1,...,K} and loss £ : Y x ) — R satisfies

0 ify=1v
Uy y) =
') {1 otherwise.

Solution: We have
K K

E(((X),Y)|X =) => PY = kX = 2)(1-L{n@)=k}) = 1= 3 _ PV = k[X = 2)1a)=1}-
k=1 k=1

To minimise the risk, it suffices to pick h such that h(x) minimises the RHS of the above, so
we should take
h(z) € argmax P(Y = k| X = x).
k



3. Let h = hp be a hypothesis trained on data D = (X;, Y;)?_; formed of iid copies of an independent
random pair (X,Y"). Define hx,  (z) :=E(hp(z)| X1.n).

(a) Show that

E{Y -hp(X)}?| X = a] = E(E(Y | X = 2)~hx,., () +E{hp (@) ~hx, ()} +Var(Y | X = o).

Solution: We have (from lectures),
E{Y — hp(X)}* | X] = E{E(Y | X) — hp(X)}? | X] + Var(Y | X).
Next, using
E{Z — f(W)}* =E{Z —~E(Z| W)} + E{E(Z | W) — f(W)}*.
with W = (X, X1.,,), f(W) =E(Y | X) and Z = hp(X), we have
E{E(Y | X) — hp(X)}? | X] = B{E(Y | X) — hx,..(X)}* | X] + E[{hp(X) — hx,,, (X)}* | X].

Then ‘fixing what is known’ gives the result.

(b) Show that considering squared error loss,

ER(hp) —ER(hx,,,) = E{hp(X) — hx,,, (X)}*.

Solution: Follows easily from considering a decomposition as in (a) but with hp = h X1
(there is no restriction on hp), so this is permitted).

4. Counsider performing OLS regression using a set of d basis functions (¢1,...,¢q) := ¢ using data
(X;,Y:)™,. Assume that the matrix ® € R"*¢ with ith row ¢(X;) € R? has full column rank.

(a) Show that the OLS coefficient vector 5 € R% may be obtained in O(nd?) operations.
Solution: Computing ®"® is O(nd?) and inverting this is O(d®) (but note d < n as ® has
full column rank). Next computing ® Y., € R? is O(nd) and then (#7®)~! (@TYy,,) is
O(d?). Thus the overall complexity is O(nd?).

(b) Show that the leave-one-out cross-validation score
RS TA A2
- Z{Yi —p(Xi) B}
i=1

may be computed in O(nd?) operations. Here B_; € R is the OLS coefficient vector when
performing regression using a dataset with the ith point removed. [Use the matrix identity

A~lppT ATY

1-0TA-1H

whenever A € RP*? is invertible, b € RP and b" A~1b # 1. Also assume p(X;) T (@7 ®)"L1p(X;) <
1, which holds provided each (n — 1) x d sub-matrix of ® has full column rank.] [Hint: Con-
sider first computing (T ®)"1o(X;) €RY for alli=1,...,n. ]

Solution: Computing a; := (®T®)~1p(X;) for all i is O(d® + nd?) = O(nd?). Now, writing
A= q)T(I), ¢Z = (p(X,L), Yy = Yl:n

b Boi= o] (A—¢id] )L (@ Ty — 6:Y7)

T, T
T, 4 Pigy T
= (a] + 22 ) (@Ty - 1Y),
(az + 1 _¢;rai> (@'y—¢iY3)

(A—bb" )t =A"14+

Now a; ¢; and a,; ® "y are both O(d) computations, provided ® "y has already been computed

(O(nd) time). Thus in total, computing all ¢(X;)TB_; costs O(nd?) and hence the CV score
above may be computed in O(nd?) time.



5. Consider a regression setting as in the previous question with ¢ € R"*4 and ¢ defined as above.
For A > 0, consider hy given by hy(z) = ¢(z) " 3\ with

BA = argmin {||Y1., — @BH% + /\”ﬁHS}
BERE

(a) Show that By = (®T® + )" 1®T Y7,
Solution: We can differentiate the objective w.r.t. S to obtain

(I)T(}/l:n - (I)B)\) = )‘B)\a

which easily yields the result.

(b) Suppose Var(Y; | X; = x) > 0 is constant in = and ¢(x) is not the zero vector. Show that for

all 2, A\ — Var(hy ()| X1.,) is strictly decreasing. [Hint: Consider the eigendecomposition of
TP
Solution: Similarly to lectures, we can obtain

Var(lAl,\(x) | X1.0) = <p(a;)T(<I>T<I> + )\I)_l(@TA(I))(fI)TCI) + M) Lo(),

where A = E[{Y1., —E(Yi | X1:0) H Y1 —E(Yiin | X1:0)} ' | X1.0)- By the assumption on the
variance, we can show (see lectures) that A = 02I. Now considering the eigendecomposition
®T® =UDUT, we have

(@T®+ M) (@ ®) (@B + M) = U(D+A)2U ",

Thus

A L (U@
Var(hy(z) | X1m) =0 ; " (D N2

which is strictly decreasing in .

6. In this question we investigate an alternative splitting criterion for a regression tree, based on
maximising a likelihood assuming that the Y; have a Poisson distribution. Specifically, consider
the first split and where p = 1 with X; < --- < X,,. Show that

max H(V?e_“) X H(’y}?e"m)
YL>YR ;
i<m i>m

may be maximised over m with O(n) computational cost.
Solution: Taking logs of the objective, we arrive at

Yilog s — Yilogvr — 1a}.
max > {Yilogyr =1} +max y {Yilogyr — vr}

i<m i>m

Differentiating w.r.t vz, and yg, we see that the maximising quantities are A4,,/m and B,,/(n—m)

respectively, where
A, = Z Y; and B, = Z Y.

i<m i>m

Thus the objective is given by
A log(Am/m) — Ap/m + By log(Bp,/(n —m)) — By /(n —m).

As Ayv1 = A+ Ye1 and By = By, — Y1, We see we may compute the objective at each m
in O(n) total time.



7. The piecewise constant function produced by a regression tree may not always approximate the
underlying true regression function well. Here we imagine we have an additional univariate predictor
T1,...,T, € R which we permit to contribute to the fit in a linear fashion. Specifically, consider
ERM with squared error loss over class

J

M= (tax)HtB‘FZ’YjﬂRj(x):BGR,veRJ :
j=1

here the R; are fixed (for simplicity, unlike in the case of regression trees) and partition R? and
moreover all I; := {i : X; € R;} are non-empty and have been pre-computed. Assume that
Ti., € R™ is not in the span of {(1g,(X;))j=; : j = 1,...,J}. Show that the ERM may be
computed in O(n) time. [Hint: Use the matriz identity that for M € RP*P b € R? and a € R,

a b\ " B st —s 1T M
b M T \—sTIM T M4 sTIM T M)
where s :=a —b' M~b > 0 provided the matriz on the left is indeed invertible. |
Solution: Note first that J < n. Let U € R"™*J have entries Ui = 1g,(X;) and let & :=

(T1., ¥) € R+ The ERM is of the form given by H with (3,7) = (B,&) satisfying
(g) =(@"®) 1oy,

Now UTW¥ =: D € R7*/ is a diagonal matrix with D;; = |I;| as the R; form a partition. Also
writing b := UTT).,, we have bj = > T;. Then each of D and b can be computed in O(n) time

and T
Ts _ [Q b
2T = <b D)
where a = ||T1.,]|3. Then s := a — b D~'b may be computed in O(J) time as D is diagonal.

Note also that similarly to the above, UTY;., can be computed in O(n) time, and hence also
@Y., =: (uv) € R x R’. Thus using the blockwise inversion formula,

AN s Hu—b" D" tv)
5) " \~us™'D b+ D v+ s~ 1(bT D~ lv) D71,

which may be computed in O(n) time.

icl;

8. Consider the regression setting with squared error loss and let H = {x — T2 : B € RP}. Let
Yxx = Var(X) € RP*P and X xy = Cov(X,Y) € RP. Suppose X xx is positive definite, EX =0
and EY? < co. Show that h* := argmin,,,R(h) is given by h*(x) = x| * where 8* = ¥\ Sxy-.
Solution: Let h(z) = 2" 3. Then

Rh)=E{Y — X8} =EY? - 2213+ B Sxxp.
The above is minimised over 8 € RP by * := E;(lxz:)(y, so h*(z) = =" B*.

9. Suppose |H| is finite and there exists h* € H with R(h*) = 0. Show that with probability at least
1 — 6, every empirical risk minimiser h satisfies

< log |H| + log(1/6)

n

R(h)

[Hint: 1 —e <e €]

Solution: Let the RHS above be e. Let h € H be such that R(h) > e (if no such h exists we are
done). Then P(¢(h(X),Y) = 1) = R(h) > . Note that then R(h) = 0 if and only if £(h(X;),Y;) = 0
for all i, so P(R(h) = 0) < (1 — €)™ < e~“*. Now for any ERM h, R(h) < R(h*) and R(h*) = 0

) = )
implies ¢(h*(X;),Y;) = 0 almost surely, so R(h*) = 0 (almost surely). Thus

P(R(h) > ¢ for some ERM £) < P (Uh:R(h)xR(h) - 0)

Z e~ < |H|eT" = 4.
h:R(h)>e

IN



10. Thi
Z;
j =

(a)

s question is about (potentially high-dimensional) covariance matrix estimation. Suppose
i N,(0,%) for ¢ = 1,...,n where ¥ € RP*? ig a covariance matrix with ¥;; = 1 for

1,...,p. The maximum likelihood estimate of X is 3= %Z?:1 AV

Suppose V' and W are mean-zero and jointly Gaussian with Var(V) = Var(W) = 1 and
Cov(V, W) = p. Show that

BV — ({1~ a1+ p)H1+a(l - p)}) /2

for o € (=1/2,1/2). [Hint: Ezpress VW as a difference of two independent scaled x? random
variables and use the fact that the mgf of a x3 random variable is 1/v/1 — 2a for a < 1/2.]
Solution: Note that VW = (V + W)2/4 — (V — W)?/4. V + W and V — W are jointly
normal with 0 covariance, hence they are independent. Now V +W ~ N(0,2(1+ p)), so when
€ (—=1,1) (V+W)2/{2(1 + p)} ~ x3. Similarly, (V — W)2/{2(1 — p)} ~ x3. Thus (using
independence)
E(exp(aVW)) = Ee™(VHW)* /A —a(V-W)?/4

=[{1—a(l+p)Hl+a(l-p)} Y2

provided |(1 4 p)a/2| < 1/2. The result is also true when p = £1 as one of the terms above
is simply 1. Thus the result is true for all |a| < 1/2.

Using the fact that
e [{1— a1+ p)Hl+ a1 - p)}] 72 < e
whenever || < 1/4 and p € [—1, 1], show that for fixed j, k € {1,...,p} and t € (0,1),
P(1S,5 — Six| > 1) < 2e77/8,
Conclude that with probability at least 1 — 2/p,

. log(p)
S =N <5/
%XI ik — Skl < -

Solution: Suppose j # k and let V = Z;; and W = Zy;,. Then nfljk is a sum of i.i.d. copies
of VW. Thus we have

Eexp{an(Sn — Ljx)} = (]Eeavw*E(o‘VW))
< exp(2na?)

for |a] < 1/4 using the hint. Note that this still holds when j = k. Now suppose t € (0,1).
Using the Chernoff bound, we get

P(n(Xjx — Xj5) > nt) < 0<¢ixn<f1/4 exp{n(2a* — at)}
_ efntg/S

setting &« = t/4 in the last line, which is permitted since ¢ < 1. The argument to bound

P(n(X;5 — X,x) > nt) is similar, and the result follows from a union bound. Finally, we have
from a union bound that

P(Uj |5 — Sjk| > t) < 2exp(—nt?/8 + 2log(p)),

so if t = 5+/log(p)/n, the RHS is at most 2p~!.



