
MATHEMATICS OF MACHINE LEARNING Part II
Example Sheet 1 (of 3) Solutions RDS/Lent 2024

In the following questions, where appropriate, suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d. and take values
in X × Y. We will take X = Rp, Y = {−1, 1} and the loss ℓ will be misclassification loss, unless it is
specified that a regression setting is being considered, in which case the loss will typically be squared
error. Assume that the computational complexity of inverting M ∈ Rm×m is O(m3), and forming BC
where B ∈ Ra×b and C ∈ Rb×c is O(abc).

1. Show that
R(h)−R(h0) = E{1{h(X )̸=h0(X)}|2η(X)− 1|}

where

h0(x) =

{
1 if η(x) > 1/2

−1 otherwise

and η(x) := P(Y = 1 |X = x).
Solution: We have

P(Y ̸= h(X)|X = x) = 1{h(x)=−1}η(x) + 1{h(x)=1}(1− η(x)),

so,

P(Y ̸= h(X)|X = x)− P(Y ̸= h0(X)|X = x) = 1{h(x)=1,h0(x)=−1}(1− 2η(x)) + 1{h(x)=−1,h0(x)=1}(2η(x)− 1)

= 1{h(x)̸=h0(x)}|2η(x)− 1|

using the definition of h0 for the final equality. Taking expectations we then obtain the desired
result.

2. In each of the settings below, find a classifier that minimises the risk corresponding to the loss
functions given.

(a) Consider the weighted misclassification loss ℓ : {−1, 1}2 → R given by ℓ(−1,−1) = ℓ(1, 1) = 0
and ℓ(−1, 1) = α, ℓ(1,−1) = β where α, β > 0.
Solution: Using the argument from the previous question, we have for any classifier h that

E(ℓ(h(X), Y )|X = x) = α1{h(x)=−1}η(x) + β1{h(x)=1}(1− η(x)).

To minimise the risk it suffices to pick h such that h(x) minimises the RHS of the above i.e.
we may take

h(x) =

{
1 if β(1− η(x)) < αη(x), ( so η(x) > β/(α+ β) )

−1 otherwise.

(b) Suppose Y = {1, . . . ,K} and loss ℓ : Y × Y → R satisfies

ℓ(y′, y) =

{
0 if y = y′

1 otherwise.

Solution: We have

E(ℓ(h(X), Y )|X = x) =

K∑
k=1

P(Y = k|X = x)(1−1{h(x)=k}) = 1−
K∑

k=1

P(Y = k|X = x)1{h(x)=k}.

To minimise the risk, it suffices to pick h such that h(x) minimises the RHS of the above, so
we should take

h(x) ∈ argmax
k

P(Y = k|X = x).
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3. Let ĥ = ĥD be a hypothesis trained on data D = (Xi, Yi)
n
i=1 formed of iid copies of an independent

random pair (X,Y ). Define h̃X1:n
(x) := E(ĥD(x) |X1:n).

(a) Show that

E[{Y−ĥD(X)}2 |X = x] = E{E(Y |X = x)−h̃X1:n
(x)}2+E{ĥD(x)−h̃X1:n

(x)}2+Var(Y |X = x).

Solution: We have (from lectures),

E[{Y − ĥD(X)}2 |X] = E[{E(Y |X)− ĥD(X)}2 |X] + Var(Y |X).

Next, using

E{Z − f(W )}2 = E{Z − E(Z |W )}2 + E{E(Z |W )− f(W )}2.

with W = (X,X1:n), f(W ) = E(Y |X) and Z = ĥD(X), we have

E[{E(Y |X)− ĥD(X)}2 |X] = E[{E(Y |X)− h̃X1:n(X)}2 |X] + E[{ĥD(X)− h̃X1:n(X)}2 |X].

Then ‘fixing what is known’ gives the result.

(b) Show that considering squared error loss,

ER(ĥD)− ER(h̃X1:n
) = E{ĥD(X)− h̃X1:n

(X)}2.

Solution: Follows easily from considering a decomposition as in (a) but with ĥD = h̃X1:n

(there is no restriction on ĥD, so this is permitted).

4. Consider performing OLS regression using a set of d basis functions (φ1, . . . , φd) := φ using data
(Xi, Yi)

n
i=1. Assume that the matrix Φ ∈ Rn×d with ith row φ(Xi) ∈ Rd has full column rank.

(a) Show that the OLS coefficient vector β̂ ∈ Rd may be obtained in O(nd2) operations.
Solution: Computing Φ⊤Φ is O(nd2) and inverting this is O(d3) (but note d ≤ n as Φ has
full column rank). Next computing Φ⊤Y1:n ∈ Rd is O(nd) and then (Φ⊤Φ)−1 (Φ⊤Y1:n) is
O(d2). Thus the overall complexity is O(nd2).

(b) Show that the leave-one-out cross-validation score

1

n

n∑
i=1

{Yi − φ(Xi)
⊤β̂−i}2

may be computed in O(nd2) operations. Here β̂−i ∈ Rd is the OLS coefficient vector when
performing regression using a dataset with the ith point removed. [Use the matrix identity

(A− bb⊤)−1 = A−1 +
A−1bb⊤A−1

1− b⊤A−1b

wheneverA ∈ Rp×p is invertible, b ∈ Rp and b⊤A−1b ̸= 1. Also assume φ(Xi)
⊤(Φ⊤Φ)−1φ(Xi) <

1, which holds provided each (n− 1)× d sub-matrix of Φ has full column rank.] [Hint: Con-
sider first computing (Φ⊤Φ)−1φ(Xi) ∈ Rd for all i = 1, . . . , n. ]
Solution: Computing ai := (Φ⊤Φ)−1φ(Xi) for all i is O(d3 + nd2) = O(nd2). Now, writing
A := Φ⊤Φ, ϕi := φ(Xi), y := Y1:n

ϕ⊤
i β̂−i = ϕ⊤

i (A− ϕiϕ
⊤
i )

−1(Φ⊤y − ϕiYi)

=

(
a⊤i +

a⊤i ϕia
⊤
i

1− ϕ⊤
i ai

)
(Φ⊤y − ϕiYi).

Now a⊤i ϕi and a⊤i Φ
⊤y are both O(d) computations, provided Φ⊤y has already been computed

(O(nd) time). Thus in total, computing all φ(Xi)
⊤β̂−i costs O(nd2) and hence the CV score

above may be computed in O(nd2) time.
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5. Consider a regression setting as in the previous question with Φ ∈ Rn×d and φ defined as above.
For λ ≥ 0, consider ĥλ given by ĥλ(x) = φ(x)⊤β̂λ with

β̂λ := argmin
β∈Rd

{∥Y1:n − Φβ∥22 + λ∥β∥22}.

(a) Show that β̂λ = (Φ⊤Φ+ λI)−1Φ⊤Y1:n.
Solution: We can differentiate the objective w.r.t. β to obtain

Φ⊤(Y1:n − Φβ̂λ) = λβ̂λ,

which easily yields the result.

(b) Suppose Var(Y1 |X1 = x) > 0 is constant in x and φ(x) is not the zero vector. Show that for

all x, λ 7→ Var(ĥλ(x) |X1:n) is strictly decreasing. [Hint: Consider the eigendecomposition of
Φ⊤Φ.]
Solution: Similarly to lectures, we can obtain

Var(ĥλ(x) |X1:n) = φ(x)⊤(Φ⊤Φ+ λI)−1(Φ⊤AΦ)(Φ⊤Φ+ λI)−1φ(x),

where A = E[{Y1:n−E(Y1:n |X1:n)}{Y1:n−E(Y1:n |X1:n)}⊤ |X1:n]. By the assumption on the
variance, we can show (see lectures) that A = σ2I. Now considering the eigendecomposition
Φ⊤Φ = UDU⊤, we have

(Φ⊤Φ+ λI)−1(Φ⊤Φ)(Φ⊤Φ+ λI)−1 = U(D + λI)−2U⊤.

Thus

Var(ĥλ(x) |X1:n) = σ2
n∑

i=1

{(U⊤φ(x))i}2

(Dii + λ)2
,

which is strictly decreasing in λ.

6. In this question we investigate an alternative splitting criterion for a regression tree, based on
maximising a likelihood assuming that the Yi have a Poisson distribution. Specifically, consider
the first split and where p = 1 with X1 < · · · < Xn. Show that

max
γL,γR

∏
i≤m

(γYi

L e−γL)×
∏
i>m

(γYi

R e−γR)

may be maximised over m with O(n) computational cost.
Solution: Taking logs of the objective, we arrive at

max
γL

∑
i≤m

{Yi log γL − γL}+max
γR

∑
i>m

{Yi log γR − γR}.

Differentiating w.r.t γL and γR, we see that the maximising quantities are Am/m and Bm/(n−m)
respectively, where

Am :=
∑
i≤m

Yi and Bm :=
∑
i>m

Yi.

Thus the objective is given by

Am log(Am/m)−Am/m+Bm log(Bm/(n−m))−Bm/(n−m).

As Am+1 = Am +Ym+1 and Bm+1 = Bm −Ym+1, we see we may compute the objective at each m
in O(n) total time.
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7. The piecewise constant function produced by a regression tree may not always approximate the
underlying true regression function well. Here we imagine we have an additional univariate predictor
T1, . . . , Tn ∈ R which we permit to contribute to the fit in a linear fashion. Specifically, consider
ERM with squared error loss over class

H :=

(t, x) 7→ tβ +

J∑
j=1

γj1Rj
(x) : β ∈ R, γ ∈ RJ

 ;

here the Rj are fixed (for simplicity, unlike in the case of regression trees) and partition Rp and
moreover all Ij := {i : Xi ∈ Rj} are non-empty and have been pre-computed. Assume that
T1:n ∈ Rn is not in the span of {(1Rj

(Xi))
n
i=1 : j = 1, . . . , J}. Show that the ERM may be

computed in O(n) time. [Hint: Use the matrix identity that for M ∈ Rp×p, b ∈ Rp and a ∈ R,(
a b⊤

b M

)−1

=

(
s−1 −s−1b⊤M−1

−s−1M−1b M−1 + s−1M−1bb⊤M−1

)
,

where s := a− b⊤M−1b > 0 provided the matrix on the left is indeed invertible. ]
Solution: Note first that J ≤ n. Let Ψ ∈ Rn×J have entries Ψij = 1Rj

(Xi) and let Φ :=

(T1:n Ψ) ∈ Rn×(J+1). The ERM is of the form given by H with (β, γ) = (β̂, γ̂) satisfying(
β̂
γ̂

)
= (Φ⊤Φ)−1Φ⊤Y1:n.

Now Ψ⊤Ψ =: D ∈ RJ×J is a diagonal matrix with Djj = |Ij | as the Rj form a partition. Also
writing b := Ψ⊤T1:n we have bj =

∑
i∈Ij

Ti. Then each of D and b can be computed in O(n) time
and

Φ⊤Φ =

(
a b⊤

b D

)
where a = ∥T1:n∥22. Then s := a − b⊤D−1b may be computed in O(J) time as D is diagonal.
Note also that similarly to the above, Ψ⊤Y1:n can be computed in O(n) time, and hence also
Φ⊤Y1:n =: (u v) ∈ R× RJ . Thus using the blockwise inversion formula,(

β̂
γ̂

)
=

(
s−1(u− b⊤D−1v)

−us−1D−1b+D−1v + s−1(b⊤D−1v)D−1b,

)
which may be computed in O(n) time.

8. Consider the regression setting with squared error loss and let H = {x 7→ β⊤x : β ∈ Rp}. Let
ΣXX := Var(X) ∈ Rp×p and ΣXY = Cov(X,Y ) ∈ Rp. Suppose ΣXX is positive definite, EX = 0
and EY 2 < ∞. Show that h∗ := argminh∈HR(h) is given by h∗(x) = x⊤β∗ where β∗ = Σ−1

XXΣXY .
Solution: Let h(x) = x⊤β. Then

R(h) = E{Y −X⊤β}2 = EY 2 − 2Σ⊤
XY β + β⊤ΣXXβ.

The above is minimised over β ∈ Rp by β∗ := Σ−1
XXΣXY , so h∗(x) = x⊤β∗.

9. Suppose |H| is finite and there exists h∗ ∈ H with R(h∗) = 0. Show that with probability at least

1− δ, every empirical risk minimiser ĥ satisfies

R(ĥ) ≤ log |H|+ log(1/δ)

n
.

[Hint: 1− ϵ ≤ e−ϵ.]
Solution: Let the RHS above be ϵ. Let h ∈ H be such that R(h) > ϵ (if no such h exists we are
done). Then P(ℓ(h(X), Y ) = 1) = R(h) > ϵ. Note that then R̂(h) = 0 if and only if ℓ(h(Xi), Yi) = 0

for all i, so P(R̂(h) = 0) ≤ (1 − ϵ)n ≤ e−ϵn. Now for any ERM ĥ, R̂(ĥ) ≤ R̂(h∗) and R(h∗) = 0
implies ℓ(h∗(Xi), Yi) = 0 almost surely, so R̂(h∗) = 0 (almost surely). Thus

P(R(ĥ) > ϵ for some ERM ĥ) ≤ P
(
∪h:R(h)>ϵR̂(h) = 0

)
≤

∑
h:R(h)>ϵ

e−ϵn ≤ |H|e−ϵn = δ.
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10. This question is about (potentially high-dimensional) covariance matrix estimation. Suppose

Zi
i.i.d.∼ Np(0,Σ) for i = 1, . . . , n where Σ ∈ Rp×p is a covariance matrix with Σjj = 1 for

j = 1, . . . , p. The maximum likelihood estimate of Σ is Σ̂ := 1
n

∑n
i=1 ZiZ

⊤
i .

(a) Suppose V and W are mean-zero and jointly Gaussian with Var(V ) = Var(W ) = 1 and
Cov(V,W ) = ρ. Show that

EeαVW = [{1− α(1 + ρ)}{1 + α(1− ρ)}]−1/2

for α ∈ (−1/2, 1/2). [Hint: Express VW as a difference of two independent scaled χ2
1 random

variables and use the fact that the mgf of a χ2
1 random variable is 1/

√
1− 2α for α < 1/2.]

Solution: Note that VW = (V + W )2/4 − (V − W )2/4. V + W and V − W are jointly
normal with 0 covariance, hence they are independent. Now V +W ∼ N(0, 2(1+ρ)), so when
ρ ∈ (−1, 1) (V +W )2/{2(1 + ρ)} ∼ χ2

1. Similarly, (V −W )2/{2(1 − ρ)} ∼ χ2
1. Thus (using

independence)

E(exp(αVW )) = Eeα(V+W )2/4Ee−α(V−W )2/4

= [{1− α(1 + ρ)}{1 + α(1− ρ)}]−1/2

provided |(1 + ρ)α/2| < 1/2. The result is also true when ρ = ±1 as one of the terms above
is simply 1. Thus the result is true for all |α| < 1/2.

(b) Using the fact that

e−αρ[{1− α(1 + ρ)}{1 + α(1− ρ)}]−1/2 ≤ e2α
2

whenever |α| < 1/4 and ρ ∈ [−1, 1], show that for fixed j, k ∈ {1, . . . , p} and t ∈ (0, 1),

P(|Σ̂jk − Σjk| ≥ t) ≤ 2e−nt2/8.

Conclude that with probability at least 1− 2/p,

max
j,k

|Σ̂jk − Σjk| ≤ 5

√
log(p)

n
.

Solution: Suppose j ̸= k and let V = Z1j and W = Z1k. Then nΣ̂jk is a sum of i.i.d. copies
of VW . Thus we have

E exp{αn(Σ̂jk − Σjk)} =
(
EeαVW−E(αVW )

)n

≤ exp(2nα2)

for |α| < 1/4 using the hint. Note that this still holds when j = k. Now suppose t ∈ (0, 1).
Using the Chernoff bound, we get

P(n(Σ̂jk − Σjk) ≥ nt) ≤ inf
0<α<1/4

exp{n(2α2 − αt)}

= e−nt2/8

setting α = t/4 in the last line, which is permitted since t < 1. The argument to bound
P(n(Σjk − Σ̂jk) ≥ nt) is similar, and the result follows from a union bound. Finally, we have
from a union bound that

P(∪j,k|Σ̂jk − Σjk| ≥ t) ≤ 2 exp(−nt2/8 + 2 log(p)),

so if t = 5
√
log(p)/n, the RHS is at most 2p−1.
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