Table of notation
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H, F or B
R(h)
R(h)
ho

UlvVv
F(21m)
R(F (21:n))

Ru(F)
s(H,n)
VC(H)
Ry(h)
Ry(h)
conv S
TC (l’)

of (z)

Loss function

Classes of functions

Risk E(¢(h(X),Y)) for fized h
Empirical risk £ Y% | ((h(X;),Y;)

Typically used to denote a minimiser of the risk over all functions A :
X — Y e.g. a Bayes classifier in the classification setting or E(Y | X = +)
in a regression setting

Minimiser of the risk R over H
Minimiser of the empirical risk R over ‘H; this is random

Risk E(((h(X),Y) | (X;,Y;)™,) for random h; this is a random quantity
depending on the data (X;,Y;)"; used to train h

U has the same distribution as V'

Typically a Rademacher random variable which takes values 1, —1 each
with probability 1/2

U is independent of V'

Shorthand for (z1,...,2,)

Set of ‘behaviours’ of F on z1., i.e. {(f(z1),...,f(z2)): f € F}
Empirical Rademacher complexity E (sup feF % Yo af(Z)| Zin = zlzn) =
E (Supfe}' % Z?:l eif(zi))

Rademacher complexity ER(F(Z1,))

Shattering coefficient max,, cxyn |H (210

VC dimension sup{n € N : s(H,n) = 2"}

¢-risk E¢(YA(X)) of h

Empirical ¢-risk £ 3" | ¢(Y;h(X;)) of h

Convex hull of set S

Projection of x onto closed convex set C'

Subdifferential of f at x



Review of least squares regression

Given ® € R™*? of full column rank with ith row ¢; € R% and y € R", we have that

n

1 : _
arg min — Z(yZ — ¢ f)* = argmin |ly — ¢33 = (&' ®) DTy
perd T = BERY

Indeed, we have that ||®z]|3 = 2T®"®2z = 0 if and only if 2 = 0, so ®'® is invertible.
Then P := ®(®"®)"1®" is an orthogonal projection matrix onto the columns space of ®
(one can easily check that is is symmetric and P? = P). Thus

ly = ®BI3 = lly — PY + Py — @3
= (7 = P)yllz + 1Py — @53

since the cross term

{(I - Py} (Py—®p) =y (I - P)(Py—PB) =0

as I — P sends everything in the column space of ® to 0. [Note that this is a generalisation
of the decomposition

n n

Z(Zﬁ —p)? = Z(yz — )2 +n(p—g)?

i=1 i=1

where 3 := %Z?:l y;; see for example the first display in the proof of Theorem 2, or the
alternative expression for (), on page 9. To see the correspondence, take ® to be an x 1
matrix of ones.] Thus to minimise the least squares term we require

P(PTD) DTy = 0B

which multiplying on the left by (®T®)~1®T gives that the minimiser is B = (OTD)1DTy.
An alternative derivation involves differentiating the least squares objective with respect
to B to give gradient vector

0
%Hy —0p)3 = 20" (y - 2P)

Setting this to 0 once more gives the minimiser B = (®7®)"1®"y. Indeed, the objective is
strictly convex as the Hessian matrix 2 ® is positive definite, so this must be the unique
minimiser of the objective.



