
Table of notation

` Loss function

H, F or B Classes of functions

R(h) Risk E(`(h(X), Y )) for fixed h

R̂(h) Empirical risk 1
n

∑n
i=1 `(h(Xi), Yi)

h0 Typically used to denote a minimiser of the risk over all functions h :
X → Y e.g. a Bayes classifier in the classification setting or E(Y |X = ·)
in a regression setting

h∗ Minimiser of the risk R over H

ĥ Minimiser of the empirical risk R̂ over H; this is random

R(ĥ) Risk E(`(ĥ(X), Y ) | (Xi, Yi)
n
i=1) for random ĥ; this is a random quantity

depending on the data (Xi, Yi)
n
i=1 used to train ĥ

U
d
= V U has the same distribution as V

εi Typically a Rademacher random variable which takes values 1,−1 each
with probability 1/2

U ⊥⊥ V U is independent of V

z1:n Shorthand for (z1, . . . , zn)

F(z1:n) Set of ‘behaviours’ of F on z1:n i.e. {(f(z1), . . . , f(zn)) : f ∈ F}

R̂(F(z1:n)) Empirical Rademacher complexity E
(
supf∈F

1
n

∑n
i=1 εif(Zi) |Z1:n = z1:n

)
=

E
(
supf∈F

1
n

∑n
i=1 εif(zi)

)
Rn(F) Rademacher complexity ER̂(F(Z1:n))

s(H, n) Shattering coefficient maxx1:n∈Xn |H(x1:n)|

VC(H) VC dimension sup{n ∈ N : s(H, n) = 2n}

Rφ(h) φ-risk Eφ(Y h(X)) of h

R̂φ(h) Empirical φ-risk 1
n

∑n
i=1 φ(Yih(Xi)) of h

convS Convex hull of set S

πC(x) Projection of x onto closed convex set C

∂f(x) Subdifferential of f at x
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Review of least squares regression

Given Φ ∈ Rn×d of full column rank with ith row ϕi ∈ Rd and y ∈ Rn, we have that

arg min
β∈Rd

1

n

n∑
i=1

(yi − ϕ>i β)2 = arg min
β∈Rd

‖y − Φβ‖22 = (Φ>Φ)−1Φ>y.

Indeed, we have that ‖Φz‖22 = z>Φ>Φz = 0 if and only if z = 0, so Φ>Φ is invertible.
Then P := Φ(Φ>Φ)−1Φ> is an orthogonal projection matrix onto the columns space of Φ
(one can easily check that is is symmetric and P 2 = P ). Thus

‖y − Φβ‖22 = ‖y − PY + Py − Φβ‖22
= ‖(I − P )y‖22 + ‖Py − Φβ‖22

since the cross term

{(I − P )y}>(Py − Φβ) = y>(I − P )(Py − Φβ) = 0

as I−P sends everything in the column space of Φ to 0. [Note that this is a generalisation
of the decomposition

n∑
i=1

(yi − µ)2 =
n∑
i=1

(yi − µ)2 + n(µ− ȳ)2

where ȳ := 1
n

∑n
i=1 yi; see for example the first display in the proof of Theorem 2, or the

alternative expression for Qm on page 9. To see the correspondence, take Φ to be a n× 1
matrix of ones.] Thus to minimise the least squares term we require

Φ(Φ>Φ)−1Φ>y = Φβ

which multiplying on the left by (Φ>Φ)−1Φ> gives that the minimiser is β̂ = (Φ>Φ)−1Φ>y.
An alternative derivation involves differentiating the least squares objective with respect

to β to give gradient vector

∂

∂β
‖y − Φβ‖22 = −2Φ>(y − Φβ)

Setting this to 0 once more gives the minimiser β̂ = (Φ>Φ)−1Φ>y. Indeed, the objective is
strictly convex as the Hessian matrix 2Φ>Φ is positive definite, so this must be the unique
minimiser of the objective.
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