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0 Introduction

In IB Statistics, you were introduced to the concept of an estimator of a parameter in a
statistical model, a key example of such being the maximum likelihood estimator (MLE).
But this study will have left several questions unanswered.

1. Is the MLE a good estimator? Is it the best estimator?

2. Or even before considering the above: what does it mean for an estimator to be
good?

3. Often we want more than just a point estimate of a parameter; we want to quantify
uncertainty in the form of confidence intervals (sets) or perform hypothesis tests.
Clearly understanding the distributions of estimators would be helpful to achieving
these goals: how can we do this in general?

These are questions of enormous practical significance. However, they are very difficult,
and in fact the ongoing task of Statistics to answer these is as much generality as possible.
This course will introduce some of the most important mathematical ideas involved their
study. More specifically, this course divides into 5 chapters:

Likelihood inference. Here we will study the distribution of maximum likelihood esti-
mators, and prove that they enjoy certain optimality properties. One very powerful idea
that we will use to do this, and which pervades much of the course, is that of an asymptotic
analysis of an estimator.

Bayesian inference. While the optimality of maximum likelihood estimators does pro-
vide some formal justification for their use, we shall see that there is nevertheless room to
improve on them in finite samples. The Bayesian approach provides a way of leveraging
prior information to potentially realise such an improvement.

Decision theory. We consider question 2 above in a general way, and derive perhaps
the most surprising result of the course concerning the optimality of estimating the mean
of Gaussian data, a result with far reaching consequences that has since shaped much of
the direction of modern statistics for the last 50 years.
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Multivariate analysis. While toy examples where all data points are one-dimensional
scalars are useful to illustrate certain concepts, we typically have to handle data that has
multiple variables. These settings bring new questions about how to understand relation-
ships between variables or reduce their dimension to aid interpretability. Here we will
examine some methods for performing such tasks.

Nonparametric inference and Monte Carlo techniques. As datasets have become
larger in recent times, simple parametric models have become harder to defend (why should
the data be Gaussian?). Nonparametric statistics is the field devoted to analysing data
without making such restrictive assumptions on the data-generating process. A second
major change in the way we analyse data has been brought about through improvements in
computing power: computationally intensive simulation-based methods have revolutionised
Bayesian statistics and indeed inference more generally. We will introduce some of the most
important ideas involved in these developments.

1 Likelihood inference

1.1 Introduction

Recall that a random vector X ∈ Rd is a (measurable1) function X : Ω → Rd where Ω
is a probability space. The distribution P of X gives the probability that X lies in any
(measurable) set:

P (B) := P(X ∈ B) = P({ω : X(ω) ∈ B}) where B ⊆ Rd.

We write X ∼ P to indicate it has distribution P . The distribution is completely deter-
mined by the multivariate distribution function F : Rd → [0, 1] given by

F (t) = P(X ≤ t),

where the inequality is to be understood elementwise. When X is a discrete random vector
with probability mass function (pmf) f , we have

P (B) =
∑
x∈B

f(x).

If X is continuous with probability density function (pdf)2 f , then

P (B) =

∫
B

f(x) dx.

1The formal definition is covered in Probability and Measure; we will typically not refer to the measur-
ability of functions or sets, though sometimes we will make connections to the material in that course

2Often we will phrase results in terms of densities, with the understanding that the same result would
hold with pmfs after replacing associated integrals with sums.
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Statistics is largely concerned with the following problem: given (data) X, infer something
about its distribution P . We often assume that the distribution comes from some family
of distributions, a so-called statistical model:

Definition 1. A statistical model is a family of distributions {Pθ : θ ∈ Θ} where Θ is a
parameter space. When these distributions have densities or pmfs f(·, θ), we may write
this as {f(·, θ) : θ ∈ Θ}.

Example 1. (i) N(µ, σ2) : (µ, σ) ∈ R× [0,∞).

(ii) Pois(θ) : θ ∈ [0,∞).

(iii) N(θ, 1) : θ ∈ [−1, 1].

(iv) The (fixed design) normal linear model is the family of distributions for the random
vector Y = Zβ + ε where Z ∈ Rn×p is a deterministic matrix of predictors, β ∈ Rp is
an unknown vector of coefficients and ε ∼ Nn(0, σ

2I) with σ ≥ 0. Thus the statistical
model is formally {Nn(Zβ, σ

2I) : β ∈ Rp, σ2 ∈ [0,∞)}.

The model is well-specified for X if our assumption X ∼ Pθ for some θ ∈ Θ holds, and
we will typically assume this is the case unless we mention otherwise. Thus if X ∼ N(1, 2),
then model (i) is well-specified, but (ii) and (iii) are misspecified. We denote expectations
and variances etc. under such a model by adding a subscript θ e.g. Eθ(X). In the case of
a correctly specified model, we will often write θ0 to denote the “true value” of θ where
X ∼ Pθ0 , to distinguish it from other values of θ. This notation implicitly assumes that
the following holds.

Definition 2. We say θ0 is identifiable if whenever θ ∈ Θ satisfies Pθ = Pθ0 , we have
θ = θ0.

Given a statistical model {f(·, θ) : θ ∈ Θ}, maximum likelihood estimation gives a
recipe for constructing estimators of the unknown parameter θ. It works by regarding the
joint density (or pmf) of the data under the postulated model as a function of θ known as
the likelihood. Suppose x is a realisation of data X ∼ f(·, θ). Then the likelihood is given
by

L(θ) := L(θ;x) = c(x)f(x, θ),

where c(x) is an arbitrary constant of proportionality. The maximum likelihood estimator
(MLE) maximises this, or equivalently the log-likelihood ℓ, over θ ∈ Θ.

We will mainly work in the setting where our data consist of i.i.d. random vectors

X1, . . . , Xn
i.i.d.∼ f(·, θ) (though Example 1 (iv) is an important case that falls outside this

scenario). In this context we often add a subscript n to the quantities involved. The
log-likelihood then takes the form

ℓn(θ) = ℓn(θ;x1, . . . , xn) := log c(x1, . . . , xn) +
n∑
i=1

log f(xi, θ).

We often regard ℓ(θ) = ℓ(θ;X) and L(θ) = L(θ;X) as random functions of θ.
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Example 2. Consider the model X1, . . . , Xn
i.i.d.∼ Pois(θ) where θ ∈ (0,∞). Then

Ln(θ) =
n∏
i=1

e−θθXi ,

so

ℓn(θ) = −nθ + log(θ)
n∑
i=1

Xi.

Thus ℓ′n(θ;X1, . . . , Xn) = 0 when θ = θ̂ = 1
n

∑n
i=1Xi =: X̄, which one may check is a

maximiser and hence the MLE.

Example 3. Consider the fixed design normal linear model of Example 1(iv). We have,
writing zi for the ith row of Z ∈ Rn×p,

L(β, σ2) =
n∏
i=1

1√
σ2

exp

(
− 1

2σ2
(Yi − z⊤i β)

2

)
,

so

ℓ(β, σ2) = −n
2
log(σ2)− 1

2σ2
∥Y − Zβ∥22.

Thus the MLE β̂ for β minimises the least squares term ∥Y −Zβ∥22 and hence is given by

the ordinary least squares estimator: when Z has full column rank, β̂ = (Z⊤Z)−1Z⊤Y .

Note that the MLEs of β and θ above have the attractive property of being unbiased :
Eθθ̂ = θ. This need not be true of MLEs in general: recall that the MLE of σ2 in Example 3
is

σ̂2 :=
1

n
∥Y − Zβ̂∥22,

which has Eβ,σ2(σ̂2) = σ2(n− p)/n and is thus (slightly) biased.
Maximum likelihood estimators are of course not the only possible estimators one could

consider. Recalling that if Xi ∼ Pois(θ) then Var(Xi) = θ, another (somewhat) natural
estimator for θ is the unbiased sample variance

θ̂v :=
1

n− 1

n∑
i=1

(X2
i − X̄2).

Indeed, regardless of the distribution of the Xi, we have

EX2
i − EX̄2 = Var(Xi) + (EXi)

2 −
(
Var(X̄) + (EX̄)2

)
=
n− 1

n
Var(Xi).

Thus in the Poisson model, θ̂v is also an unbiased estimator of θ. This observation raises the
question of which of the two estimators is the best unbiased estimator. To answer this, we
can for example compare the variances of each of these estimators. We will instead however
pursue a much more ambitious goal of understanding this sort of problem in generality.
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1.2 Information geometry and the Cramér–Rao lower bound

In order to determine the maximum likelihood estimator in Example 2 we differentiated
the log-likelihood and set it equal to zero. It turns out that this derivative plays an even
more fundamental role, so we give it a special name.

Definition 3. Suppose ℓ = ℓ(·, X) : Θ → R is differentiable on intΘ ⊆ Rp. The random
function S : intΘ → Rp given by

S(θ) := ∇θℓ(θ) =

(
∂

∂θ1
ℓ(θ), . . . ,

∂

∂θp
ℓ(θ)

)⊤

is known as the score function or score. In the case where we have i.i.d. data X1, . . . , Xn,
we will notate this as Sn.

The key property of the score is the following.

Lemma 1. Let g : Rd → R. Under appropriate ‘regularity conditions’ allowing integration
and differentiation to be exchanged (see Probability and Measure), we have that for θ ∈
intΘ,

Eθ[S(θ)g(X)] = ∇θEθg(X).

Proof. We have,

Eθ[S(θ)g(X)] =

∫
∇θ log(f(x, θ))g(x)f(x, θ) dx

=

∫
∇θf(x, θ)g(x) dx

= ∇θ

∫
f(x, θ)g(x) dx

= ∇θEθg(X).

Remark 1. Taking g ≡ 1 in the above, we see in particular that Eθ[S(θ)] = 0.

The property of the score3 derived in Lemma 1 allows us to derive a fundamental lower
bound on the variance of estimators in parametric models. To introduce this remarkable
result, we first define the following.

Definition 4. The Fisher information matrix I(θ) ∈ Rp×p for θ ∈ intΘ is given by the
variance of the score: I(θ) := Covθ(S(θ)) = E(S(θ)S(θ)⊤).

3There are some deep ideas at play here. The score can be thought of as the Reisz representer for the
linear functional g 7→ ∇θEθg(X) (see Linear Analysis). This perspective shows (a) why we should expect
a function with this crucial property satisfied by the score function to exist and (b) that the score function
is unique in this regard.

6



Note that whenX1, . . . , Xn
i.i.d.∼ f(·, θ), the corresponding Fisher information tensorises :

In(θ) = nI1(θ). Indeed,

Eθ(Sn(θ)Sn(θ)⊤) =
n∑
i=1

n∑
j=1

Eθ(∇θ log f(Xi, θ)∇θ log f(Xj, θ)
⊤),

but the quantities (∇θ log f(Xi, θ))
n
i=1 are are i.i.d. and mean-zero (recall Remark 1), so

we obtain

Eθ(Sn(θ)Sn(θ)⊤) =
n∑
i=1

Eθ(∇θ log f(Xi, θ)∇θ log f(Xi, θ)
⊤) = nI1(θ).

Theorem 2 (Cramér–Rao lower bound). Suppose the model {Pθ : θ ∈ Θ} where Θ ⊆ Rp is
sufficiently ‘regular’ (such that appropriate integration and differentiation operations may
be interchanged). For a function ϕ : Θ → R, consider estimating ϕ(θ) with an estimator

ϕ̂. Then for any θ ∈ intΘ where I(θ) is invertible,

Varθ(ϕ̂) ≥ ∇θEθ(ϕ̂)⊤I(θ)−1∇θEθ(ϕ̂).

Remark 2. Suppose p = 1, ϕ is the identity function and ϕ̂ = θ̂ is a (potentially biased)
estimator of θ. Then we have following the bound

Varθ(θ̂) ≥

(
d
dθ
Eθθ̂
)2

I(θ)
.

Remark 3. Take ϕ to be the function ϕ(θ) = v⊤θ for some vector v ∈ Rp, and take ϕ̂ = v⊤θ̂

for some unbiased estimator θ̂ of θ. Then ∇θEθ(ϕ̂) = ∇θ(Eθ(θ̂)⊤v) = ∇θ(θ
⊤v) = v and we

thus obtain
v⊤Covθ(θ̂)v ≥ v⊤I(θ)−1v.

Since v above was arbitrary, we see that

Covθ(θ̂)− I(θ)−1

is positive semi-definite. Thus, for example, Varθ(θ̂j) ≥ (I(θ)−1)jj.

Proof of Theorem 2. Let v = I(θ)−1/2u for4 an arbitrary unit vector u. We have

|v⊤∇θEθ(ϕ̂)| = |v⊤Eθ(S(θ)ϕ̂)| applying Lemma 1

= |Eθ{v⊤S(θ)(ϕ̂− Eθ(ϕ̂))}| by Remark 1

≤
(
Eθ{(v⊤S(θ))2}

)1/2 (
Varθ(ϕ̂)

)1/2
by the Cauchy–Schwarz inequality.

4I(θ) is symmetric so I(θ) = UDU⊤ for orthogonal and diagonal matrices U and D respectively. Then

I(θ)−1/2 := UD−1/2U⊤ where D−1/2 is the diagonal matrix with jth diagonal entry D
−1/2
jj .
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Rearranging, squaring and writing b := ∇θEθ(ϕ̂) for notational simplicity, we obtain

Varθ(ϕ̂) ≥
(v⊤b)2

v⊤I(θ)v
.

Substituting v = I(θ)−1/2u, we get

Varθ(ϕ̂) ≥ (b⊤I(θ)−1/2u)2.

This is true for all unit vectors u, so maximising over u by taking

u =
I(θ)−1/2b

∥I(θ)−1/2b∥2
=

I(θ)−1/2b√
b⊤I(θ)−1b

,

(if the denominator were zero, there would be nothing to prove), we finally arrive at

Varθ(ϕ̂) ≥ b⊤I(θ)−1b,

as required.

Example 2 continued. Recall that when X1, . . . , Xn
i.i.d.∼ Pois(θ), the MLE is θ̂ = X̄

and is unbiased. Note that Var(X̄) = θ/n. On the other hand, the Fisher information (for
a single observation) is I1(θ) = Var(X/θ) = 1/θ, so the Cramér–Rao lower bound is θ/n.
We may thus conclude that (provided we are using the variance as our measure of quality),
in this case, the MLE is the best unbiased estimator of θ!

The following result gives an alternative representation of the Fisher information that
is often easier to work with.

Proposition 3. Under regularity conditions, we have I(θ) = −Eθ[∇2
θ log(f(X, θ))] for

θ ∈ intΘ, i.e.

Ijk(θ) = −Eθ
(

∂2

∂θj∂θk
log(f(X, θ))

)
.

Proof. We have

∂2

∂θj∂θk
log(f(x, θ)) =

∂

∂θj

(
∂
∂θk
f(x, θ)

f(x, θ)

)
=

∂2

∂θj∂θk
f(x, θ)

f(x, θ)
−

∂
∂θj
f(x, θ) ∂

∂θk
f(x, θ)

f(x, θ)2
.

Now, interchanging differentiation and integration,∫
∂2

∂θj∂θk
f(x, θ) dx =

∂2

∂θj∂θk

∫
f(x, θ) dx = 0.

Thus

−E
(

∂2

∂θj∂θk
log(f(X, θ))

)
= Eθ

(
∂
∂θj
f(X, θ)

f(X, θ)

∂
∂θk
f(X, θ)

f(X, θ)

)

= Eθ
(
∂

∂θj
log f(X, θ)

∂

∂θk
log f(X, θ)

)
,

as required.
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Example 3 continued. In the normal linear model, the MLE β̂ = (Z⊤Z)−1Z⊤Y for β

satisfies Varβ,σ2(β̂) = σ2(Z⊤Z)−1, which is the p× p submatrix of I(β, σ2)−1 ∈ R(p+1)×(p+1)

corresponding to β (see Example Sheet).

That the MLEs for β in the normal linear model and θ in the Poisson model are unbiased
and achieve the Cramér–Rao lower bound is no accident: in fact, we shall see that such a
relationship holds ‘approximately’ in wide generality. To gain some intuition about why
this may be true, consider the simple case of Remark 2 where p = 1, but where additionally,

we have i.i.d. data X1, . . . , Xn
i.i.d.∼ f(·, θ) and the estimator is unbiased. You will show on

the Example Sheet that in this case, such an estimator θ̃ achieves the Cramér–Rao lower
bound if and only if

θ̃ = θ + I−1
1 (θ) · 1

n
Sn(θ).

Now typically, the MLE θ̂ solves Sn(θ̂) = 0. Performing a Taylor expansion around θ, we
obtain

0 =
1

n
Sn(θ̂) ≈

1

n
Sn(θ) + (θ̂ − θ) · 1

n

d

dθ
Sn(θ).

Provided 1
n
d
dθ
Sn(θ) =

1
n

∑n
i=1

d2

dθ
log(f(Xi, θ)) ≈ −I1(θ), we have

θ̂ ≈ θ + I−1
1 (θ) · 1

n
Sn(θ).

One requirement for this argument to go through is that the remainder in the Taylor
expansion above is ‘small’. This should occur provided θ̂ − θ is ‘small’ when θ is the true
parameter θ0.

As a first step towards arguing that this should hold, recall that an MLE θ̂ maximises
the (normalised) log-likelihood ℓ̄n(·) := 1

n
ℓn(·). The result below shows that θ0 maximises

a population version of this quantity.

Theorem 4. Consider a model {f(·, θ) : θ ∈ Θ} and suppose X ∼ f(·, θ0) where θ0 is
identifiable. Then θ0 is the unique maximiser of5

θ 7→ Eθ0 (log f(X, θ)− log f(X, θ0)) .

Proof. We make use of the fact that log u ≤ u−1 for every u ≥ 0 with equality if and only
if u = 1, so

Eθ0(log f(X, θ)− log f(X, θ0)) = Eθ0 log
(
f(X, θ)

f(X, θ0)

)
≤
∫
X

f(x, θ)

f(x, θ0)
f(x, θ0) dx− 1 ≤ 0,

with equality if and only if f(·, θ) = f(·, θ0), which occurs if and only if θ = θ0 by identifi-
ability.

5Minor technical point: The reason for subtracting log f(X, θ0) rather than just considering θ 7→
Eθ0 log f(X, θ) is that the latter may be infinite.
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Remark 4. The quantity Eθ0{log f(X, θ0)/ log f(X, θ)} is the Kullback–Leibler (KL) diver-
gence KL(Pθ0 , Pθ) of Pθ from Pθ0 , where for distributions P,Q with densities p, q for a
random variable X,

KL(P,Q) :=

∫
p(x) log

(
p(x)

q(x)

)
dx.

The theorem shows that KL(p, q) ≥ 0, with equality only if p and q coincide.

A major requirement for the argument sketched out above for θ̂ approximately achiev-
ing the Cramér–Rao lower bound is that certain empirical quantities are close to their
population counterparts. Clearly if n = 1, this seems unrealistic, but for large n this might
be more plausible. In the next section, we introduce some language and tools relating to
convergence of random variables that will provide us with the means to justify this sort of
claim formally.

1.3 Stochastic convergence

Recall that a random vector X is formally a function X : Ω → Rd, where Ω is a probability
space. The interpretation is that ‘Chance picks an ω ∈ Ω and we the see the realisation
X(ω)’. Formally we have that for any (measurable) set B ⊆ Rd,

P(X ∈ B) := P({ω : X(ω) ∈ B}) = P(X−1(B))

and P(·) should be thought of as a sort of ‘area measure’ on Ω. Sets of the form {X ∈
B} := {ω : X(ω) ∈ B} ⊆ Ω are known as events. If an event has probability 1, we say it
occurs almost surely.

Given that random vectors are functions, it is perhaps unsurprising that there are
several notions of stochastic convergence. In the below, for a vector x ∈ Rd, ∥x∥∞ :=
maxj |xj|.

Definition 5. Let (Xn)n∈N and X be random vectors taking values in Rd.

(i) We say Xn converges to X almost surely as n→ ∞, and write Xn
a.s.→ X, if

P(ω ∈ Ω : ∥Xn(ω)−X(ω)∥∞ → 0) = P(∥Xn −X∥∞ → 0) = 1.

(ii) We say Xn converges to X in probability, and write Xn
p→ X, if for all ϵ > 0,

P(∥Xn −X∥∞ > ϵ) → 0.

(iii) We say Xn converges in distribution, and write Xn
d→ X, if

P(Xn ≤ t) → P(X ≤ t)

at all points where t 7→ P(X ≤ t) is continuous.
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Remark 5. Note that if Xn
d→ X and X has a continuous distribution (most often we will

have that X is normally distributed), then

P(Xn ∈ B) → P(X ∈ B)

for ‘most’6 sets B. In particular, if X is real-valued,

P(Xn ∈ [a, b]) → P(X ∈ [a, b])

for all a, b ∈ R.
The above definitions also apply to random matrices by concatenating their columns

and regarding them as random vectors. Ultimately, it is convergence in distribution that
is typically most useful to us. Nevertheless, the other forms of convergence are helpful,
partly because they are stronger forms of convergence:

Remark 6.
Xn

a.s.→ X =⇒ Xn
p→ X =⇒ Xn

d→ X.

None of the reverse implications are true in general, but if Xn
d→ c for some deterministic

c ∈ Rd, then Xn
p→ c (see Example sheet).

The following two facts allow us to derive new convergences from old ones:

Remark 7. Given another sequence (Yn)n∈N of random vectors taking values in Rk, we have
that

(Xn, Yn)
p→ (X, Y ) ⇐⇒

{
Xn

p→ X and

Yn
p→ Y ;

the same also holds with all convergences replaced by almost sure convergence, but does
not hold for convergences in distribution (see Example Sheet).

Remark 8. We do however have that if c ∈ Rk is deterministic, then

(Xn, Yn)
d→ (X, c) ⇐⇒

{
Xn

d→ X and

Yn
p→ c.

Theorem 5 (Continuous mapping theorem (CMT)). Let g : Rd → Rm be continuous at
every point of a set C such that P(X ∈ C) = 1. Then

Xn
a.s. / p / d→ X =⇒ g(Xn)

a.s. / p / d→ g(X).

Combining this with Remark 8 yields the following useful result: if g : Rd × Rk → Rm

is continuous on the set Rd × {c} and Xn
d→ X and Yn

p→ c, then g(Xn, Yn)
d→ g(X, c).

Some common applications of this are known as Slutsky’s lemma:

6*This holds for all measurable sets B for which P(X ∈ δB) = 0, where δB := cl(B) \ int(B) is the
boundary of the set B.*
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Lemma 6 (Slutsky’s lemma). Suppose Xn
d→ X and Yn

p→ c where c is deterministic.

(i) If Xn and Yn are random vectors of the same dimension, Xn + Yn
d→ X + c.

(ii) If Yn is real-valued, YnXn
d→ cX. Moreover, if c ̸= 0 then Y −1

n Xn
d→ c−1X.

(iii) We also have a matrix version of (ii) above: if Yn is a matrix of appropriate dimen-

sion, then YnXn
d→ cX. Moreover, if c is invertible, then Y −1

n Xn
d→ c−1X.

It is natural to ask whether the limit of the expectations of a sequence Xn is equal to
the expectation of the limiting random variable X. This is not the case in general, but we
have the following result.

Theorem 7 (Dominated convergence theorem (DCT)). Suppose a sequence of real-valued

random variables (Wn)n∈N satisfies Wn
p→ W , and there exists a random variable V that

dominates the Wn in the sense that |Wn(ω)| ≤ |V (ω)| for all ω ∈ Ω. Then E|W | <∞ and
EWn → EW .

Example 4. Suppose we wish to establish continuity of θ 7→ Eθ0 log f(X, θ) and we know
that Eθ0V <∞ where V = supθ∈Θ | log f(X, θ)| and θ 7→ f(x, θ) is continuous for all x.

Take any sequence (θn)n∈N ⊂ Θ with θn → θ ∈ Θ. Define Wn := log f(X, θn). Then
Wn(ω) = log(f(X(ω), θn) → log(f(X(ω), θ)) =: W (ω). (Note this convergence holds for all
X(ω) ∈ {x : f(x, θ0) > 0}: we cannot have f(x, θ) = 0 when f(x, θ0) > 0 since EV < ∞.
Thus in particular we have this convergence Pθ0-almost surely and hence in probability
too.) As V is a dominating function, by the DCT, EWn → EW and so θ 7→ Eθ0 log f(X, θ)
is continuous.

1.4 Laws of large numbers and the central limit theorem

Many results in Statistics have at their heart, convergences of averages of i.i.d. random
variables.

Theorem 8 (Strong law of large numbers (SLLN)). Let X1, X2, . . . be i.i.d. taking values
in Rd with E∥X1∥∞ <∞. Then7

X̄n :=
1

n

n∑
i=1

Xi
a.s.→ E(X).

7Note that the underlying probability space Ω needs to support not just any finite number X1, . . . , Xn

of independent random vectors, but the entire infinite sequence X1, X2, . . . of independent random vectors:
writing out the conclusion explicitly, we have

P({ω ∈ Ω : X̄n(ω) → E(X)}) = 1.

(Showing that such a probability space exists takes some care: see Probability and Measure for more
details.)
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We shall show a weaker result known as the weak law of large numbers that is easier to
prove:

Theorem 9 (Weak law of large numbers). Let X1, . . . , Xn be i.i.d. real-valued random
variables with Var(X1) <∞. Then

X̄n
p→ E(X1).

Note that the assumption Var(X1) <∞ automatically includes the assumption E(|X1|) <
∞ so in this sense, the assumption of the WLLN is stronger than that of the SLLN.

Proof of Theorem 9. Applying Markov’s inequality8 to {X̄n − E(X1)}2, we have

P({X̄n − E(X1)}2 > ϵ2) ≤ ϵ−2E{X̄n − E(X1)}2.

But
E{X̄n − E(X1)}2 = Var(X̄n) = Var(X1)/n,

so
P(|X̄n − E(X1)| > ϵ) ≤ ϵ−2Var(X1)/n→ 0

as n→ ∞.

Example 5. Suppose X1, . . . , Xn are i.i.d. with mean µ0 and variance σ2
0 > 0. We shall

show that the sample variance satisfies

σ̂2
n :=

1

n

n∑
i=1

(Xi − X̄n)
2 p→ σ2.

First note that we may subtract µ0 from each Xi and σ̂
2
n is unchanged. Now

σ̂2
n =

1

n

n∑
i=1

X2
i − X̄2

n =
1

n

n∑
i=1

(Xi − µ0)
2

︸ ︷︷ ︸
a.s.→ σ2

0 by SLLN

− (X̄n − µ0)
2︸ ︷︷ ︸

a.s.→ 0 by SLLN and CMT

.

Thus by Slutsky, we have σ̂2
n

p→ σ2
0.

In fact, we can characterise the limiting behaviour of the average of i.i.d. random
variables much more precisely. This turns out to be crucial for deriving inference results
for estimators.

8Recall that if Z is a non-negative random variable, then Z ≥ t1{Z≥t}, so taking expectations,
t−1E(Z) ≥ P(Z ≥ t).
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Theorem 10 (Central limit theorem (CLT)). Let X1, . . . , Xn be i.i.d. taking values in Rd

with finite variance Σ. Then9

√
n{X̄n − E(X1)}

d→ Nd(0,Σ).

Example 5 continued The CLT can for example be used to construct confidence inter-
vals for µ0 in the setting of Example 5. We have by the CLT that

√
n(X̄n − µ0)

d→ N(0, σ2
0)

so by Slutsky, √
n(X̄n − µ0)

σ̂n

d→ N(0, 1).

Write zα for the upper α/2 point of a N(0, 1) distribution, so if Z ∼ N(0, 1), then P(Z ∈
[−zα, zα]) = 1− α. Then

Ĉn :=

{
µ ∈ R :

√
n|X̄n − µ|
σ̂n

≤ zα

}
=

[
X̄n −

zασ̂n√
n
, X̄n +

zασ̂n√
n

]
is an asymptotically valid (1− α)-level confidence interval, in the sense that

P(µ0 ∈ Ĉn) = P
(√

n(X̄n − µ0)

σ̂n
∈ [−zα, zα]

)
→ P(Z ∈ [−zα, zα]) = 1− α.

In the example above, we had an explicit expression for the estimators of the mean and
variance, and so we were able to apply the limit theorems above rather directly. Recall
however that our objective is to study the behaviour of maximum likelihood estimators in
generality, and the MLE may only be defined implicitly through a maximiser of the random
function θ 7→ ℓ̄n(θ). While for any given fixed θ, the SLLN can for example be used to
conclude that ℓ̄n(θ)

a.s.→ Eℓ̄n(θ), it does not offer any conclusions about the convergence of
the function ℓ̄n(·) as a whole to its population counterpart. This is problematic since the
MLE may be sensitive to the entire function. Fortunately, there exist uniform versions of
the convergence results above. Known as uniform laws of large numbers, they can provide
sufficient conditions such that

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

g(Xi, θ)− E(g(X, θ))

∣∣∣∣∣ p→ 0, (1.1)

9Recall that a random vector X ∈ Rd with mean µ and positive definite covariance matrix Σ has a
normal distribution (and we write X ∼ Nd(µ,Σ)) if its pdf f is given by

f(x) =
1

(2π)d/2
1

(det(Σ))1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.
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where X1, . . . , Xn are i.i.d. copies of a random variable X taking values in X ⊆ Rd, Θ ⊂ Rp

and g : X ×Θ → R is a given function. The following is one example of such a result that
we will make use of. Its precise statement and proof are *non-examinable*.

Theorem 11 (Uniform law of large numbers). In the setting above, suppose Θ is compact
(i.e. closed and bounded) and that θ 7→ g(x, θ) is continuous for all x ∈ X . Suppose further
that there exists a function G(x) ≥ supθ∈Θ |g(x, θ)| satisfying EG(X) < ∞. Then (1.1)
holds.

*Proof*. Write B(θ, δ) for the open ball with radius δ centred at θ ∈ Θ. Fix θ0 ∈ Θ and
consider

∆δ(X, θ0) := sup
θ∈B(θ0,δ)∩Θ

{g(X, θ)− Eg(X, θ)}.

We claim that E∆δ(X, θ0) → 0 as δ → 010. Indeed |∆δ(X, θ)| ≤ G(X)+EG(X), so by the
DCT, this holds provided ∆δ(x, δ0) → g(x, θ0) − Eg(X, θ0). This latter fact follows from
continuity of θ 7→ g(x, θ) and the DCT (which shows that θ 7→ Eg(X, θ) is continuous—see
Example 4).

Now fix ϵ > 0. We know that for all θ ∈ Θ, there exists some δ(θ) > 0 such that
E∆δ(θ)(X, θ) < ϵ/2. The set {B(θ, δ(θ)) : θ ∈ Θ} forms an open cover of the compact set

Θ, so we can find a finite subcover Θ ⊆
⋃K
k=1B(θk, δ(θk)). Let Bk := B(θk, δ(θk)) ∩Θ and

∆k(x) := ∆δ(θk)(x, θk). Then

sup
θ∈Θ

(
1

n

n∑
i=1

{g(Xi, θ)− Eg(X, θ)}

)
= max

k=1,...,K
sup
θ∈Bk

(
1

n

n∑
i=1

{g(Xi, θ)− Eg(X, θ)}

)

≤ max
k=1,...,K

1

n

n∑
i=1

sup
θ∈Bk

{g(Xi, θ)− Eg(X, θ)}

= max
k=1,...,K

1

n

n∑
i=1

∆k(Xi).

Thus

P

{
sup
θ∈Θ

(
1

n

n∑
i=1

{g(Xi, θ)− Eg(X, θ)}

)
≤ ϵ

}
≥ P

(
max

k=1,...,K

1

n

n∑
i=1

∆k(Xi) ≤ ϵ

)

≥ P
(

max
k=1,...,K

∣∣∣∣ 1n
n∑
i=1

∆k(Xi)− E∆k(X)︸ ︷︷ ︸
<ϵ/2

∣∣∣∣ ≤ ϵ/2

)
→ 1

10For measure theory enthusiasts: ∆δ(X, θ0) is a supremum over an uncountable set, and it is not clear
if it is measurable: technically this measurability should be an extra assumption in the statement.
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as n→ ∞ by SLLN (and Remark 6). Applying a similar argument replacing g with −g,

P

(
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

{g(Xi, θ)− Eg(X, θ)}

∣∣∣∣∣ > ϵ

)

≤ P

{
sup
θ∈Θ

(
1

n

n∑
i=1

{g(Xi, θ)− Eg(X, θ)}

)
> ϵ

}
+ P

{
sup
θ∈Θ

(
1

n

n∑
i=1

{Eg(X, θ)− g(Xi, θ)}

)
> ϵ

}
→ 0,

as required.

1.5 Consistency of the MLE

We now have in place all of the tools required to formalise the argument sketched out earlier
for connecting the MLE to the Cramér–Rao lower bound. Recall that our basic strategy
involved a Taylor expansion, and in order to make progress with this, a first requirement
was that the MLE θ̂n be ‘close’ to the true parameter θ0 (for large n). The appropriate
form of closeness here is convergence in probability. From herein, we will be working in
the setting where our data consist of i.i.d. copies X1, . . . , Xn of a random vector X ∈ Rd.

Definition 6. We say an estimator θ̂n = θ̂n(X1, . . . , Xn) (not necessarily the MLE) is

consistent for estimating a parameter θ0 (corresponding to the true distribution) if θ̂n
p→ θ0.

We can thus re-express the first conclusion of Example 5 as showing that the sample
variance is a consistent estimator of the population variance. Consistency is a very basic
requirement for an estimator: indeed, the strong law of large numbers shows that provided
E∥X∥∞ < ∞, the sample average of the first log n data points (discarding all other data)
1

logn

∑logn
i=1 Xi is a consistent estimator of the mean. Nevertheless it is a good first start for

studying the MLE, and we present this now.
In the following we assume that the Xi have a distribution from a statistical model

{f(·, θ) : θ ∈ Θ} where θ0 ∈ Θ denotes the true parameter, so Xi
i.i.d.∼ f(·, θ0), and θ0 is

identifiable. We will require several regularity conditions on our statistical model; note
that the precise form of these is *non-examinable*: on the example sheet or exam, these
will be referred to as the ‘usual regularity conditions’.

Regularity assumptions (R1). Let the statistical model be such that:

(1) Θ ⊂ Rp is closed and bounded (compact);

(2) Writing X := {x : f(x, θ0) > 0} for the support of f(·, θ0), θ 7→ f(x, θ) is continuous
for all x ∈ X ;

(3) Eθ0 supθ∈Θ | log(f(X, θ))| <∞.
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In particular, these assumptions are required for application of our ULLN. (3) and (2) imply
that θ 7→ Eθ0 log(f(X, θ)) =: ℓ̄(θ) is continuous (see Example 4). Note that a necessary
condition for (3) is that all the densities {f(·, θ) : θ ∈ Θ} have support containing X .

Theorem 12. Suppose (R1) holds. An MLE exists (almost surely) and any MLE is con-
sistent.

Proof. First note that on the almost sure event {X1, . . . , Xn ∈ X}, ℓ̄n(θ) is continuous, so
a maximiser on the compact set Θ exists. Also, the regularity assumptions accommodate
the following ULLN:

sup
θ∈Θ

|ℓ̄n(θ)− ℓ̄(θ)| p→ 0.

Now fix ϵ > 0 and let Θ− := {θ ∈ Θ : ∥θ − θ0∥∞ ≥ ϵ}. Note that for any MLE θ̂n,

{ℓ̄n(θ0) > sup
θ∈Θ−

ℓ̄n(θ)} ⊆ {∥θ̂n − θ0∥∞ < ϵ},

so it suffices to show that the former event has probability converging to 1.
Now Θ− is a closed and bounded (compact) set as the intersection of the compact set

Θ and the closed set {∥θ−θ0∥∞ < ϵ}c. Recall that ℓ̄ is continuous, so there exists θ− ∈ Θ−
with ℓ̄(θ−) = supθ∈Θ− ℓ̄(θ). Let us write δ := ℓ̄(θ0) − ℓ̄(θ−) > 0 (recall Theorem 4 which

shows θ0 is the unique maximiser of ℓ̄).
Also,

sup
θ∈Θ−

ℓ̄n(θ) ≤ sup
θ∈Θ−

ℓ̄(θ) + sup
θ∈Θ

|ℓ̄n(θ)− ℓ̄(θ)|.

Now

ℓ̄n(θ0)− sup
θ∈Θ−

ℓ̄n(θ) = ℓ̄n(θ0)− ℓ̄(θ0) + ℓ̄(θ0)− ℓ̄(θ−)︸ ︷︷ ︸
=δ

+ ℓ̄(θ−)− sup
θ∈Θ−

ℓ̄n(θ)︸ ︷︷ ︸
≥− supθ∈Θ |ℓ̄n(θ)−ℓ̄(θ)|

.

But by ULLN, P(supθ∈Θ |ℓ̄n(θ) − ℓ̄(θ)| < δ/2) → 1, so P(ℓ̄n(θ0) > supθ∈Θ− ℓ̄n(θ)) → 1 as
required.

Remark 9. The proof extends to the following more general setting where we replace the
log-likelihood ℓ̄n maximised by the MLE, by another function

θ 7→Mn(θ) :=
n∑
i=1

m(θ,Xi).

Let M(θ) := Em(θ,X) and suppose θ0 is a maximiser of M : for example we could take
m(θ,X) = −|X − θ|, in which case θ0 would be a population median. Provided the

appropriate regularity conditions are met, we may conclude that a maximiser θ̂n of Mn(θ)
is consistent for estimating θ0.
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1.6 Asymptotic normality of the MLE

We are finally ready to formalise the Taylor series-based argument sketched out earlier
concerning the MLE. We first re-state this argument for the case where p may be greater
than one. Define the observed information matrix Jn(θ) ∈ Rp×p with entries

(Jn(θ))jk := − ∂

∂θk
( 1
n
Sn(θ))j = − 1

n

n∑
i=1

∂2

∂θj∂θk
log f(Xi, θ).

(Recall that, under regularity conditions, EθJn(θ) = I1(θ); see Proposition 3.) We have

0 =
1√
n
Sn(θ̂n) ≈

1√
n
Sn(θ0)− Jn(θ0)

√
n(θ̂n − θ0).

But by the CLT,

1√
n
Sn(θ0) =

1√
n

n∑
i=1

∇θ log f(Xi, θ)
d→ N(0, I1(θ0))

so if Jn(θ0)
p→ I1(θ0), by Slutsky, we should expect

√
n(θ̂n − θ0)

d→ Np(0, I1(θ0)
−1).

That is, MLEs should not only enjoy a form of ‘approximate’ optimality by approximately
achieving the Crameŕ–Rao lower bound, but also have an approximately Gaussian dis-
tribution, a fact which allows one to quantify uncertainty in the estimation and perform
hypothesis tests. A sequence of estimators achieving this distributional convergence is said
to be asymptotically efficient or simply efficient. Such a sequence of estimators ‘asymp-
totically’ is unbiased and achieves the Cramér–Rao lower bound (but for example we are

not guaranteed that Eθ0 θ̂n → θ0).
To prove the remarkable result hinted at above, we require some regularity conditions

in addition to (R1), which, as before, are *non-examinable*.

Regularity assumptions (R2). Let the statistical model be such that:

(1) θ0 ∈ intΘ;

(2) there exists an open neighbourhood N of θ0 on which θ 7→ f(x, θ) is twice continuously
differentiable for all x ∈ X ;

(3) I(θ0) exists and is invertible ;
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(4) ∫
X
sup
θ∈Θ

∥∇θ log f(x, θ)∥2 dx <∞

Eθ0
(
sup
θ∈Θ

∥∇2
θ log f(X, θ)∥2

)
<∞∫

X
sup
θ∈Θ

∥∇2
θ log f(x, θ)∥2 dx <∞.

(In fact the above can be weakened by replacing Θ above with any compact set K with
non-empty interior that contains θ0.)

Theorem 13. Suppose regularity conditions (R1) and (R2) hold. Then any sequence of

MLEs θ̂n satisfies √
n(θ̂n − θ0)

d→ Np(0, I1(θ0)
−1).

Proof. As θ0 ∈ intΘ, there exists some ϵ > 0 such that {θ : ∥θ − θ0∥∞ ≤ ϵ} ∈ intΘ. We

already know θ̂n
p→ θ0 (Theorem 12), so writing An := {θ̂n ∈ intΘ} ⊇ {∥θ̂n − θ0∥∞ ≤ ϵ},

we have P(An) → 1. We henceforth work on this sequence of events,11 noting that it will
not affect the distributional convergence result12.

Now fix j ∈ {1, . . . , p} and define q(t) := Sn(tθ̂n+(1− t)θ0)j. Then, by the mean value
theorem,

q(1)− q(0) = q′(t)

for some t ∈ [0, 1]. Thus there exists θ̃
(j)
n

p→ θ0 with13

Sn(θ̂n)j − Sn(θ0)j =

p∑
k=1

(θ̂n − θ0)k

n∑
i=1

∂2

∂θk∂θj
log f(Xi, θ)

∣∣
θ=θ̃

(j)
n
.

Then, defining J̃n ∈ Rp×p with (J̃n)jk := (Jn(θ̃
(j)))jk, we have

1

n
Sn(θ̂n)−

1

n
Sn(θ0) = −J̃n(θ̂n − θ0).

Now on An, Sn(θ̂n) = 0. Also J̃n
p→ I1(θ0) (see Lemma 14 below). Thus writing Bn :=

{J̃n is invertible}, we have P(Bn) → 1 (see Example Sheet 1, Question 11(i)). We now
work on An ∩Bn (and note that P(An ∩Bn) → 1). We have

√
n(θ̂n − θ0) = J̃−1

n

1√
n
Sn(θ0).

11More explicitly, we understand every subsequent equation as being multiplied by 1An
on the left and

right, or in other words, the equations only apply to those ω ∈ An.
12Indeed, if Wn1Ωn

d→ W for some W and events Ωn with P(Ωn) → 1, then (1 − 1Ωn
)Wn

p→ 0, so

Wn = Wn1Ωn + (1− 1Ωn)Wn
d→ W .

13A technical difficulty arises with applications of the mean value theorem here and elsewhere as the

intermediate values θ̃
(j)
n are not guaranteed to be measurable and hence are formally not necessarily random

variables to which the usual rules of stochastic convergence can be applied. See http://www.statslab.

cam.ac.uk/~nickl/Site/__files/stat2013.pdf for example for how this issue can be circumvented.
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By the CMT, J̃−1
n

p→ I1(θ0)
−1 and by the CLT, 1√

n
Sn(θ0)

d→ Np(0, I(θ0)). Thus by Slutsky,
we get the result.

Lemma 14. Suppose that regularity conditions (R1) and (R2) hold. Suppose that θ̃
(j)
n

p→ θ0
for j = 1, . . . , p. Then the matrix J̃n ∈ Rp×p with (J̃n)jk := (Jn(θ̃

(j)))jk satisfies J̃n
p→

I1(θ0).

Proof. Fix j, k ∈ {1, . . . , p} and define g(Xi, θ) := − ∂2

∂θj∂θk
log f(Xi, θ). The conditions

ensure that θ 7→ Eθ0g(X, θ) =: ḡ(θ) is continuous at θ0 and that we have a ULLN of the
form

sup
θ∈Θ

∣∣∣∣ 1n
n∑
i=1

g(Xi, θ)︸ ︷︷ ︸
=(Jn(θ))jk

−ḡ(θ)
∣∣∣∣ p→ 0.

Now

(J̃n)jk − I1(θ0)jk =

(
1

n

n∑
i=1

g(Xi, θ̃
(j)
n )− ḡ(θ̃(j)n )

)
+
(
ḡ(θ̃(j)n )− ḡ(θ0)

)
.

The first term converges to 0 in probability by the ULLN, and the second term converges
to 0 in probability by the CMT. Thus (J̃n)jk − I1(θ0)jk

p→ 0 by Slutsky.

1.7 Wald confidence intervals and tests

We can leverage the asymptotic normality of MLEs to quantify uncertainty through confi-
dence intervals (or regions). Although the asymptotic distribution of

√
n(θ̂n− θ0) involves

the Fisher information I1(θ0), which may be unknown as θ0 is unknown, we may estimate

I1(θ0) by I1(θ̂n) or Jn(θ̂n). Provided θ 7→ I1(θ) is continuous at θ0, since θ̂n
p→ θ0, by the

CMT, we have I1(θ̂n)
p→ I1(θ0), and Lemma 14 shows in particular that Jn(θ̂n)

p→ I1(θ0).
One consequence of this is that by Slutsky’s lemma, for any given j ∈ {1, . . . , p},

√
n(θ̂n,j − θ0,j)√
(Jn(θ̂n)−1)jj

d→ N(0, 1).

This leads to the Wald confidence interval for θ0,j given by

Ĉn :=

θ̂n,j − zα

√
(Jn(θ̂n)−1)jj
√
n

, θ̂n,j +
zα

√
(Jn(θ̂n)−1)jj
√
n

 .
By an analagous argument to that of Example 5, we have Pθ0(θ̂n ∈ Ĉn) → 1− α.

If, alternatively, we want to conduct inference for the whole parameter θ0, we can base
this on the following result.
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Theorem 15 (Wald confidence region). Under regularity conditions,

Wn(θ0) := n(θ̂n − θ0)
⊤Jn(θ̂n)(θ̂n − θ0)

d→ χ2
p.

Proof. We have

Wn(θ0) = n(θ̂n − θ0)
⊤I1(θ0)(θ̂n − θ0) +

√
n(θ̂n − θ0)

⊤{(Jn(θ̂n)− I1(θ0)}
√
n(θ̂n − θ0).

But we know Jn(θ̂n)− I1(θ0)
p→ 0, so by Slutsky, {(Jn(θ̂n)− I1(θ0)}

√
n(θ̂n − θ0)

p→ 0, and
hence by Slutsky again, the second term above converges to 0 in probability.

For the first term, note that I1(θ0)
1/2

√
n(θ̂n − θ0)

d→ Np(0, I) by the CMT, so by the

CMT again, {I1(θ0)1/2
√
n(θ̂n − θ0)}2

d→ χ2
p, so the result follows by a final application of

Slutsky.

This leads to an elliptical Wald confidence region of the form

Ĉn := {θ ∈ Θ : Wn(θ) ≤ ξα},

where ξα is such that when Z ∼ χ2
p, we have P(Z ≥ ξα) = α.

Exploiting the duality of confidence regions and tests, we can also use this approach to
test the null hypothesis H0 : θ = θ0 for a given θ0: we reject when θ0 /∈ Ĉn, that is when

n(θ̂n − θ0)
⊤Jn(θ̂n)(θ̂n − θ0) > ξα.

Then the Type I error or size satisfies

Pθ0(n(θ̂n − θ0)
⊤Jn(θ̂n)(θ̂n − θ0) > ξα) → α.

Note that in all of the above, we may replace Jn(θ̂n) with I1(θ0) to obtain alternative
versions of Wald tests and confidence regions and the conclusions remain unchanged.

1.8 Generalised likelihood ratio tests and score tests

The Wald approach is not the only way to perform hypothesis tests. Consider more gen-
erally the problem of testing

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ \Θ0.

where Θ0 is some subset of Θ ⊂ Rp. Recall that the generalised likelihood ratio statistic
Λn := Λn(Θ,Θ0) is given by

Λn(Θ,Θ0) := 2 log

(
supθ∈Θ Ln(θ)

supθ∈Θ0
Ln(θ)

)
where Ln is the likelihood Ln(θ) =

∏n
i=1 f(Xi, θ). Note that Λn ≥ 0, and large values

should indicate deviation from the null.
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Theorem 16 (Wilks’ theorem: special case Θ0 = {θ0}.). Consider the special case where
Θ0 = {θ0}. Under regularity conditions, we have

Λn
d→ χ2

p.

Proof. Let θ̂n be the MLE. We have that

Λn = 2{ℓn(θ̂n)− ℓn(θ0)}.

We now Taylor expand14 ℓn(θ0) about θ̂n using a mean-value form of the remainder. As in

the proof of Theorem 13, we work on the events An := {θ̂n ∈ intΘ}, which have probability
converging to 1. We have

ℓn(θ0) = ℓn(θ̂n) + (θ0 − θ̂n)
⊤ Sn(θ̂n)︸ ︷︷ ︸

=0

−n
2
(θ0 − θ̂n)

⊤Jn(θ̃n)(θ0 − θ̂n)

where θ̃n is on the closed line segment between θ0 and θ̂n, so in particular θ̃n
p→ θ0. Thus

Λn =
√
n(θ0 − θ̂n)

⊤︸ ︷︷ ︸
d→Np(0,I1(θ0)−1)

× Jn(θ̃n)︸ ︷︷ ︸
p→I1(θ0) (Lem. 14)

×
√
n(θ0 − θ̂n).

Just as in the proof of Theorem 15, we see that this converges in distribution to a χ2
p.

The result shows that rejecting the null when Λn ≥ ξα gives a test with asymptotic size
α. Moreover, we obtain the following asymptotically valid (1− α)-level confidence set for
θ:

Ĉn := {θ ∈ Θ : Λn(Θ, {θ}) ≤ ξα}.
One advantage of this test compared to the Wald test is that it does not require compu-
tation of Jn(θ̂n) or I1(θ̂n): instead the test only involves evaluation of the likelihood at θ0
and computation of θ̂n. In fact, there is also a test that avoids computation of the MLE
altogether, which can be helpful in particular when p is large. The score test is based on
the simple observation that under the null,

1√
n
Sn(θ0)

d→ Np(0, I1(θ0)),

so by the CMT,

λn :=
1

n
Sn(θ0)

⊤I1(θ0)
−1Sn(θ0)

d→ χ2
p.

Both Wilks’ theorem and the score test can be generalised to settings with composite
null hypotheses. For the score test, we replace θ0 above with the MLE θ̃n under the null
i.e. maximising ℓn only over Θ0. In this setting, the limiting distribution of both Λn and
λn become χ2

p−p0 where p0 ≤ p is the “dimension” or “degrees of freedom” of Θ0. For
example, if Θ0 fixes the values of k ≤ p coordinates of θ, we will have p0 = p− k.

14Note this is different from Theorem 13 where we instead expanded Sn(θ̂n) about Sn(θ0).
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Informal summary: For simple nulls H0 : θ = θ0, we have the following test statistics:

Wald: n(θ̂n − θ0)
⊤I1(θ̂n)(θ̂n − θ0)

Generalised likelihood ratio: 2{ℓn(θ̂n)− ℓn(θ0)}

Score:
1

n
Sn(θ0)

⊤I1(θ0)
−1Sn(θ0).

Replacing I1(θ0) and I1(θ̂n) with any of Jn(θ̃n) or I1(θ̃n) where θ̃n ∈ {θ0, θ̂n} will all yield
the same asymptotic distribution under the null and may thus be used in the tests.

For composite nulls H0 : θ ∈ Θ0, we have

Generalised likelihood ratio: 2{ℓn(θ̂n)− ℓn(restricted MLE)}

Score:
1

n
Sn(restricted MLE)⊤I1(restricted MLE)−1Sn(restricted MLE).

The restricted MLE is argmaxθ∈Θ0
ℓn(θ). Again, for the score test, there are several options

that will yield the same asymptotic distribution under the null. These can be obtained
by replacing the argument of I1(restricted MLE) with θ̃n ∈ {restricted MLE, θ̂n}, or using
Jn(θ̃n).

For the particular composite null H0 : θj = θ0,j, we can also use a α-level Wald test
which rejects when

√
n

|θ̂n,j − θ0,j|√
(I1(θ̂n)−1)jj

> Φ−1(1− α/2),

where as indicated above, I1(θ̂n) can be replaced by several other quantities to yield the
same asymptotic distribution under the null.

1.9 The Delta method

Consider now the problem of estimating a certain function ϕ(θ) of the parameter θ in
the model {f(·, θ) : θ ∈ Θ}. We first look at the special case where ϕ(θ) = θ1 and
θ = (θ1, θ2) ∈ Θ1 ×Θ2 = Θ. One option is to maximise the profile likelihood

L(p)(θ1) = sup
θ2∈Θ2

L(θ1, θ2).

More generally, one can maximise the induced likelihood function L∗(ψ) := supθ∈Θ:ϕ(θ)=ψ L(θ)

over ψ. A conceptually simpler approach is to compute the MLE θ̂ and report the so-called
plug-in MLE ϕ(θ̂). It turns out, these two approaches amount to the same thing.

Proposition 17. Let θ̂ be an MLE. Then ϕ(θ̂) maximises L∗(ψ) over ψ ∈ ϕ(Θ) := {ψ :
ψ = ϕ(θ) for some θ ∈ Θ}.

Proof. Suppose for a contradiction there exists ψ̂ ∈ ϕ(Θ) with L∗(ψ̂) > L∗(ϕ(θ̂)) + ϵ

for some ϵ > 0. Then there exists θ̃ such that L(θ̃) > L∗(ψ̂) − ϵ > L∗(ϕ(θ̂)) ≥ L(θ̂),

contradicting the optimality of θ̂.
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For example, if we reparametrise the {N(µ, σ2) : µ ∈ R, σ2 > 0} model as {N(µ, 1/γ2) :
µ ∈ R, γ2 > 0}, the MLE for the precision γ2 will be the reciprocal of the MLE for σ2.

The Delta method, which is a general procedure for finding the limiting distribution of
a function of an estimator based on knowledge of the limiting distribution of the estimator
itself, can allow us to conduct inference on ϕ(θ).

Theorem 18 (Delta method). Let ϕ : Θ → Rm be continuously differentiable at θ0.

Let θ̂n be a sequence of random vectors (estimators—not necessarily MLEs) such that

rn(θ̂n− θ0)
d→ Z where Z is some random vector and rn → ∞ is some deterministic scalar

sequence (e.g. rn =
√
n). Then

rn(ϕ(θ̂n)− ϕ(θ0))
d→

∇θϕ1(θ0)
⊤

...
∇θϕm(θ0)

⊤

Z.

Proof. By the mean value theorem applied to each component,

rn(ϕ(θ̂n)− ϕ(θ0)) =

 ∇θϕ1(θ̃
(1)
n )⊤

...

∇θϕm(θ̃
(m)
n )⊤


︸ ︷︷ ︸

=:Dn

rn(θ̂n − θ0),

for some θ̃
(k)
n , k = 1, . . . ,m in the closed line segment between θ0 and θ̂n. Now θ̂n

p→ θ0 (see

Example Sheet 1, Question 8(b)), so θ̃
(k)
n

p→ θ0 also. But then by the CMT, ∇θϕk(θ̃
(k)
n )

p→
∇θϕk(θ0) for each k so by Slutsky,

Dn rn(θ̂n − θ0)︸ ︷︷ ︸
d→Z

d→

∇θϕ1(θ0)
⊤

...
∇θϕm(θ0)

⊤

Z.

Considering the case where θ̂n is the MLE and m = 1, we have

√
n(ϕ(θ̂n)− ϕ(θ0))

d→ N(0,∇θϕ(θ0)
⊤I1(θ0)

−1∇θϕ(θ0)).

Recall that the Cramér–Rao lower bound for an estimator ϕ̂ with Eθϕ̂ = ϕ(θ) is

n−1∇θϕ(θ0)
⊤I1(θ0)

−1∇θϕ(θ0),

so this ‘matches’ what we see in the asymptotic distribution of the plug-in MLE.

Example 6. Suppose we have i.i.d. data X1, . . . , Xn with mean µ0 and variance 1 and we

wish to estimate µ2
0. We have

√
n(X̄n−µ0)

d→ N(0, 1) by the CLT, so by the Delta method

√
n(X̄2

n − µ2
0)

d→ N(0, 4µ2
0).
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What happens if µ0 = 0? Then we simply have convergence in probability to 0 above. To
obtain a more informative result, we should consider the limiting distribution of

nX̄2
n = n

(
1

n

n∑
i=1

Xi

)2

=

(
1√
n

n∑
i=1

Xi

)2

d→ χ2
1 (by the CMT).

1.10 Beyond maximum likelihood

It may appear that maximum likelihood estimation has largely ‘solved’ the essential prob-
lem of learning from data that Statistics is concerned with: MLEs enjoy a form of optimality
in the form of efficiency, and the fact that they are asymptotically Gaussian means that
inferential questions can be answered with confidence statements and hypothesis tests that
have formal asymptotic justifications. What remains to be done?

Of course there are settings where the regularity conditions we have employed may fail
(such as when θ0 is at the boundary of Θ0 or when the support of the distributions varies
with θ—see the example sheet), but this is certainly not the biggest limitation.

The justification of MLEs relied on what turned out to be an extremely powerful idea:
we regarded our estimator θ̂n applied to data X1, . . . , Xn as embedded within an infinite
sequence of estimators, and aimed to understand properties of θ̂n by understanding its
limiting behaviour. Therein however lies a fundamental weakness of our entire analysis.
We have not put forward any guarantees on the behaviour of MLEs at a finite sample size
n. This gap in our argument opens the door to other inference strategies that may be
superior, at least in some ways, in such finite samples. One possibility for improvement is
to leverage any vague prior information we may have about the parameter of interest.

2 Bayesian inference

Bayesian inference is an approach to inference based on regarding the parameter of interest
as random, and specifying a prior distribution for this. This prior distribution can represent
(subjective) beliefs about the parameter. A more broad perspective however would regard
the methods resulting from thinking in this way as precisely that: methods, which we can
assess in the same sort of way as other inference methods.

Example 7. Consider a simple model where Θ = {θ1, θ2}. We regard our target parameter
θ as a random variable taking values in Θ with prior probabilities πj := P(θ = θj). Let
fj be the pmf of our data X ∈ X (considered discrete here for transparency) given that
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θ = θj. Then if x is our realised data,

P(θ = θj |X = x) =
P(X = x and θ = θj)

P(X = x)

=
P(X = x | θ = θj)P(θ = θj)

P(X = x | θ = θ1)P(θ = θ1) + P(X = x | θ = θ2)P(θ = θ2)

=
πjfj(x)

π1f1(x) + π2f2(x)
.

Thus we should prefer the hypothesis H0 : θ = θ1 over H1 : θ = θ2 if

P(θ = θ1 |X = x)

P(θ = θ2 |X = x)
=
f1(x)

f2(x)

π1
π2

> 1.

To justify this more formally, we can consider an arbitrary approach δ : X → Θ for
deciding between θ1 and θ2 based on data X which incurs a loss of 1 when we make the
wrong decision. We will return to this idea of measuring the quality of an estimator (or
more generally a decision making process) in the next chapter, but for now, note that the
expected loss satisfies

E1{δ(X )̸=θ} = E
(
1{δ(X)=θ2}1{θ=θ1} + 1{δ(X)=θ1}1{θ=θ2}

)
= E

(
E(1{δ(X)=θ2}1{θ=θ1} + 1{δ(X)=θ1}1{θ=θ2} |X)

)
= E

(
1{δ(X)=θ2}P(θ = θ1 |X) + 1{δ(X)=θ1}P(θ = θ2 |X)

)
.

To minimise this then δ(X) should always pick the hypothesis preferred by the rule above.
In summary, we see that if the prior on θ genuinely described our uncertainty about

θ, then our inference on θ should be based on the posterior distribution given by {P(θ =
θ1 |X = x),P(θ = θ2 |X = x)}.

Let us put the ideas above in a more general setting. In the Bayesian context, specifying
a statistical model {f(·, θ) : θ ∈ Θ} means that the distribution of data X given θ is

X | θ ∼ f(·, θ).

We also specify a prior density π which is the marginal density of θ. The posterior density
is given by

θ |X ∼ Π(θ |x) := f(x, θ)π(θ)∫
Θ
f(x, θ′)π(θ′) dθ′

.

We also regard the posterior as a random probability density function Π(θ |X)15. As usual,
when either X or θ are discrete, the densities above should be thought of as pmfs and the

15Note that the randomness is coming from the data X (even though we are thinking of θ as a random
variable). There is some abuse of notation here: usually for e.g. a random variable X with density f ,
we would not also use X to denote a deterministic point where we might evaluate its density and would
instead write f(x). In the Bayesian context however, it is common to see with the parameter of interest θ.
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integrals replaced with sums. Typically, we will deal with settings where we observe copies
X1, . . . , Xn of X where X | θ ∼ f(·, θ) that are conditionally i.i.d. given θ. We write this

as X1, . . . , Xn | θ
i.i.d.∼ f(·, θ). Note that the X1, . . . , Xn will typically not be marginally

independent as they ‘share’ the same θ. Our posterior is

θ |X1, . . . , Xn ∼ Π(θ |x1, . . . , xn) =
π(θ)

∏n
i=1 f(xi, θ)∫

Θ
π(θ′)

∏n
i=1 f(xi, θ

′) dθ′
.

The expression above can be viewed as a reweighted version of the likelihood function
Ln(θ). Note that the denominator is simply a normalising factor and is constant in θ. It
can often be ignored in calculations by spotting the form of the distribution.

Example 8. Suppose X1, . . . , Xn | θ
i.i.d.∼ N(θ, 1) with prior θ ∼ N(0, 1). The numerator of

the posterior is proportional to (as a function of θ)

exp

(
−θ

2

2

) n∏
i=1

exp

(
−(Xi − θ)2

2

)
∝ exp

(
nθX̄ − nθ2

2
− θ2

2

)
= exp

(
nθX̄ − (n+ 1)θ2

2

)
∝ exp

(
−(θ

√
n+ 1− nX̄/

√
n+ 1)2

2

)
= exp

(
−(θ − nX̄/(n+ 1))2

2/(n+ 1)

)
.

Thus we see that

θ |X1, . . . , Xn ∼ N

(
1

n+ 1

n∑
i=1

Xi,
1

n+ 1

)
.

In the example above, both the prior and the posterior were in the same distributional
family (they were both normal). This motivates the following definition.

Definition 7. In a statistical model {f(·, θ) : θ ∈ Θ}, if the prior π(θ) and the posterior
Π(θ|X) belong to the same family of distributions, the prior is called a conjugate prior.

Other examples (see example sheet) of conjugacy include:

� Beta prior and binomial sampling;

� Gamma prior and Poisson sampling.

The posterior can be used in several ways for performing inference about θ:

� Estimation: We can use the posterior mean

θ̄ = θ̄(X) = E(θ |X) =

∫
θ∈Θ

θΠ(θ |X) dθ

for example, or another summary of the posterior such as the mode or median.
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� Uncertainty quantification: Any subset Ĉ = Ĉ(X) ⊆ Θ such that∫
Ĉ

Π(θ |X) dθ = P(θ ∈ Ĉ |X) = 1− α

is a (1− α)-level credible set for θ.

� Hypothesis testing: As in Example 7, we can decide between hypotheses H0 : θ ∈
Θ0 and H1 : θ ∈ Θ1 via the Bayes factor

P(θ ∈ Θ0 |X)

P(θ ∈ Θ1 |X)
=

∫
Θ0
f(X, θ)π(θ) dθ∫

Θ1
f(X, θ)π(θ) dθ

.

2.1 Uninformative priors

We motivated the Bayesian approach through a desire to leverage prior information for
inference. In many situations, such prior information cannot be easily summarised in the
form of a prior probability distribution over the parameter of interest. It is nevertheless
interesting to look at Bayesian methods in this context as well. What sort of prior would
be sensible to use in such a setting?

Consider the case where X | θ ∼ Bern(θ). It would appear that the only sensible
choice of ‘ignorant’ prior in this case is θ ∼ U [0, 1]. However the principle to represent
ignorance by uniform priors on the parameter space is logically flawed. Indeed, we could
reparametrise our model via ψ = θ100. The implied prior on ψ would then be

π(ψ)(ψ) = π(θ(ψ)) ·
∣∣∣∣dθ(ψ)dψ

∣∣∣∣ = 1

100
ψ−99/100,

which seems informative as it puts much more mass close to 0 than 1. Therefore the
principle of using uniform priors is not invariant to reparametrisations.

To achieve this form of invariance, we can use the Jeffreys prior:

Definition 8. The prior π(θ) proportional to
√
det I(θ) is called the Jeffreys prior.

Note that it may be the case that then
∫
Θ
π(θ) dθ = ∞: any such a prior is called

improper. Although the prior then would not represent a probability distribution, the
posterior

f(x, θ)π(θ)∫
Θ
f(x, θ′)π(θ′) dθ′

may still be a well-defined probability density (though it cannot be interpreted as a condi-
tional density). To see how the Jeffreys prior restores the desired invariance, consider for
simplicity the case where p = 1 and observe that under regularity conditions, the Fisher
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information I(ψ)(ψ) in the ψ parametrisation satisfies

I(ψ)(ψ) = −Eψ
(
d2

dψ2
log f(X, θ(ψ))

)
= −Eψ

(
d

dψ

(
S(θ(ψ))

dθ(ψ)

dψ

))
= I(θ(ψ))

(
dθ(ψ)

dψ

)2

as Eψ(S(θ(ψ)) = 0. Thus with the Jeffreys prior,√
det I(ψ)(ψ) ∝ π(θ(ψ))

∣∣∣∣dθ(ψ)dψ

∣∣∣∣
2.2 Frequentist analysis of Bayesian methods

Particularly when using an uninformative prior, it is hard to defend a dogma that all infer-
ence should be based on the posterior without other justification. This motivates studying
Bayesian methods from a ‘frequentist’ perspective, that is by studying their behaviour on
average over hypothetical repetitions of the ‘experiment’ used to produce the data. This
is just a fancy way of describing what we have been doing all along with e.g. checking
whether a given confidence region contains the true parameter at least 1 − α of the time
‘on average’.

Example 8 continued. Recall that when X1, . . . , Xn | θ
i.i.d.∼ N(θ, 1) with θ ∼ N(0, 1),

we have that the posterior mean

θ̄n := E(θ |X1, . . . , Xn) =
n

n+ 1
X̄n.

This is not exactly the MLE θ̂n := X̄n, but is close. Consider now the setting where

X1, . . . , Xn
i.i.d.∼ N(θ0, 1) for a deterministic θ0 ∈ R. Under this sampling scheme, we have√

n(θ̂n − θ̄n)
p→ 0, so by Slutsky, their limiting distributions are identical. Moreover, a

credible set of the form

Ĉn :=

{
θ′ : |θ′ − θ̄| ≤ Rn√

n

}
,

where Rn is taken such that
∫
Ĉn

Π(θ |X1, . . . , Xn) dθ = 1 − α will share the frequentist

coverage guarantee Pθ0(θ0 ∈ Ĉn) → 1−α of the standard (Wald) confidence interval centred
at the MLE (see Example Sheet). (Note that Rn is a random variable that depends on the
data X1, . . . , Xn.)

In the above example, we observed a close relationship between likelihood-based and
Bayesian inference. Remarkably, this asymptotic equivalence persists across all sufficiently
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regular models and priors. To see why such a result could hold, suppose X1, . . . , Xn
i.i.d.∼

f(·, θ0) and that the prior π is continuous and positive at θ0. Consider reparametrising the

posterior in terms of h =
√
n(θ − θ̂n). We obtain

Π(θ(h) |X1, . . . , Xn)
1√
n
=: Π̃(h |X1, . . . , Xn)

=
Ln(θ̂n + h/

√
n)π(θ̂n + h/

√
n)∫

Ln(θ̂n + h′/
√
n)π(θ̂n + h′/

√
n) dh′

∝ Ln(θ̂n + h/
√
n)

Ln(θ̂n)
π(θ̂n + h/

√
n).

Now, for any fixed h, we have, arguing as in the proof of Wilks theorem,

log

(
Ln(θ̂n + h/

√
n)

Ln(θ̂n)

)
= ℓn(θ̂n + h/

√
n)− ℓn(θ̂n)

= −1

2
h⊤Jn(θ̃n)h

where θ̃n = θ̂n + th/
√
n, some t ∈ [0, 1]. By consistency of the MLE and Lemma 14,

Jn(θ̃n)
p→ I1(θ0), so by the CMT, we see that

Ln(θ̂n + h/
√
n)

Ln(θ̂n)
π(θ̂n + h/

√
n)

p→ exp

(
−1

2
h⊤I1(θ0)h

)
π(θ0).

If we could additionally show that the integrals over h of the two sides above converged
in probability, dividing by the normalising constants and appealing to Slutsky, we would
have

Π̃(h |X1, . . . , Xn)
p→ ϕ̃(h)

for each h, where ϕ̃ is the Np(0, I1(θ0)
−1) density. It turns out this can be strengthened to∫

|Π̃(h |X1, . . . , Xn)− ϕ̃(h)| dh a.s.→ 0,

or, in the original parametrisation θ = θ̂n + h/
√
n,∫

|Π(θ |X1, . . . , Xn)− ϕ̂n(θ)| dθ
a.s.→ 0,

where ϕ̂n is the (random) Np(θ̂n, In(θ0)
−1) density. This result, which holds under relatively

mild regularity conditions, is known as the Bernstein-von Mises theorem16.

16See http://www.statslab.cam.ac.uk/~nickl/Site/__files/stat2013.pdf for a detailed proof.
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Proposition 19. Consider the above setup (assuming the Bernstein-von Mises theorem
holds) with p = 1. Let

Ĉn :=

{
θ′ : |θ̂n − θ′| ≤ Rn√

n

}
,

where for α ∈ (0, 1), Rn is chosen such that
∫
Ĉn

Π(θ |X1, . . . , Xn) dθ = 1 − α. Then

Pθ0(θ0 ∈ Ĉn) → 1− α.

Proof. First observe that Rn satisfies∫ Rn

−Rn

Π̃(h |X1, . . . , Xn) dh = 1− α.

But ∣∣∣∣∫ Rn

−Rn

Π̃(h |X1, . . . , Xn) dh−
∫ Rn

−Rn

ϕ̃(h) dh

∣∣∣∣ ≤ ∫ |Π̃(h |X1, . . . , Xn)− ϕ̃(h)| dh
a.s.→ 0

by the Bernstein-von Mises theorem. Thus, writing

Φ̃(t) :=

∫ t

−t
ϕ̃(h) dh,

we have Φ̃(Rn)
a.s.→ 1−α. Now Φ̃ : (0,∞) → (0,∞) is continuous and strictly increasing, so

it has a continuous inverse Φ̃−1 : (0,∞) → (0,∞). Hence by the CMT, Rn
a.s.→ Φ̃−1(1− α).

By Slutsky,
√
n(θ̂n − θ0)

Φ̃−1(1− α)

Rn

d→ Z̃

where Z̃ ∼ N(0, I1(θ0)
−1). Hence

Pθ0(θ0 ∈ Ĉn) = Pθ0

(
−Φ̃−1(1− α) ≤

√
n(θ̂n − θ0)

Φ̃−1(1− α)

Rn

≤ Φ̃−1(1− α)

)
→ P(−Φ̃−1(1− α) ≤ Z̃ ≤ Φ̃−1(1− α)) = 1− α.

Overall we see that Bayesian methods enjoy the same favourable asymptotic properties
as likelihood based inference. Of course, as discussed at the end of the last chapter, optimal
asymptotic properties need not translate to optimal finite sample performance. In the next
chapter we therefore turn to the issue of finite sample performance of estimators and study
this from first principles.
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3 Decision theory

Given a statistical model {f(·, θ) : θ ∈ Θ} and data X ∈ X , we can cast many statistical
tasks as decision problems, where our goal is to find an appropriate decision rule δ : X → A,
where A is a set of actions.

(i) Hypothesis testing: we can take A = {0, 1} with δ a test function.

(ii) Estimation: A = Θ and δ(X) = θ̂(X) is an estimator.

To measure the quality of an action, we can use a loss function

L : A×Θ → [0,∞).

For example:

(i) Hypothesis testing: for testing simple hypotheses we may take L(a, θ) = 1{a̸=θ}.

(ii) Estimation: L(a, θ) = (a− θ)2 or L(a, θ) = |a− θ| in one dimension.

To assess the performance of a decision rule, we can consider its average loss or risk :

R(δ, θ) := Eθ[L(δ(X), θ)] =

∫
X
L(δ(x), θ)f(x, θ) dx.

(i) Hypothesis testing: R(δ, θ) = Pθ(δ(X) ̸= θ) is either the probability of a type I
error or a type II error, depending on the value of θ.

(ii) Estimation: The quadratic risk is also known as the mean squared error (MSE)

R(θ̂, θ) = Eθ(θ̂ − θ)2.

Example 9. Consider estimating θ in a Bin(n, θ) model where θ ∈ [0, 1] under quadratic

risk. The MLE θ̂(X) = X/n satisfies

R(θ̂, θ) = Varθ(θ̂) =
θ(1− θ)

n
.

On the other hand, the (naive) estimator θ̃ = 1/2 has

R(θ̃, θ) = (θ − 1/2)2,

which is then apparently preferable when θ is sufficiently close to 1/2.
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3.1 Bayes risk

One issue with using risk to compare the quality of two decision rules is that one must fix
a value of θ ∈ Θ at which the comparison is to be made. We can instead average this risk
over different θ values.

Definition 9. Given a prior density π on Θ and model {f(·, θ) : θ ∈ Θ}, the π-Bayes risk
of a decision rule δ is

Rπ(δ) :=

∫
Θ

R(δ, θ)π(θ) dθ = E(L(δ(X), θ)),

where in the final equality both θ and X are random, X | θ ∼ f(·, θ), and the marginal
density of θ is π. Any minimiser of the π-Bayes risk is called a π-Bayes rule.

Example 9 continued. Consider the uniform prior π = 1[0,1]. We have

Rπ(θ̂) =
1

n

∫ 1

0

θ(1− θ) dθ =
1

6n
.

On the other hand,

Rπ(1/2) =

∫ 1

0

(θ − 1/2)2 dθ =
1

3
× 2× 1

23
=

1

12
.

How can one find π-Bayes rules? Observe that

Rπ(δ) = E[E{L(δ(X), θ) |X}].

Thus to minimise the π-Bayes risk over δ, it suffices to set δ(x) for each x ∈ X to be the
minimiser of the posterior risk

E[L(δ(x), θ) |X = x] =

∫
Θ

L(δ(x), θ)Π(θ |x) dθ.

Writing δΠ : X → A for this minimiser (assumed to be unique), we also have conversely
that any π-Bayes rule δ must satisfy

P(δ(X) = δΠ(X)) = 1.

(Note that in the above, X follows its marginal distribution
∫
f(x, θ)π(θ) dθ.) Indeed, we

must have

Rπ(δ)−Rπ(δΠ) = E[E{L(δ(X), θ) |X} − E{L(δΠ(X), θ) |X}︸ ︷︷ ︸
≥0

] = 0.

But a fact from Probability and Measure tells us that if U is a non-negative random variable,
then EU = 0 if and only if P(U = 0) = 1.
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Example 10. The posterior quadratic risk is minimised by the posterior mean. Indeed,
fixing x ∈ X and writing θ̄ = θ̄(x) for the posterior mean, we have

E[(δ − θ)2 |X = x] = E[(δ − θ̄ + θ̄ − θ)2 |X = x]

= (δ − θ̄)2 + E[(θ̄ − θ)2 |X = x].

The following result shows that the property of unbiasedness and that of being π-Bayes
for the quadratic risk, are largely incompatible.

Proposition 20. Suppose θ̂ = θ̂(X) is an unbiased estimator of θ, so Eθ(θ̂) = E(θ̂ | θ) = θ.

If θ̂ is also π-Bayes, for some prior π in the quadratic risk, then

P(θ̂ = θ) =

∫
1{θ̂(x)=θ′}f(x, θ

′)π(θ′) dθ′dx = 1.

Proof. It suffices to show that

E(θ̂ − θ)2 = E(θ̂2)− 2E(θθ̂) + E(θ2) = 0. (3.1)

But
E(θθ̂) = E{θE(θ̂ | θ)} = E(θ2),

and also θ̂ = E(θ |X) almost surely, so

E(θθ̂) = E{θE(θ |X)} = E[E{θE(θ |X) |X}] = E(θ̂2).

We therefore see that (3.1) holds.

3.2 Minimax risk

While the Bayes risk removes the ambiguity of fixing on a particular value of θ, a criticism
of this approach for comparing estimators could be that it involves having to fix a prior
distribution, which may be just as problematic. An alternative is to consider the worst
case risk R(δ, θ) over all values of θ.

Example 9 continued. Recall that when X ∼ Bin(n, θ), the MLE θ̂ = X/n. We have

sup
θ∈[0,1]

R(θ̂, θ) = sup
θ∈[0,1]

θ(1− θ)

n
=

1

4n
.

On the other hand,

sup
θ∈[0,1]

R(1/2, θ) =
1

4
.
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Definition 10. The minimax risk is the infimum (over all possible decision rules) of the
maximal risk over the parameter space Θ:

inf
δ
sup
θ∈Θ

R(δ, θ).

A decision rule δ that has maximal risk supθ∈ΘR(δ, θ) attaining the minimax risk is said
to be minimax.

Perhaps surprisingly, Bayes rules can be helpful for finding minimax rules.

Theorem 21. Let π be a prior on Θ and suppose δπ is a decision rule such that

Rπ(δπ) = sup
θ∈Θ

R(δπ, θ).

(In particular this will occur if δπ has constant risk R(δπ, θ) in θ.) If δπ is a (unique)
π-Bayes rule, then it is a (unique) minimax rule.

Proof. We have that for any decision rule δ,

sup
θ∈Θ

R(δ, θ) ≥
∫
Θ

R(δ, θ)π(θ) dθ = Rπ(δ) ≥ Rπ(δπ) = sup
θ∈Θ

R(δπ, θ),

so infδ supθ∈ΘR(δ, θ) = supθ∈ΘR(δπ, θ). If δπ is a unique π-Bayes rule, then the second
inequality above would be strict for δ ̸= δπ, so no such δ can have maximal risk equal to
the minimax risk.

A prior satisfying the hypothesis of the theorem is necessarily a ‘worst-case’ prior in
the following sense:

Definition 11. A prior π is least favourable if given a π-Bayes estimator δπ, for any other
prior λ and λ-Bayes estimator δλ, we have Rλ(δλ) ≤ Rπ(δπ).

Indeed, then
Rλ(δλ) ≤ Rλ(δπ) ≤ sup

θ∈Θ
R(δπ, θ) = Rπ(δπ),

with the last equality following by assumption.

Example 9 continued. One can show that θ̂ is not minimax. Instead we may take a
Beta(a, b) prior πa,b on θ ∈ [0, 1] and writing θ̄a,b for the posterior mean, solve the set of
equations

R(θ̄a,b, θ) = const. for all θ ∈ [0, 1].

This will yield a unique Bayes rule with constant risk, which is thus the unique minimax
rule (see Example Sheet).
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3.3 Admissibility

We motivated the notions of a π-Bayes risk and the maximum risk as ways of addressing
the fact that there is no clear way of ordering the risk functions θ 7→ R(δ, θ) of different
decision rules in order of preference. There is however a natural partial order among risk
functions:

Definition 12. A decision rule δ is inadmissible if there exists another decision rule δ′

that dominates δ in the sense that

R(δ′, θ) ≤ R(δ, θ) for all θ ∈ Θ and R(δ′, θ) < R(δ, θ) for some θ ∈ Θ.

Otherwise δ is admissible.

An estimator being admissible does not necessarily mean it is a ‘sensible’ estimator.
Indeed any constant estimator is admissible. On the other hand, if an estimator is inad-
missible, any estimator that dominates it should always be preferred.

Note that a decision rule being minimax does not guarantee admissibility, a fact which
underlines how in summarising the risk function by taking the maximum value, some
information has been lost. However:

Proposition 22. If for a prior π the π-Bayes rule is unique, then it is admissible.

Proof. Let δπ be π-Bayes and suppose decision rule δ satisfies R(δ, θ) ≤ R(δπ, θ) for all
θ ∈ Θ. Then

Rπ(δ) =

∫
Θ

R(δ, θ)π(θ) dθ ≤
∫
Θ

R(δπ, θ)π(θ) dθ = Rπ(δπ)

so δ is π-Bayes and hence δ = δπ by uniqueness.

The following provides a helpful connection between admissibility and minimaxity:

Proposition 23. If decision rule δ is admissible and has constant risk, it is minimax.

Proof. If δ is not minimax, then there exists δ′ with

sup
θ
R(δ′, θ) < sup

θ
R(δ, θ) = inf

θ
R(δ, θ),

contradicting admissibility of δ.

Together, Propositions 22 and 23 provide a convenient way of finding an estimator that
is both minimax and admissible: a unique π-Bayes rule with constant risk is guaranteed
to have this property. However not all estimators with this property arise in this way.
Below we show that the MLE in a N(θ, 1) model is minimax and admissible (recall from
Proposition 20 the unbiased MLE cannot be a π-Bayes rule for any prior π17). To derive

17However in some sense it is a limit of the Bayes rules δτ2 for priors N(0, τ2) when τ → ∞. A result
due to Wald shows that all minimax rules are limits of Bayes rules.
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this result, we will show admissibility directly from the Cramér–Rao lower bound: recall
that for any estimator θ̃, we have (under regularity conditions) writing b(θ) := Eθ(θ̃)− θ,

Varθ(θ̃) ≥

(
d
dθ
Eθθ̃
)2

In(θ)
=

(b′(θ) + 1)2

In(θ)
.

Theorem 24. Consider the model X1, . . . , Xn
i.i.d.∼ N(θ, 1) where θ ∈ Θ = R. Then

θ̂ = θ̂(X1, . . . , Xn) = X̄ is admissible and minimax for estimating θ in quadratic risk.

Proof. The MLE has constant risk R(θ̂, θ) = Eθ(X̄ − θ)2 = 1/n. Thus it suffices to show

θ̂ is admissible. Now for any estimator θ̃, we have the variance–bias decomposition

R(θ̃, θ) = b(θ)2 +Varθ(θ̃) ≥ b(θ)2 +
1

n
(1 + b′(θ))2

using the Cramér–Rao lower bound for the final inequality (noting that the Gaussian model

satisfies the regularity conditions). Suppose now that R(θ̃, θ) ≤ R(θ̂, θ), so

b(θ)2 +
1

n
(1 + b′(θ))2 ≤ 1

n
. (3.2)

We see that b is bounded from above and below, so by the mean value theorem, there exist
sequences θ+k → ∞ and θ−k → −∞ with b′(θ+k ) → 0 and b′(θ−k ) → 0. But from (3.2) then
b(θ+k ) → 0 and b(θ−k ) → 0. Since from (3.2) we know that b is nondecreasing (b′(θ) ≤ 0),

this implies that b(θ) = 0 for all θ ∈ R, so R(θ̃, θ) = 1/n = R(θ̂, θ) and θ̂ is admissible.

3.4 The James–Stein estimator

Consider now the multivariate setting where we seek to estimate the mean vector θ ∈ Rp

in a X ∼ Np(θ, I) model (we consider only one observation for simplicity). A natural loss

function here is L(a, θ) = ∥a− θ∥2 with associated risk for an estimator θ̂ given by

R(θ̂, θ) := Eθ{∥θ̂(X)− θ∥2} =

p∑
j=1

Eθ(θ̂j(X)− θj)
2.

If, given only Xj, the ‘best’ (in the sense of being admissible and minimax) way to estimate

θj is via Xj itself, surely the best way to estimate θ is simply using the MLE θ̂(X) = X?
This intuition is correct for p = 2, but, in a result that shocked the statistical world upon
its discovery, was shown to be false for p ≥ 3: the MLE θ̂ is in fact inadmissible in this
case! Surprisingly, one can improve on the MLE uniformly by using all components of X
to estimate each individual component of θ.

Definition 13. The James–Stein estimator is given by

θ̂JS =

(
1− p− 2

∥X∥2

)
X.
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Note that R(θ̂, θ) = Eθ∥X−θ∥2 = p. To compute the risk of the James–Stein estimator,
we use the following lemma.

Lemma 25 (Stein’s lemma). Let Z ∼ N(µ, 1) and let g : R → R be a bounded, differen-
tiable function such that E|g′(Z)| <∞. Then

E[(Z − µ)g(Z)] = E[g′(Z)].

Proof.

E[(Z − µ)g(Z)] =
1√
2π

∫ ∞

−∞
g(z)(z − µ) exp

(
−1

2
(z − µ)2

)
dz

= − 1√
2π

∫ ∞

−∞
g(z)

(
d

dz
exp

(
−1

2
(z − µ)2

))
dz

= − 1√
2π

[
g(z) exp

(
−1

2
(z − µ)2

)]∞
−∞

+
1√
2π

∫ ∞

−∞
g′(z) exp

(
−1

2
(z − µ)2

)
dz

= E[g′(Z)],

using the boundedness of g for the final equality.

Theorem 26. Let X ∼ Np(θ, I) for p ≥ 3. The risk of the James–Stein estimator satisfies

R(θ̂JS, θ) < p for all θ, so in particular the MLE is inadmissible.

Proof. In the below, we drop the subscript θ in the expectations for simplicity. We have

R(θ̂JS, θ) = E∥θ̂JS − θ∥2 = E
∥∥∥∥X − θ − p− 2

∥X∥2
X

∥∥∥∥2
= p+ (p− 2)2E∥X∥−2 − 2(p− 2)

p∑
j=1

E
(
Xj(Xj − θj)

∥X∥2

)
. (3.3)

Consider the final term. We have, by the tower property,

E
(
Xj(Xj − θj)

∥X∥2

)
= E

[
E
(
Xj(Xj − θj)

∥X∥2
∣∣∣X−j

)]
,

whereX−j = (X1, . . . , Xj−1, Xj+1, . . . , Xp). We can write the RHS as E[(Xj−θj)gj(Xj) |X−j]
where

gj(x) =
x

x2 + ∥X−j∥2
,

which is bounded provided ∥X−j∥2 ̸= 0, which occurs almost surely. Also

g′j(x) =
∥X−j∥2 − x2

(x2 + ∥X−j∥2)2
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is similarly bounded, so applying Stein’s lemma (conditionally) we get

E[(Xj − θj)gj(Xj) |X−j] = E[g′j(Xj) |X−j]

= E
(∥X∥2 − 2X2

j

∥X∥4
∣∣∣Xj

)
.

Thus
p∑
j=1

E
(
Xj(Xj − θj)

∥X∥2

)
=

p∑
j=1

E
(∥X∥2 − 2X2

j

∥X∥4

)
= (p− 2)E∥X∥−2.

Returning to (3.3) we thus have

R(θ̂JS, θ) = p− (p− 2)2E∥X∥−2 < p.

Remark 10. One can show (see example sheet) that

R(θ̂JS, θ) ≤ p− (p− 2)2

p− 2 + ∥θ∥2
,

so the improvement over the MLE is most substantial when ∥θ∥2 is small and p is large.

3.5 Shrinkage

Given the surprising nature of Theorem 26, it is natural to be sceptical: is this just a
quirk of Gaussianity? Not really (see below): what is crucial however is that the loss
involve all components of θ. The intuition is that estimating all of θ when p is large, is
a hard problem and in such so-called ‘high-dimensional problems’ an estimator can do
well by sacrificing some bias if it results in an appreciable reduction in variance. To see
this, consider estimating θ := EX given data X ∈ Rp where Cov(X) = I (this slightly

generalises the setting from earlier). Let θ̂c := (1 − c)X: the interpretation is that when
c ∈ [0, 1], 1− c is a factor by which we are ‘shrinking’ the natural estimator X towards the
origin. (The James–Stein estimator uses the data-driven choice c = (p − 2)∥X∥−2.) We
have

E∥θ̂c − θ∥2 = E∥(1− c)X − (1− c)θ − cθ∥2

= (1− c)2p︸ ︷︷ ︸
variance

+ c2∥θ∥2︸ ︷︷ ︸
squared bias

= p+ c2(p+ ∥θ∥2)− 2cp

= (p+ ∥θ∥2)
(
c− p

p+ ∥θ∥2

)2

− p2

p+ ∥θ∥2
+ p

= (p+ ∥θ∥2)
(
c− p

p+ ∥θ∥2

)2

+
p∥θ∥2

p+ ∥θ∥2
.
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Thus using the optimal choice c∗ := p/{p+ ∥θ∥2} gives a risk of

p

1 + p/∥θ∥2
,

which is a large improvement on the risk p realised by θ̂0 = X when ∥θ∥2 is small. This is

of course an unfair comparison as θ̂c∗ requires knowledge of ∥θ∥2. However, we can try to
mimic this oracular choice by estimating ∥θ∥2: this seems an easier task than estimating
all of θ ∈ Rp. Note that E∥X∥2 = p + ∥θ∥2: using ∥X∥2 to estimate ∥θ∥2 gives the final
estimator (

1− p

∥X∥2

)
X;

the only difference with the James–Stein estimator is that p − 2 has been replaced by p
here. This heuristic argument suggests that the favourable properties of the James–Stein
estimator can extend beyond Gaussianity.

Is the James–Stein estimator admissible? It turns out θ̂JS is in turn dominated (in the
Np(θ, I) model) by the positive-part James Stein estimator 18

θ̂JS+ :=

(
1− p− 2

∥X∥2

)
+

X,

where (u)+ = u1[0,∞)(u). This remedies an undesirable feature of the regular James–Stein

estimator whereby if ∥X∥2 were small, θ̂JS could have opposite signs to X.
Where does all this leave maximum likelihood estimation? While the MLE can be

beaten in finite samples, as we have seen, there is a fairly strong sense in which it is
asymptotically unbeatable (some indication of this is given on the Example Sheet, though
a general result is beyond the scope of this course). The main message is that when the
parameter to be estimated has high dimension, some modifications to the basic maximum
likelihood scheme to reduce variance are helpful; in fact a large part of modern statistics
has been and continues to be devoted to developing such strategies.

4 Multivariate analysis

4.1 Classification

One decision problem of great practical importance is the so-called (two-class) classification
problem. It is a form of regression problem where we have an input (or predictors) X ∈ X
and a binary outcome (or class label) Y ∈ {0, 1} . We can characterise the joint distribution
of (X, Y ) in two ways:

18In fact θ̂JS+ is itself inadmissible: this comes as a consequence of a general result that all admissible
estimators in this model must be smooth functions of the observations.
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1. We first generate X according to its marginal distribution and then draw Y according
to the regression function

P(Y = 1 |X = x) = E(Y |X = x) =: η(x).

2. First draw Y according to prior probabilities π0 := P(Y = 0), π1 := P(Y = 1) and
next generate X via

X |Y = 0 ∼ f0(·) or X |Y = 1 ∼ f1(·).

Suppose for now that the joint distribution of (X, Y ) is known to us. Our goal is to predict
Y given data X. To view this as a decision problem, observe that Y here plays the role of
θ previously. A natural loss function to use is

L(δ(X), Y ) = 1{δ(X )̸=Y },

where decision rule δ is known in this context as a classifier. The corresponding π-Bayes
risk is

Rπ(δ) := P(δ(X) ̸= Y ).

To find a π-Bayes decision rule δπ, in this context known as a Bayes classifier, for each
x ∈ X , we can choose δπ(x) to minimise the posterior risk P(δ(x) ̸= Y |X = x).

Proposition 27. A Bayes classifier is given by

δπ(x) =

{
1 if f1(x)π1

f0(x)π0
> 1

0 otherwise.

If

P
(
f1(X)π1
f0(X)π0

= 1

)
= 0,

then any Bayes classifier δ satisfies P(δ(X) = δπ(X)) = 1.

Proof. See Example Sheet.

When X | {Y = j} ∼ Np(µj,Σ), the Bayes classifier takes a particularly simple form.
We have

log

(
f1(X)π1
f0(X)π0

)
= log

(
π1
π0

)
− 1

2
(X − µ1)

⊤Σ−1(X − µ1) +
1

2
(X − µ0)

⊤Σ−1(X − µ0)

= log

(
π1
π0

)
+

1

2

(
µ⊤
0 Σ

−1µ0 − µ⊤
1 Σ

−1µ1

)
+X⊤Σ−1(µ1 − µ0)

We thus see the Bayes classifier only depends onX through the linear functionX⊤Σ−1(µ1−
µ0). It thus defines a linear decision boundary where δπ(x) = 1 for x on one side of the
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boundary, and δπ(x) = 0 otherwise. This method for classification is known as linear
discriminant analysis. Typically in practice, the prior probabilities π0, π1, means µ0, µ1

and covariance Σ would be unknown. Instead, we would have available training data
(X1, Y1), . . . , (Xn, Yn) formed of i.i.d. copies of (X, Y ) with which to estimate these un-
known quantities as follows:

nj :=
n∑
i=1

1{Yi=j},

πj := nj/n,

µ̂j :=
1

nj

∑
i:Yi=j

Xi

Σ̂ :=
1

n− 2

∑
j=0,1

n∑
i:Yi=j

(Xi − µ̂j)(Xi − µ̂j)
⊤.

Note that the 1/(n− 2) factor rather than 1/n in the covariance matrix estimate makes it
unbiased (see Example Sheet).

4.2 Correlation and partial correlation

Regression and classification problems involve learning aspects of the relationship between
an outcome variable and predictors. In other settings we may have multivariate data but
there may be no distinguished outcome variable. Instead we might seek to understand the
relationship between pairs of variables.

Consider a random vector X = (X(1), . . . , X(p)) ∈ Rp with Cov(X) = Σ and minj Σjj >
0. As a first attempt to formalise the idea of variables being ‘related to one another’ we
might look at which pairs of variables are dependent. Recall that if X ∼ Np(µ,Σ), then

X(j) ⊥⊥ X(k) ⇐⇒ Cov(X(j), X(k)) = Σjk = 0.

A convenient measure of the strength of the dependence is then given by the correlation

ρjk := Corr(X(j), X(k)) :=
Cov(X(j), X(k))√
Var(X(j))Var(X(k))

=
Σjk√
ΣjjΣkk

.

Note that

|Cov(X(j), X(k))| = |E(X(j) − µj)(X
(k) − µk)| ≤

√
E[(X(j) − µj)2]E[(X(k) − µj)2]

=
√

Var(X(j))Var(X(k)),

by the Cauchy–Schwarz inequality, so ρjk ∈ [−1, 1]. We get

ρjk ∈ {−1, 1} ⇐⇒ X(j) − µj = c(X(k) − µk) a.s. for some c ∈ R
⇐⇒ X(j) = m+ cX(k) a.s. for some c,m ∈ R.
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To estimate ρjk given i.i.d. copies X1, . . . , Xn of X, we can use the sample correlation
given by

ρ̂jk :=
Σ̂jk√
Σ̂jjΣ̂kk

where Σ̂ :=
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)⊤.

One can show that whenX ∼ Np(µ,Σ) with µ ∈ Rp, and Σ lies in the set of positive definite

matrices, Σ̂ is the MLE of Σ. Our result on plug-in MLEs (Proposition 17) shows that the
above is then the MLE of the correlation ρjk. Moreover, Question 9 of Example Sheet 1

and an application of Slutsky shows that ρ̂jk
p→ ρjk even when the data is non-Gaussian

(and additionally
√
n(ρ̂jk − ρjk) will have a Gaussian limiting distribution).

One issue with basing our idea of when variables are related to one another on de-
pendence or correlation is that many pairs of variables may exhibit dependence without
a very meaningful connection between them. For example, in human populations, height
and literacy levels are positively correlated. While this may at first appear interesting or
alarming, a little thought reveals that this fact is an expected consequence of babies not
knowing how to read! If we were to look only at the literacy levels of those individuals of a
given age a, then we would not expect to see such a relationship. The statistical property
of conditional independence captures this idea:

Definition 14. Given random vectors X, Y and Z, we say X is conditionally independent
of Y given Z, and write X ⊥⊥ Y |Z, if

fXY |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z) whenever fZ(z) > 0.

(Here, for example fXY |Z(x, y|z) = fXY (x, y)/fZ(z), fZ(z) > 0 is the conditional density
of (X, Y ) given Z.) If not we say X and Y are conditionally dependent given Z and write
X ⊥̸⊥ Y |Z. Equivalently,

X ⊥⊥ Y |Z ⇐⇒ fX|Y Z(x|y, z) = m(x, z)

for some function m whenever fY Z(y, z) > 0, and moreover this m will then be the condi-
tional density fX|Z .

The interpretation of X ⊥⊥ Y |Z is that ‘knowing Z makes X unimportant for learning
Y (and vice versa)’.

A key fact about jointly Gaussian random variables is that the conditional distributions
are also Gaussian:

Proposition 28. Suppose

(Y,W ) ∼ Nd+k

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)
︸ ︷︷ ︸

=:Σ

)

where Σ is positive definite. Then

Y |W = w ∼ Nd(µ1 + Σ12Σ
−1
22 (w − µ2), Σ11 − Σ12Σ

−1
22 Σ21).
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Proof. Our idea is to write Y = MW + (Y −MW ) for a matrix M ∈ Rd×k such that
Y −MW ⊥⊥ W . Since jointly Gaussian random vectors are independent if and only if they
are uncorrelated, this is equivalent to asking for

0 = Cov(W,Y −MW ) = Σ21 − Σ22M
⊤,

which occurs when we take M⊤ = Σ−1
22 Σ21. Because Y −MW ⊥⊥ W , the distribution of

Y −MW conditional on W = w is equal to its unconditional distribution. As a linear
transformation of the Gaussian random vector (Y,W ), Y −MW is Gaussian and hence its
distribution is characterised by its mean and variance, which we now compute:

E(Y −MW ) = µ1 − Σ12Σ
−1
22 µ2

Cov(Y −MW ) = Σ11 + Σ12Σ
−1
22 Σ22Σ

−1
22 Σ21 − 2Σ12Σ

−1
22 Σ21

= Σ11 − Σ12Σ
−1
22 Σ21.

On the other hand, MW is simply equal to Mw conditional on W = w. Putting things
together gives the result.

In the setting of the result above, suppose that Y ∈ R and write W = (X,Z) ∈ R×Rp.
Then we may write

Y = µ1 − Σ12Σ
−1
22 µ2︸ ︷︷ ︸

intercept

+ Σ12Σ
−1
22︸ ︷︷ ︸

coefficient vector

(
X
Z

)
+ ε

where ε ∼ N(0,Σ11 −Σ12Σ
−1
22 Σ21), independently of (X,Z). We thus have a normal linear

regression model with response Y on predictors (X,Z). Importantly, if the component of
the coefficient vector corresponding to X were zero, we would have that the conditional
distribution of Y |X,Z would not depend on X, i.e. Y ⊥⊥ X |Z. Suppose we have data
(Xi, Yi, Zi)

n
i=1 formed of i.i.d. copies of (X, Y, Z). Let

X =

X1
...
Xn

 ∈ Rn, Y =

Y1...
Yn

 ∈ Rn, Z =

Z
⊤
1
...
Z⊤
n

 ∈ Rn×p.

The above suggests measuring the strength of the conditional (in)dependency by examining
the coefficient corresponding to X after linearly regressing Y onto (1,X,Z) where 1 ∈ Rn

is a vector of ones (the intercept). This measure however does not reflect the symmetry in
X and Y of the conditional independence relationship.

The fact that the conditional distribution of (X, Y ) |Z is Gaussian offers an alternative
to the regression approach above: we can instead examine the correlation of X and Y in
the conditional distribution (X, Y ) |Z. We have

X ⊥⊥ Y |Z ⇐⇒ 0 =
Cov(X, Y |Z)√

Var(X |Z)Var(Y |Z)
=: ρXY |Z .
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The quantity on the right is the partial correlation of X and Y given Z. From Proposi-
tion 28, we know that Cov(X, Y |Z = z) is constant in z, and similarly for Var(X |Z) and
Var(Y |Z). Thus

ρXY |Z =
E[{X − E(X |Z)}{Y − E(Y |Z)}]√

E[{X − E(X |Z)}2]E[{Y − E(Y |Z)}2]
.

Let us write P ∈ Rn×n for the orthogonal projection onto the column space of (1,Z) ∈
Rn×(p+1). The sample version of the partial correlation is then given by

ρ̂XY |Z :=
{(I − P )X}⊤{(I − P )Y}
∥(I − P )X∥∥(I − P )Y∥

=
X⊤(I − P )Y

∥(I − P )X∥∥(I − P )Y∥
.

Similarly to the sample correlation, one can show this is the maximum likelihood estimate
of ρXY |Z . In fact there is a close connection between the regression approach and partial
correlation:

Proposition 29. In the setting above, let Q ∈ Rn×n be the orthogonal projection matrix
onto the column space of W := (1,X,Z) ∈ Rn×(p+2), assumed to have full column rank
p+2. Then the F -statistic for testing the significance of X in a normal linear model of Y
on (1,X,Z) is

∥(Q− P )Y∥2
1

n−p−2
∥(I −Q)Y∥2

= (n− p− 2)
ρ̂2X,Y |Z

1− ρ̂2X,Y |Z
.

In particular, under the null H0 : X ⊥⊥ Y |Z,

(n− p− 2)
ρ̂2X,Y |Z

1− ρ̂2X,Y |Z
∼ F1,n−p−2.

Proof. Recall (from IB Statistics)19 that Q − P is an orthogonal projection with rank 1,
so Q− P = vv⊤/∥v∥2 for some vector v ∈ Rn with v ̸= 0. Also since

I − P = (I −Q) + (Q− P )

and both Q and P have columns in the column space of W, (I −Q)(Q− P ) = 0, so

∥(I − P )Y∥2 = ∥(I −Q)Y∥2 + ∥(Q− P )Y∥2.

Now v is the only eigenvector of Q−P (up to a multiplicative constant) and (Q−P )X =
(I − P )X, so (Q− P )(I − P )X = (I − P )X. Thus

Q− P =
(I − P )XX⊤(I − P )

∥(I − P )X∥2
,

19See page 12 of https://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/

notes.pdf.
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so

∥(Q− P )Y∥2 = (X⊤(I − P )Y)2

∥(I − P )X∥2
= ∥(I − P )Y∥2ρ̂2XY |Z .

Thus

∥(Q− P )Y∥2

∥(I −Q)Y∥2
=

ρ̂2XY |Z

1− ρ̂2XY |Z
,

which gives the result.

Remark 11. The result also holds when p = 0 i.e. there is no Z: If X ⊥⊥ Y then writing ρ̂
for the sample correlation of X and Y,

(n− 2)
ρ̂2

1− ρ̂2
∼ F1,n−2.

Remark 12. While the correlation can make sense as an indicator of dependence even when
(X, Y ) are not Gaussian in that we always have

X ⊥⊥ Y =⇒ Corr(X, Y ) = 0,

if (X, Y, Z) are not jointly Gaussian, it is possible to haveX ⊥⊥ Y |Z and not have ρ̂XY |Z
p→

0.

4.3 Principal component analysis

Let X1, . . . , Xn be i.i.d. copies of a random vector X ∈ Rp. When the dimension p of
the data is large, it is often of interest to reduce the dimension in some way while trying
to retain as much ‘information’ as possible. The method of principal component analysis
(PCA) aims to maximise the variability of the compressed data. Given a target dimension
k ≤ p, it works as follows:

1. Form the sample covariance matrix

Σ̂ :=
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)⊤.

2. Find k unit norm eigenvectors v̂1, . . . , v̂k corresponding to the k largest eigenvalues
of Σ̂ (for simplicity, we assume the eigenvalues are unique, so the eigenvectors are
unique up to an arbitrary sign).

3. Writing V̂ ∈ Rp×k for the matrix with jth column v̂j, set Ui := V̂ ⊤Xi; U1, . . . , Un
then forms the compressed data.

46



To understand the motivation for this, observe first that Σ̂ estimates Cov(X) =: Σ
(recall that it is for example the MLE in a X ∼ Np(µ,Σ) model, though we do not assume
this here). Thus v̂j estimate the corresponding population eigenvector vj given by the jth
column of V defined through the eigendecomposition

Σ = V ΛV ⊤.

Here V ∈ Rp×p is an orthogonal matrix and Λ ∈ Rp×p is a diagonal matrix with diagonal
entries given by (assumed unique) eigenvalues λ1 > λ2 > · · · > λp ≥ 0.

Then v1 can be interpreted as the unit vector w such that Var(w⊤X) is maximal.
Indeed, writing α := V ⊤w, note that ∥α∥ = 1. Then

Var(w⊤X) = w⊤Σw = α⊤V ⊤V ΛV ⊤V α =

p∑
j=1

α2
jλj ≤ λ1,

with equality if and only if α = (1, 0, . . . , 0)⊤, i.e. W = v1. Similarly, one can show that
vj is the unit vector, orthogonal to {v1, . . . , vj−1}, upon which the projection of X has
maximal variance.

5 Nonparametric inference andMonte Carlo techniques

5.1 The Jackknife

Consider the following setting: we have i.i.d. data X1, . . . , Xn and have constructed an
estimator θ̂n = Tn(X1, . . . , Xn) of a parameter of interest θ ∈ R. We would now like to

understand the statistical properties of θ̂n. The approach we have seen so far in the course
for doing this involves applying various stochastic convergence results. However if θ̂n is
very complicated, this may be difficult.

If instead of just a single dataset X1, . . . , Xn, we had available multiple versions of this
dataset, we could apply Tn to each to these and hence estimate e.g. the mean and variance
of θ̂n or indeed its entire distribution. Resampling techniques aim to mimic this setup
(roughly speaking): they involve forming multiple versions of the data from the original
dataset, and applying the estimator to each such copy of the data.

The jackknife leaves each observation Xi out of the dataset in turn, to give n perturbed
versions of our original data. This approach can be used to estimate the bias of Eθ0 θ̂n,
where θ0 is the true parameter, as follows.

Definition 15. Let θ̂
(−i)
n := Tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). The jackknife bias estimate

is defined as

B̃n := (n− 1)

(
1

n

n∑
i=1

θ̂(−i)n − θ̂n

)
.

The jackknife bias-corrected estimate of θ is then

θ̃n := θ̂n − B̃n.
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Theorem 30. Suppose the bias Bn := Eθ0(θ̂n)− θ0 satisfies

Bn =
a

n
+

b

n2
+O(n−3) (5.1)

for some a, b ∈ R. Then
Eθ0(θ̃n) = θ0 +O(n−2).

Proof. Observe that θ̃n = nθ̂n − n−1
n

∑n
i=1 θ̂

(−i)
n . Thus

Eθ0(θ̃n) = n(θ0 +Bn)− (n− 1)(θ0 +Bn−1)

= θ0 +

(
a+

b

n

)
−
(
a+

b

n− 1

)
+O(n−2)

= θ0 −
b

n(n− 1)
+O(n−2) = θ0 +O(n−2).

Example 11. For a concrete example of where the bias condition (5.1) holds, suppose

E(Xi) =: µ ∈ R and we wish to estimate θ = µ2 using θ̂n = X̄2
n. Then

Eµ(X̄2
n)− µ2 = Eµ(X̄n − µ+ µ)2 − µ2 = Var(X̄) =

Var(Xi)

n
,

so the bias condition is indeed satisfied.
More generally, suppose now µ ∈ Rp, θ = g(µ) and θ̂n = g(X̄n) for some smooth

g : Rp → R. Then from a Taylor expansion, we have

θ̂n − θ ≈ ∇g(µ)⊤(X̄n − µ) +
1

2
(X̄n − µ)⊤∇2g(µ)(X̄n − µ).

The first term has mean 0 and for the second term, we have

E[(X̄n − µ)⊤∇2g(µ)(X̄n − µ)] = E[tr{(X̄n − µ)⊤∇2g(µ)(X̄n − µ)}]
= E[tr{(X̄n − µ)(X̄n − µ)⊤∇2g(µ)}]

=
tr{Cov(Xi)∇2g(µ)}

n
,

so the bias condition can be expected to hold (and one can show it is satisfied in even
greater generality than this).

5.2 The bootstrap

The bootstrap takes the idea of the jackknife of reusing the data to understand the distri-
bution of estimators even further. To introduce it, we make the following definition:
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Definition 16. Given i.i.d. data X1, . . . , Xn, the empirical distribution Pn is the (random)
discrete distribution that places a mass of 1/n at each observation Xi, so for a set A,

Pn(A) :=
1

n

n∑
i=1

1A(Xi).

A sampleX∗
1 , . . . , X

∗
n |X1, . . . , Xn

i.i.d.∼ Pn is known as a bootstrap sample. (Note here theX∗
j

are conditionally i.i.d. given the data X1, . . . , Xn.) Thus X∗
1 , . . . , X

∗
n is a random resample

of the X1, . . . , Xn with replacement.

Importantly Pn is something we observe since it depends entirely on the data, whereas
the underlying distribution P of the data would typically be unknown to us. Given a
parameter θ = θ(P ) (for example, this could be the mean or median of the distribution),

and corresponding estimator θ̂n := Tn(X1, . . . , Xn), suppose we wish to form a confidence

interval for θ based on θ̂n. Consider for simplicity the setting where θ ∈ R. The central
idea of the bootstrap procedure is to approximate the (unknown) distribution function Fn
of √

n{Tn(X1, . . . , Xn)︸ ︷︷ ︸
=:θ̂n

−θ(P )} (5.2)

by the (random but in principle known) distribution function F̂n of

√
n{Tn(X∗

1 , . . . , X
∗
n)︸ ︷︷ ︸

=:θ̂∗n

−θ̂n} |X1, . . . , Xn.

To gain some intuition for why such an approximation may work, one should think of θ̂n
as playing the role of θ(Pn), the parameter in the empirical distribution. The quality of
this approximation is often best when the quantity in (5.2) is a so-called pivot, meaning
that its distribution is the same for all values of θ under consideration.

In practice F̂n will typically be infeasible to compute since there are nn possible values
(X∗

1 , . . . , X
∗
n) could take. We can however approximate F̂n by first drawing independent

bootstrap samples (X
(b)
1 , . . . , X

(b)
n ) for b = 1, . . . , B with B large, and then forming

F̂ (B)
n (t) :=

1

B

B∑
b=1

1{√
n(Tn(X

(b)
1 ,...,X

(b)
n )−θ̂n)≤t

}.
To see how the principle above may be used to construct a confidence interval for θ, fix

α ∈ (0, 1) and let ln := F−1
n (α/2) and un := F−1

n (1 − α/2), where for simplicity we have
implicitly assumed Fn is continuous and strictly increasing. Observe that a (1 − α)-level
confidence interval for θ is given by

Cn := {θ : ln ≤
√
n(θ̂n − θ) ≤ un}.

To describe how we may approximate this, we need one more definition.
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Definition 17. Given a distribution function F : R → [0, 1], the quantile function F−1 :
(0, 1) → R is

F−1(p) := inf{t : F (t) ≥ p}.
(Note that if F is strictly increasing, then the quantile function is simply the inverse of F .)

Let l̂n := F̂−1
n (α/2) and ûn := F̂−1

n (1 − α/2). A bootstrap confidence interval is then
given by

Ĉn := {θ : l̂n ≤
√
n(θ̂n − θ) ≤ ûn}.

The validity of this approach rests on l̂n and ûn approaching ln and un. This can be

expected when Fn
d→ F and F̂n approaches this limiting distribution F (see Example Sheet

for details). To show this latter fact in full generality is beyond the scope of this course:
we shall study the special case where

θ(P ) is the mean of the distribution P and

θ̂n = X̄n is the sample mean.
(5.3)

We make use of the following ‘nonasymptotic central limit theorem’ whose statement is
*non-examinable*.

Theorem 31 (Berry–Esseen theorem). Suppose Z1, . . . , Zn are i.i.d. with mean µ ∈ R and
variance σ2. Then for any δ ∈ (0, 1],

sup
t∈R

∣∣P (√n(Z̄n − µ) ≤ t
)
− Φ(t/σ)

∣∣ ≤ 8E(|Z1 − µ|2+δ)
σ2+δnδ/2

.

Theorem 32. Suppose X1, X2, . . . are i.i.d. with mean θ. In the setting of (5.3) suppose
that for some δ > 0, E|X1 − θ|2+δ <∞ and let σ2 := Var(X1) > 0. Then

sup
t∈R

|F̂n(t)− Φ(t/σ)| a.s.→ 0.

Proof. Write σ̂2
n := 1

n

∑n
i=1(Xi−X̄n)

2 for the sample variance. Recall from Example 5 that

σ̂2
n
a.s.→ σ2 (the claim was stated with convergence in probability, but the argument therein

also yields the stronger almost sure convergence). We apply the Berry–Esseen theorem20

to X∗
1 , . . . , X

∗
n (conditional on X1, . . . , Xn). We have θ̂∗n = 1

n

∑n
i=1X

∗
i =: X̄∗

n and

E(X∗
i |X1, . . . , Xn) = X̄n, Var(X∗

i |X1, . . . , Xn) = σ̂2
n.

Thus

An := sup
t∈R

∣∣P (√n(X̄∗
n − X̄n) ≤ t |X1, . . . , Xn

)︸ ︷︷ ︸
=F̂n(t)

−Φ(t/σ̂n)
∣∣ ≤ 8

1
n

∑n
i=1 |Xi − X̄n|2+δ

σ̂2+δ
n nδ/2

.

20Why wouldn’t a regular CLT work? The issue is that here we do not have i.i.d. data from a single
fixed distribution, but rather the distribution Pn is changing with n. There is a version of the CLT for
triangular arrays that can be used here, though the proof is slightly more involved. The upshot is that it
avoids the assumption E|X1 − θ|2+δ that we have had to make here.
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Now |Xi − θ − (X̄n − θ)| ≤ 2max(|Xi − θ|, |X̄n − θ|) so

1

22+δn

n∑
i=1

|Xi − X̄n|2+δ ≤
1

n

n∑
i=1

|Xi − θ|2+δ + |X̄n − θ|2+δ a.s.→ E|X1 − θ|2+δ

by SLLN and CMT. Thus An
a.s.→ 0. By the triangle inequality,

sup
t∈R

|F̂n(t)− Φ(t/σ)| ≤ An + sup
t∈R

|Φ(t/σ)− Φ(t/σ̂n)|︸ ︷︷ ︸
=:Bn

so it suffices to show Bn
a.s.→ 0. Note first that for a sequence an → a > 0, supt |Φ(ant) −

Φ(at)| → 0. Indeed, we have that for all n sufficiently large, an > a/2, so by the MVT, for
such n,

|Φ(ant)− Φ(at)| ≤ |an − a||t|ϕ(at/2).

but supt |t|ϕ(at/2) <∞, so the above tends to 0. Now by the CMT, σ̂−1
n

a.s.→ σ so from the
above, Bn

a.s.→ 0.

Remark 13. The version of the bootstrap discussed above is sometimes known as the
nonparametric bootstrap to distinguish it from the parametric bootstrap. The latter works
in a setting where we have a parametric model {Pθ : θ ∈ Θ}. Instead of estimating the

distribution Pθ0 by Pn, we can form an estimate θ̂n of θ0, and use Pθ̂n in place of Pn, so we

draw X∗
1 , . . . , X

∗
n |X1, . . . , Xn

i.i.d.∼ Pθ̂n .

5.3 Monte Carlo methods

We have seen how while the bootstrap resampling distribution function F̂n is in principle
known to us, we nevertheless will typically need to approximate it through simulation.
Another large class of methods that require us to compute quantities relating to potentially
complex distributions are Bayesian methods: for example there may be no closed-form
formulas for the posterior mean or quantiles of the posterior distribution. In such situations,
numerical simulation techniques can be very useful, and we now study the general problem
of simulating from a known distribution.

As a starting point, we shall assume we can generate21 U1, U2, . . .
i.i.d.∼ U [0, 1]. If F is a

distribution function on R, we can always then generate i.i.d. draws from F via

F−1(U1), F
−1(U2), . . .

i.i.d.∼ F

where F−1 is the quantile function of F . Indeed, when F is strictly increasing and con-
tinuous, P(F−1(U1) ≤ t) = P(U1 ≤ F (t)) = F (t); for the general case see the example

21In practice we would only be able to generate a pseudo-random uniform sample, but algorithms are
sufficiently advanced that to a large extent we can work as if we in fact have a uniform sample.
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sheet. With this, we can approximate, for example Eg(X) where X ∼ F by appealing to
the SLLN:

1

N

N∑
i=1

g(Xi)
a.s.→ Eg(X),

where we have written Xi := F−1(Ui). Sometimes however it is not possible to compute
F−1 explicitly, in which case we need to resort to other methods.

5.3.1 Importance sampling

Suppose f is a (potentially multivariate) density from which it is hard to simulate. Suppose
however there is a density h whose support includes that of f , from which we can simulate
easily. Observe that

EX∼h

(
g(X)

f(X)

h(X)

)
=

∫
X
g(x)

f(x)

h(x)
h(x) dx = EX∼f (g(X)).

As a consequence, for X1, X2, . . .
i.i.d.∼ h, we have

1

N

N∑
i=1

g(Xi)
f(Xi)

h(Xi)

a.s.→ EX∼f (g(X)).

5.3.2 Accept–reject algorithm

An alternative when f(x) ≤Mh(x) for all x ∈ X is the following:

1. Generate X ∼ h and independently U ∼ U [0, 1].

2. If U ≤ f(X)
Mh(X)

, output Y = X; otherwise return to step 1.

Then Y ∼ f (see example sheet). Note that here the computation required to generate a
single draw is random (and will tend to be lower if M is lower).

5.3.3 Markov chains and invariant measures

One very important class of procedures for generating samples from a density f involves
constructing a Markov chain which has f as its so-called invariant distribution. Recall that
a (discrete-time) Markov chain X0, X1, X2, . . . is a sequence of random variables where for
any m ≥ 1 and any (measurable) B ⊆ X ,

P(Xm ∈ B |Xm−1 = t,Xm−2 = tm−2, . . . , X0 = t0) = P(Xm ∈ B |Xm−1 = t) =: K(t, B)

where K is the Markov transition kernel for the chain. The corresponding transition pdf
k (if it exists) satisfies

K(t, B) =

∫
B

k(t, s) ds
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for all (measurable) B ⊆ X . (We will later encounter a case where K is a mixture of a
discrete and a continuous distribution.) Note that if Xm−1 ∼ f , then the distribution of
Xm is given by ∫

X
K(t, ·)f(t) dt.

Definition 18. A pdf f on X is invariant or stationary for K if∫
X
K(t, B)f(t) dt =

∫
B

f(t) dt

for all (measurable) B ⊆ X .

Results in ergodic theory (see Probability and Measure) imply that, under certain
conditions on the Markov chain, the distribution of XN converges to its unique invariant
distribution. (We will not concern ourselves with the detailed conditions in this course.)
Moreover, we also have

1

N

N∑
i=1

g(Xi)
a.s.→ EX∼f (g(X)).

We now look at some important examples of this key idea.

5.3.4 Gibbs sampler

The Gibbs sampler is a useful method for generating samples from a multivariate distribu-
tion. We illustrate the idea in the bivariate case. Suppose (X, Y ) ∼ f and we can simulate
from each of the conditionals fY |X(·|x) and fX|Y (·|y). As an illustration of when such a
situation could arise, consider the following example.

Example 12. Recall (Example Sheet 2, Question 11) that when X1, . . . , Xn |µ, σ2 i.i.d.∼
N(µ, σ2) with improper prior density π(µ, σ) ∝ σ−2, the posterior

Π(σ, µ |X1, . . . , Xn) ∝ σ−(n+2) exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}
.

Thus writing ω := σ−2 for the precision,

µ |ω,X1, . . . , Xn ∼ N(X̄, 1/(ωn))

ω |µ,X1, . . . , Xn ∼ Gamma

(
n+ 1

2
,
1

2

n∑
i=1

(Xi − µ)2

)
.

The Gibbs sampler takes the following steps. We initialise X0 = x and then for m =
1, 2, . . . iteratively perform:

1. Ym ∼ fY |X(· |X = Xm−1),
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2. Xm ∼ fX|Y (· |Y = Ym).

This generates a Markov chain (Y1, X1), (Y2, X2), . . . where the joint density f is invariant.
To see this, we may argue as follows. The transition density here is

k((y1, x1), (y2, x2)) = fY |X(y2|x1)fX|Y (x2|y2),

so∫ ∫
fY |X(y2|x1)fX|Y (x2|y2)fXY (x1, y1) dy1 dx1 = fX|Y (x2|y2)

∫
fY |X(y2|x1)fX(x1) dx1

= fX|Y (x2|y2)fY (y2)
= fXY (x2, y2).

The method generalises to larger numbers of variables by cycling through each variable
in turn.

5.3.5 Metropolis–Hastings

The Gibbs sampler, while simple, has the issue that the full conditionals may often be
tricky to sample from. The Metropolis–Hastings algorithm is a powerful method that only
requires an auxiliary proposal conditional density q(·|t) from which we can simulate. Given
an initial X0 = x it proceeds as follows for m = 1, 2, . . .:

1. Draw Sm |Xm ∼ q(·|Xm).

2. Let Am |Xm, Sm ∼ Bern(a(Xm, Sm)) where

a(t, s) := min

(
f(s)

f(t)

q(t|s)
q(s|t)

, 1

)
.

Set Xm+1 := AmSm + (1− Am)Xm.

Importantly, the Metropolis–Hastings algorithm only requires evaluation of the ratio f(s)/f(t),
rather than f(t) itself. This is particularly useful when f is a posterior density since then
the normalisation factor does not need to be computed.

Theorem 33. In the setting above, suppose q(s|t) > 0 for all s, t ∈ X , where X is
the support of f . Then f is invariant for the transition kernel K of the Markov chain
X1, X2, . . . generated by the Metropolis–Hastings algorithm.

Proof. We have

K(t, B) = P(Xm+1 ∈ B |Xm = t)

= P(Xm+1 ∈ B,Am = 1 |Xm = t) + P(Xm+1 ∈ B,Am = 0 |Xm = t)

=

∫
B

P(Am = 1 |Sm = s,Xm = t)︸ ︷︷ ︸
a(t,s)

q(s|t) ds+ 1B(t)P(Am = 0 |Xm = t).
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Now

P(Am = 0 |Xm = t) =

∫
X
P(Am = 0 |Sm = s,Xm = t)q(s|t) ds

= 1−
∫
X
a(t, s)q(s|t) ds.

Also (interchanging the order of integration, which is always justified when the integrand
is non-negative),∫

X

∫
B

a(t, s)q(s|t) dsf(t) dt =
∫
B

∫
X
min(f(s)q(t|s), f(t)q(s|t)) dt ds

=

∫
B

f(s)

∫
X
a(s, t)q(t|s) dt ds

=

∫
B

f(s)P(Am = 1 |Xm = s) ds.

Thus∫
X
K(t, B)f(t) dt =

∫
B

f(s)P(Am = 1 |Xm = s) ds+

∫
B

f(t)P(Am = 0 |Xm = t) dt

=

∫
B

f(t) dt

as required.

Example 13 ((Special case of) preconditioned Crank–Nicolson (pCN)). Consider a para-
metric model {f(·, θ) : θ ∈ Rp} where we take a Bayesian approach with prior θ ∼ Np(0, I).
We wish to sample from the posterior

Π(θ |X) ∝ f(X, θ) exp(−∥θ∥2/2).

If we take q(·|t) ∼ Np(t
√
1− 2δ, 2δI) for a tuning parameter δ ∈ (0, 1/2), then we see

a(t, s) has the particularly simple form (see example sheet)

a(t, s) = min

(
f(X, s)

f(X, t)
, 1

)
.

5.4 Introduction to nonparametric statistics

We have spent much of the course studying parametric statistical models {Pθ : θ ∈ Θ},
where when such a model is well-specified, the goal of understanding the distribution of
the data Pθ0 can be translated to estimating θ0 ∈ Θ. However, such a model can be
hard to defend when the sample size is large, and in such settings, it is often of interest to
estimate the distribution of the data without recourse to a potentially restrictive statistical
model. Tasks of this nature fall within the realm of nonparametric statistics. Here we only
provide the briefest introduction to this rich and exciting area by focusing on the problem
of estimating the distribution function F based on i.i.d. data X1, . . . , Xn ∈ R.

55



Definition 19. The empirical distribution function F̂n based on a sample X1, . . . , Xn is
given by

F̂n(t) := Pn((−∞, t]) =
1

n

n∑
i=1

1(−∞,t](Xi).

The SLLN guarantees that for each fixed t ∈ R, F̂n(t)
a.s.→ F (t). However, similarly to

the way our ULLN strengthened the SLLN, we have the following uniform convergence
result:

Theorem 34 (Glivenko–Cantelli).

sup
t∈R

|F̂n(t)− F (t)| a.s.→ 0.

Proof. We only consider the case where F is continuous for simplicity. Fix m ∈ N and pick
−∞ = t0 < t1 < · · · < tm−1 < tm = ∞ such that F (tj)− F (tj−1) = 1/m for j = 1, . . . ,m.
Now for all t ∈ R, there exists j ∈ {1, . . . ,m} such that t ∈ [tj−1, tj], so

F̂n(t)− F (t) ≤ F̂n(tj)− F (tj−1) = F̂n(tj)− F (tj) +
1

m
,

F̂n(t)− F (t) ≥ F̂n(tj−1)− F (tj) = F̂n(tj−1)− F (tj−1)−
1

m
.

Thus

sup
t

|F̂n(t)− F (t)| ≤ max
j=0,...,m

|F̂n(tj)− F (tj)|︸ ︷︷ ︸
a.s.→ 0 by SLLN

+
1

m
.

We therefore have that writing Ωm := {lim supn→∞ supt |F̂n(t) − F (t)| ≤ 1/m}, we have

P(Ωm) = 1. But Ω∞ := ∩∞
m=1Ωm = {limn→∞ supt |F̂n(t)− F (t)| = 0} and

P(Ωc
∞) = P(∪∞

m=1Ω
c
m) ≤

∞∑
m=1

P(Ωc
m) = 0.

While the above result is encouraging, it does not directly allow us to conduct inference
about the unknown F . Observe however that when F is continuous and strictly increasing,

sup
t∈R

|F̂n(t)− F (t)| = sup
t∈R

|F̂n(F−1(t))− F (F−1(t))︸ ︷︷ ︸
=t

|.

Now {Xi ∈ (−∞, F−1(t)]} = {F (Xi) ≤ t} = {F (Xi) ∈ (−∞, t]}. Moreover F (Xi) ∼
U [0, 1] since P(F (Xi) ≤ t) = P(Xi ≤ F−1(t)) = F (F−1(t)) = t. Thus

F̂n(F
−1(t))

d
=

1

n

n∑
i=1

1(−∞,t](Ui)
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where U1, . . . , Un
i.i.d.∼ U [0, 1]. In particular, we see that the distribution of

sup
t∈R

|F̂n(t)− F (t)|

is precisely the same for all continuous, strictly increasing F , and can be determined
through simulation! In fact:

Theorem 35 (Kolmogorov–Smirnov). If F is a continuous distribution function, then

√
n sup

t
|F̂n(t)− F (t)| d→ K,

where K has a so-called Kolmogorov distribution for all F . Moreover the distribution
function of K is continuous.

This result can be used to construct asymptotically valid confidence bands for F (see

example sheet), or test the null hypothesis X1, . . . , Xn
i.i.d.∼ F0 for some known continuous

distribution function F0.
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