STOCHASTIC CALCULUS AND APPLICATIONS

 Roland Bauerschmidt (rb812@cam.ac.uk), Daniel Heydecker (dh489@cam.ac.uk)
 Lent 2020

 Problems marked with (†) may be handed in for marking (CCA pidgeonhole G/H). Problems marked with (★) are additional questions

Problem 1. Let \mathbb{P} and $\tilde{\mathbb{P}}$ be probability measures on the same space such that $\mathbb{P} \ll \tilde{\mathbb{P}}$.

i. Show that if Z_n, Z are random variables such that $Z_n \to Z$ in \mathbb{P} -probability, then $Z_n \to Z$ in $\tilde{\mathbb{P}}$ -probability.

ii. Let X be a continuous semimartingale under both \mathbb{P} and $\tilde{\mathbb{P}}$. Show that X has the same quadratic variation process under both measures.

Problem 2. (\dagger) Let *b* be bounded and measurable. Use Girsanov's theorem to construct a weak solution to the SDE

$$dX_t = b(X_t)dt + dB_t$$

over the finite (non-random) time interval [0, T].

Problem 3. (†) Show that the SDE

$$dX_t = 3\text{sign}(X_t)|X_t|^{1/3}dt + 3|X_t|^{2/3}dB_t, \quad X_0 = 0$$

has strong existence but not pathwise uniqueness.

Problem 4. Find the unique strong solution to the SDE

$$dX_t = \frac{1}{2}X_t dt + \sqrt{1 + X_t^2} dB_t, \quad X_0 = x.$$

(Hint: consider the change of variables $Y_t = \sinh^{-1}(X_t)$.)

Problem 5. (\dagger) Construct a filtered probability space on which a Brownian motion *B* and an adapted process *X* are defined and such that

$$X_t = \int_0^t \frac{X_s}{s} ds + B_t, \quad B_0 = X_0 = 0.$$

Is X adapted to the filtration generated by B? Is B a Brownian motion in the filtration generated by X?

Problem 6. Let *X* be a solution of the SDE

$$dX_t = X_t g(X_t) dB_t$$

where g is bounded and $X_0 = x > 0$ is non-random.

i. By applying Ito's formula to

$$X_t \exp\left(-\int_0^t g(X_s)dB_s + \frac{1}{2}\int_0^t g^2(X_s)ds\right)$$

show that $\mathbb{P}(X_t > 0 \text{ for all } t \ge 0) = 1$.

ii. Show that $\mathbb{E}(X_t) = X_0$ for all $t \ge 0$.

iii. Fix a non-random time horizon T > 0. Show that there exists a measure $\widehat{\mathbb{P}}$ on (Ω, \mathcal{F}_T) which is mutually absolutely continuous with respect to \mathbb{P} and a $\widehat{\mathbb{P}}$ -Brownian motion \widehat{B} such that

$$dY_t = Y_t g(1/Y_t) d\hat{B}_t$$

where $Y_t = 1/X_t$.

Problem 7. Consider the Cauchy problem for the quasi-linear parabolic equation

$$\frac{\partial V}{\partial t} = \frac{1}{2} \Delta V - \frac{1}{2} |\nabla V|^2 + k \quad \text{on} \quad (0, \infty) \times \mathbb{R}^d,$$

with V(0,x) = 0 for $x \in \mathbb{R}^d$ where $k \colon \mathbb{R}^d \to [0,\infty)$ is a continuous function. Suppose also that $V \colon [0,\infty) \times \mathbb{R}^d \to \mathbb{R}$ is continuous on its domain, of class $C^{1,2}$ on $(0,\infty) \times \mathbb{R}^d$, and satisfies the quadratic growth condition for every T > 0:

$$-V(t,x) \le C + a|x|^2$$
, $(t,x) \in [0,T] \times \mathbb{R}^d$, $a < \frac{1}{2T}$.

Show that V(t, x) is given by

$$V(t,x) = -\log \mathbb{E}_x \left[\exp\left(-\int_0^t k(W_s) ds \right) \right]$$

for $t \ge 0$ and $x \in \mathbb{R}^d$.

Problem 8. Let $b: \mathbb{R}^d \to \mathbb{R}$ and $\sigma: \mathbb{R}^d \to \mathbb{R}^{d \times d}$ be bounded and continuous. For each n, j, set $t_j^n = n2^{-j}$ and $\psi_n(t) = t_j^n$ if $t \in [t_j^n, t_{j+1}^n]$. Assume that (X_0^n) is a tight sequence, and that X^n solves

$$X_{t}^{n} = X_{0}^{n} + \int_{0}^{t} b\left(X_{\psi_{n}(u)}^{n}\right) du + \int_{0}^{t} \sigma\left(X_{\psi_{n}(u)}^{n}\right) dB_{u}.$$
 (1)

Show that for each m, T > 0 there exists a constant C > 0 such that

$$\mathbb{E}[|X_t^n - X_s^n|^{2m}] \le C(t-s)^m \quad \text{for all} \quad 0 \le s < t \le T.$$
(2)

Explain what it means for the sequence (X^n) to be tight in the space $C([0,T], \mathbb{R}^d)$. By looking at the proof of Kolmogorov's continuity criterion, explain why (2) implies that (X^n) is tight.

Problem 9. Consider the SDE

$$dX_t = X_t^2 dB_t. \tag{(\star)}$$

i. Show that, if $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ are two (globally-defined) solutions to (\star) with the same starting point x_0 , then they have the same law.

ii. By considering the process $\widetilde{X}_t = 1/|B_t - \xi|$ where *B* is a three-dimensional Brownian motion and ξ is a standard Gaussian in \mathbb{R}^3 independent of *B*, show that the SDE has a weak solution.

iii. Let $\Phi(s) = \int_{-\infty}^{s} e^{-t^2/2} dt / \sqrt{2\pi}$ be the Gaussian distribution function. Verify that both

$$u^{1}(t,x) = x \left(2\Phi(1/(x\sqrt{t})) - 1 \right)$$
 and $u^{2}(x,t) = x$

solve the PDE

$$\frac{\partial u}{\partial t} = \frac{x^4}{2} \cdot \frac{\partial^2 u}{\partial x^2}, \quad u(0,x) = x \qquad \text{on } (0,\infty) \times (0,\infty).$$

iv. Which of these solutions corresponds to $u(t, x) = \mathbb{E}_x(X_t)$?

Problem 10*. Consider the SDE

$$dX_t = -X_t^3 dt + dB_t; X_0 = x_0. (\star)$$

Recall that there exists a unique maximal solution $(X_t)_{t < \zeta}$ to (\star) .

i. Define $T = \inf\{t \ge 0 : X_t = 0\}$. Show that $X_t \le x_0 + B_t$ for all $t \le T \land \zeta$ and deduce that

$$\mathbb{P}_{x_0}(T_0 < \zeta) = 1. \tag{3}$$

ii. Hence show that there exists a sequence of a.s. finite stopping times $T_0 < S_1 < T_1 < ... < S_n < T_{n+1} < S_{n+1} < ... < \zeta$ such that $X_{T_n} = 0$ and $|X_{S_n}| = 1$ for all n.

iii. Conclude that $\zeta = \infty$ almost surely, so that the solution to (\star) is defined for all $t \ge 0$.