STOCHASTIC CALCULUS AND APPLICATIONS

 Roland Bauerschmidt (rb812@cam.ac.uk), Daniel Heydecker (dh489@cam.ac.uk)
 Lent 2020

 Problems marked with (†) may be handed in for marking (CCA pidgeonhole G/H). Problems marked with (★) are additional questions

Problem 1. Suppose that $(Z_t)_{t\geq 0}$ is a continuous local martingale which is strictly positive almost surely. Show that there is a unique continuous local martingale *M* such that $Z = \mathcal{E}(M)$, where

$$\mathcal{E}(M)_t = \exp(M_t - \frac{1}{2} \langle M \rangle_t).$$

Problem 2. Let *M* be a continuous local martingale with $M_0 = 0$. For any a, b > 0, show that

$$\mathbb{P}\left(\sup_{t\geq 0} M_t \geq a, \langle M \rangle_{\infty} \leq b\right) \leq \exp\left(-\frac{a^2}{2b}\right).$$

Problem 3. (†) Let *B* be a standard Brownian motion and, for a, b > 0, let $\tau_{a,b} = \inf\{t \ge 0 : B_t + bt = a\}$. Use Girsanov's theorem to prove that the density of $\tau_{a,b}$ is given by

$$a(2\pi t^3)^{-1/2} \exp(-(a-bt)^2/2t).$$

Problem 4. Suppose that *M* is a continuous local martingale with $\langle M \rangle_t \to \infty$ almost surely as $t \to \infty$. Show that $M_t / \langle M \rangle_t \to 0$ as $t \to \infty$ and conclude that $\mathcal{E}(M)_t \to 0$ almost surely.

Problem 5. (Gronwall's lemma) Let T > 0 and let f be a non-negative, bounded, measurable function on [0, T]. Suppose that there exist $a, b \ge 0$ such that

$$f(t) \le a + b \int_0^t f(s) ds$$
 for all $t \in [0, T]$.

Show that $f(t) \leq ae^{bt}$ for all $t \in [0, T]$.

Problem 6. (†) Suppose that X is a continuous local martingale with quadratic variation

$$\langle X \rangle_t = \int_0^t A_s ds$$

for a non-negative, previsible process $(A_t)_{t\geq 0}$. Show that there exists a Brownian motion *B* (possibly defined on a larger probability space) such that

$$X_t = \int_0^t A_s^{1/2} dB_s.$$

Problem 7. Suppose that σ and *b* are Lipschitz. Explain why uniqueness in law holds for the SDE $dX_t = \sigma(X_t)dB_t + b(X_t)dt$.

Problem 8. (†) Suppose that σ, b and σ_n, b_n for $n \in \mathbb{N}$ are Lipschitz with constant *K* uniformly in *n*. Suppose that $\sigma_n \to \sigma$ and $b_n \to b$ uniformly. Suppose that *X* and *X*^{*n*} are defined by

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad X_0 = x \tag{1}$$

$$dX_t^n = \sigma_n(X_t^n)dB_t + b_n(X_t^n)dt, \quad X_0^n = x.$$
(2)

Show for each t > 0 that

$$\mathbb{E}\left(\sup_{0\leq s\leq t}|X_s^n-X_s|^2\right)\to 0\quad \text{as}\quad n\to\infty.$$

Suppose instead that b_n , σ_n are only assumed to be *continuous*, and b, σ are Lipschitz. Suppose that X^n, X still satisfy (1-2), although this may not uniquely determine X^n . What happens now?

Problem 9. Let *b* be bounded and σ be bounded and continuous.

i. Suppose that X is a weak solution of the SDE $dX_t = b(X_t)dt + \sigma(X_t)dW_t$. Show that the process

$$f(X_t) - \int_0^t \left(b(X_s) f'(X_s) - \frac{1}{2} \sigma^2(X_s) f''(X_s) \right) ds$$

is a local martingale for all $f \in C^2$.

ii. Let X be a continuous, adapted process such that

$$f(X_t) - \int_0^t \left(b(X_s) f'(X_s) - \frac{1}{2} \sigma^2(X_s) f''(X_s) \right) ds$$

is a local martingale for each $f \in C^2$. Suppose that $\sigma(x) > 0$ for all x. Using Problem 6, show that there exists a Brownian motion such that $dX_t = b(X_t)dt + \sigma(X_t)dW_t$.

Problem 10. (The Reflection Principle Revisited) Using the results of this course, give a *short* proof of the reflection principle: if *B* is a standard Brownian motion relative to a filtration $(\mathcal{F}_t)_{t\geq 0}$, and *T* is a stopping time for the same filtration, then

$$W_t = \begin{cases} B_t & t \le T; \\ 2B_T - B_t & t > T. \end{cases}$$

is also a standard Brownian Motion.

Problem 11. (Brownian Bridges) Let W be a standard Brownian motion.

i. Let $B_t = W_t - tW_1$. Show that $(B_t)_{t \in [0,1]}$ is a continuous, mean-zero Gaussian process. What is the covariance $\mathbb{E}[B_s B_t]$?

ii. Is *B* adapted to the filtration generated by *W*?

iii. Let

$$dX_t = -\frac{X_t}{1-t}dt + dW_t, \quad X_0 = 0.$$

Verify that

$$X_t = (1-t) \int_0^t \frac{dW_s}{1-s} \quad \text{for} \quad 0 \le t < 1.$$

Show that $X_t \to 0$ as $t \uparrow 1$.

iv. Show that *X* is a continuous, mean-zero Gaussian process with the same covariance as *B*, which we call a *Brownian bridge*.

 $v(\star)$. For $y \in \mathbb{R}$, define a process B^y by $B_t^y = B_t + ty = W_t + t(y - W_1), 0 \le t \le 1$. Let $F : C[0, 1] \to \mathbb{R}$ be bounded, and continuous with respect to the uniform norm, and define

$$f(y) = \mathbb{E}\left[F(B^{y})\right].$$
(3)

Show that f is bounded and continuous, and that $\mathbb{E}(F(W)|W_1) = f(W_1)$ almost surely.

vi (\star). For $\epsilon > 0$, let us write μ_{ϵ} for the probability measure on (*C*[0, 1], *W*) given by

$$\mu_{\epsilon}(A) = \frac{\mathbb{P}(W \in A \text{ and } |W_1| < \epsilon)}{\mathbb{P}(|W_1| < \epsilon)}$$
(4)

and let μ_0 be the law of *B*. Use the previous part to show that $\mu_{\epsilon} \to \mu_0$ weakly as $\epsilon \downarrow 0$, so that *B* is the weak limit of a Brownian motion *W* conditioned on $\{|W_1| < \epsilon\}$. In this way, we say that "*B* is a Brownian motion conditioned on $B_1 = 0$ ", even though this is a 0-probability event.

Problem 12*. A Bessel process of dimension δ is given by the solution to the SDE:

$$dX_t = \frac{\delta - 1}{2} \cdot \frac{1}{X_t} dt + dB_t, \quad X_0 > 0$$

where *B* is a standard Brownian motion, at least up until the first time *t* that $X_t = 0$.

i. Show that $M_t = X_t^{2-\delta}$ is a continuous local martingale.

ii. For each *a*, let $\tau_a = \inf\{t \ge 0 : X_t = a\}$. For $a < X_0 < b$, compute $\mathbb{P}[\tau_a < \tau_b]$.

iii. Assume that $\delta < 2$. For b > 1, explain how one can condition on the event that $\tau_b < \tau_0$ using M.

iv. Using the previous part and the Girsanov theorem, describe the law of $X|_{[0,\tau_b]}$ conditioned on $\tau_b < \tau_0$.

v. Explain why, informally, the statement "A standard Brownian motion conditioned to be positive is a 3-dimensional Bessel process" is true.