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Problems marked with (†) may be handed in for marking (CCA pidgeonhole G/H). Problems marked with (?) are additional questions

Problem 1. Suppose that (Zt )t≥0 is a continuous local martingale which is strictly positive almost surely.
Show that there is a unique continuous local martingale M such that Z = E(M), where

E(M)t = exp(Mt −
1
2 〈M〉t ).

Problem 2. Let M be a continuous local martingale with M0 = 0. For any a, b > 0, show that

P

(
sup
t≥0

Mt ≥ a, 〈M〉∞ ≤ b
)
≤ exp

(
−

a2

2b

)
.

Problem 3. (†) Let B be a standard Brownian motion and, for a, b > 0, let τa,b = inf{t ≥ 0 : Bt + bt = a}.
Use Girsanov’s theorem to prove that the density of τa,b is given by

a(2πt3)−1/2 exp(−(a − bt)2/2t).

Problem 4. Suppose that M is a continuous local martingale with 〈M〉t → ∞ almost surely as t → ∞.
Show that Mt/〈M〉t → 0 as t →∞ and conclude that E(M)t → 0 almost surely.

Problem 5. (Gronwall’s lemma) Let T > 0 and let f be a non-negative, bounded, measurable function
on [0,T]. Suppose that there exist a, b ≥ 0 such that

f (t) ≤ a + b
∫ t

0
f (s)ds for all t ∈ [0,T].

Show that f (t) ≤ aebt for all t ∈ [0,T].

Problem 6. (†) Suppose that X is a continuous local martingale with quadratic variation

〈X〉t =
∫ t

0
Asds

for a non-negative, previsible process (At )t≥0. Show that there exists a Brownian motion B (possibly
defined on a larger probability space) such that

Xt =

∫ t

0
A1/2
s dBs .

Problem 7. Suppose that σ and b are Lipschitz. Explain why uniqueness in law holds for the SDE
dXt = σ(Xt )dBt + b(Xt )dt.

Problem 8. (†) Suppose that σ, b and σn, bn for n ∈ N are Lipschitz with constant K uniformly in n.
Suppose that σn → σ and bn → b uniformly. Suppose that X and Xn are defined by

dXt = σ(Xt )dBt + b(Xt )dt, X0 = x (1)
dXn

t = σn(Xn
t )dBt + bn(Xn

t )dt, Xn
0 = x. (2)

Show for each t > 0 that
E

(
sup

0≤s≤t
|Xn

s − Xs |
2
)
→ 0 as n→∞.

Suppose instead that bn, σn are only assumed to be continuous, and b, σ are Lipschitz. Suppose that Xn,X
still satisfy (1-2), although this may not uniquely determine Xn. What happens now?
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Problem 9. Let b be bounded and σ be bounded and continuous.
i. Suppose that X is a weak solution of the SDE dXt = b(Xt )dt + σ(Xt )dWt . Show that the process

f (Xt ) −

∫ t

0

(
b(Xs) f ′(Xs) −

1
2
σ2(Xs) f ′′(Xs)

)
ds

is a local martingale for all f ∈ C2.
ii. Let X be a continuous, adapted process such that

f (Xt ) −

∫ t

0

(
b(Xs) f ′(Xs) −

1
2
σ2(Xs) f ′′(Xs)

)
ds

is a local martingale for each f ∈ C2. Suppose that σ(x) > 0 for all x. Using Problem 6, show that there
exists a Brownian motion such that dXt = b(Xt )dt + σ(Xt )dWt .

Problem 10. (The Reflection Principle Revisited) Using the results of this course, give a short proof
of the reflection principle: if B is a standard Brownian motion relative to a filtration (Ft )t≥0, and T is a
stopping time for the same filtration, then

Wt =

{
Bt t ≤ T ;
2BT − Bt t > T .

is also a standard Brownian Motion.

Problem 11. (Brownian Bridges) Let W be a standard Brownian motion.
i. Let Bt = Wt − tW1. Show that (Bt )t∈[0,1] is a continuous, mean-zero Gaussian process. What is the

covariance E[BsBt ]?
ii. Is B adapted to the filtration generated by W?
iii. Let

dXt = −
Xt

1 − t
dt + dWt, X0 = 0.

Verify that

Xt = (1 − t)
∫ t

0

dWs

1 − s
for 0 ≤ t < 1.

Show that Xt → 0 as t ↑ 1.
iv. Show that X is a continuous, mean-zero Gaussian process with the same covariance as B, which we

call a Brownian bridge.

v (?). For y ∈ R, define a process By by By
t = Bt + ty = Wt + t(y−W1), 0 ≤ t ≤ 1. Let F : C[0,1] → R

be bounded, and continuous with respect to the uniform norm, and define

f (y) = E [F(By)] . (3)

Show that f is bounded and continuous, and that E(F(W)|W1) = f (W1) almost surely.
vi (?). For ε > 0, let us write µε for the probability measure on (C[0,1],W) given by

µε (A) =
P(W ∈ A and |W1 | < ε)

P(|W1 | < ε)
(4)

and let µ0 be the law of B. Use the previous part to show that µε → µ0 weakly as ε ↓ 0, so that B is the
weak limit of a Brownian motion W conditioned on {|W1 | < ε}. In this way, we say that “B is a Brownian
motion conditioned on B1 = 0", even though this is a 0-probability event.
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Problem 12*. A Bessel process of dimension δ is given by the solution to the SDE:

dXt =
δ − 1

2
·

1
Xt

dt + dBt, X0 > 0

where B is a standard Brownian motion, at least up until the first time t that Xt = 0.
i. Show that Mt = X2−δ

t is a continuous local martingale.
ii. For each a, let τa = inf{t ≥ 0 : Xt = a}. For a < X0 < b, compute P[τa < τb].
iii. Assume that δ < 2. For b > 1, explain how one can condition on the event that τb < τ0 using M .
iv. Using the previous part and the Girsanov theorem, describe the law of X |[0,τb ] conditioned on

τb < τ0.
v. Explain why, informally, the statement “A standard Brownian motion conditioned to be positive is a

3-dimensional Bessel process” is true.

3


