STOCHASTIC CALCULUS AND APPLICATIONS

 Roland Bauerschmidt (rb812@cam.ac.uk), Daniel Heydecker (dh489@cam.ac.uk)
 Lent 2020

 Problems marked with (†) may be handed in for marking (CCA pidgeonhole G/H). Problems marked with (★) are additional questions

Problem 1. Suppose that *M* is a continuous local martingale with $M_0 = 0$. Show that, if $\mathbb{E}([M]_t) < \infty$ for all $t \ge 0$, then *M* is a true martingale. Show further that *M* is an L^2 -bounded martingale if, and only if, $\mathbb{E}([M]_{\infty}) < \infty$.

Problem 2.

i. Suppose that M, N are independent continuous local martingales. Show that $[M, N]_t = 0$. In particular, if $B^{(1)}$ and $B^{(2)}$ are the coordinates of a standard Brownian motion in \mathbb{R}^2 , this shows that $[B^{(1)}, B^{(2)}]_t = 0$ for all $t \ge 0$.

ii. Let *B* be a standard Brownian motion in \mathbb{R} and let *T* be a stopping time which is a.s. not constant. Show that *T* is measurable with respect to the σ -algebras generated by both B^T and $B - B^T$, and conclude that the converse to the previous part is false.

Problem 3. (†) (Burkholder inequality) Fix $p \ge 2$ and let M be a continuous local martingale with $M_0 = 0$. Use Itô's formula, Doob's inequality, and Hölder's inequality to show that there exists a constant $C_p > 0$ such that

$$\mathbb{E}\left(\sup_{0\leq s\leq t}|M_s|^p\right)\leq C_p\mathbb{E}\big([M]_t^{p/2}\big).$$

Problem 4. Suppose that $f: [0, \infty) \to \mathbb{R}$ is a continuous function. Show that if f has finite variation then it has zero quadratic variation. Conversely, show that if f has finite and positive quadratic variation then it must be of infinite variation.

Problem 5. Let B be a standard Brownian motion. Use Itô's formula to show that the following are martingales with respect to the filtration generated by B.

i.
$$X_t = \exp(\lambda^2 t/2) \sin(\lambda B_t)$$

- *ii.* $X_t = (B_t + t) \exp(-B_t t/2)$
- *iii.* $X_t = \exp(B_t t/2)$

Problem 6. We recall that a real-valued process (X_t) is Gaussian if for any finite family $0 \le t_1 < t_2 < \cdots < t_n < \infty$, the random vector $(X_{t_1}, \ldots, X_{t_n})$ is Gaussian.

Let $h: [0, \infty) \to \mathbb{R}$ be a measurable function which is square-integrable when restricted to [0, t] for each t > 0, and let *B* be a standard Brownian motion. Show that the process $H_t = \int_0^t h(s) dB_s$ is Gaussian, and compute its covariance.

Problem 7. Show that convergence in $(\mathcal{M}_{c}^{2}, \|\cdot\|)$ implies ucp convergence.

Problem 8. Show that the covariation $[\cdot, \cdot]$ is symmetric and bilinear. That is, if $M_1, M_2, M_3 \in \mathcal{M}_{c,loc}$ and $a \in \mathbb{R}$, then

$$[aM_1 + M_2, M_3] = a[M_1, M_3] + [M_2, M_3].$$

Problem 9. Let B be a standard Brownian motion and let

$$\widehat{B}_t = B_t - \int_0^t \frac{B_s}{s} ds.$$

i. Show that \widehat{B} is not a martingale in the filtration generated by *B*.

ii. Show that \widehat{B} is a continuous Gaussian process and identify its mean and covariance. Hence show that \widehat{B} is a martingale in its own filtration.

You may find the following property of Gaussian random variables helpful: if X_n is a sequence of Gaussian random variables taking values in \mathbb{R}^d , and if $X_n \to X$ almost surely, then X is also Gaussian.

Problem 10. (†) Fix $d \ge 3$ and let *B* be a Brownian motion in \mathbb{R}^d starting at $B_0 = \overline{x} = (x, 0, ..., 0) \in \mathbb{R}^d$ for some x > 0. Let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^d . For each a > 0, let $\tau_a = \inf\{t > 0 : \|B_t\| = a\}$.

i. Let $D = \mathbb{R}^d \setminus \{0\}$ and let $h: D \to \mathbb{R}$ be defined by $h(x) = ||x||^{2-d}$. Show that *h* is harmonic on *D* and that $M_t = ||B_t^{\tau_a}||^{2-d}$ is a local martingale for all $a \ge 0$. For which values of *x* is *M* a true $\mathbb{P}_{\overline{x}}$ -martingale?

ii. Use the previous part to show that for any a < b such that 0 < a < x < b,

$$\mathbb{P}_{\overline{x}}[\tau_a < \tau_b] = \frac{\phi(b) - \phi(x)}{\phi(b) - \phi(a)}$$

where $\phi(u) = u^{2-d}$. Conclude that if x > a > 0, then

$$\mathbb{P}_x[\tau_a < \infty] = (a/x)^{d-2}.$$

Problem 11.

i. Let $f : \mathbb{C} \to \mathbb{C}$ be analytic and let $Z_t = X_t + iY_t$ where (X, Y) is a Brownian motion in \mathbb{R}^2 . Use Itô's formula to show that M = f(Z) is a local martingale in \mathbb{R}^2 . Show further that M is a time-change of Brownian motion in \mathbb{R}^2 .

ii. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and fix $z \in \mathbb{D}$. What is the hitting distribution for Z on ∂D in the case that $Z_0 = 0$? By applying a Möbius transformation $\mathbb{D} \to \mathbb{D}$ and using the previous part, determine the hitting distribution for Z on $\partial \mathbb{D}$.

Problem 12. (Liouville's Theorem in dimension 2) (†) Suppose that $u : \mathbb{R}^2 \to \mathbb{R}$ is bounded and harmonic, and fix $x, y \in \mathbb{R}^2$. Let *B* be a Brownian motion; for $\epsilon > 0$, let

$$T_{\epsilon} = \inf\{t \ge 0 : |B_t - y| \le \epsilon\}.$$

By considering $\mathbb{E}_x(u(B_{T_{\epsilon}}))$, show that u(x) = u(y), and conclude that u is constant.

Problem 13. Construct a continuous local martingale M, with $M_0 = 0$, but such that $\mathbb{E}[|M_t|^{\alpha}] = \infty$ for all t > 0 and all $\alpha > 0$.

Problem 14*. Let *B* be a standard Brownian motion. Show that, for all b > 0, $B_t - bt \rightarrow -\infty$ almost surely as $t \rightarrow \infty$. What is the distribution of $X_b = \sup_{t>0} [B_t - bt]$?

Problem 15*. (Winding Numbers of Planar Brownian Motion)

i. Let *X*, *Y* be independent Brownian motions in one dimension, starting at 0, and for x > 0, let τ_x be the hitting time $\tau_x = \inf\{t \ge 0 : X_t = x\}$. Find the distribution of Y_{τ_x} .

ii. Let Z be a 2–dimensional Brownian motion, started at $(\epsilon, 0)$, and let τ be the hitting time

$$\tau = \inf\{t \ge 0 : |Z_t| = 1\}.$$

Let W_{ϵ} be the number of windings of Z around 0 before time τ ; that is, every time Z completes a clockwise circuit of the origin, increase W_{ϵ} by 1, and similarly decrease W_{ϵ} by 1 for every counterclockwise circuit. Show that $\frac{2\pi W_{\epsilon}}{\log \epsilon}$ converges in distribution as $\epsilon \to 0$, and identify the limit.