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Problems marked with (†) may be handed in for marking (CCA pidgeonhole G/H). Problems marked with (?) are additional questions

Problem 1. Let f : [0,∞) → R be absolutely continuous, in the sense that

f (t) = f (0) +
∫ t

0
f ′(s)ds for all t ≥ 0

for an integrable function f ′. Let v f (0, t) be the total variation of f on (0, t]. Show that

v f (0, t) =
∫ t

0
| f ′(s)| ds.

Problem 2. Let f ,g : [0,∞) → R be bounded and measurable, and let a : [0,∞) → R be continuous and
of finite variation. Show that

f · (g · a) = ( f g) · a

where · denotes the Lebesgue-Stieltjes integral.

Problem 3.
i. Suppose that f : [0,T] → R is càdlàg and of bounded variation, and let v f (0, t) be its total variation

on (0, t]. Show that, if 0 ≤ s ≤ t ≤ T , then

v f (0, t) − v f (0, s) = sup

{
n∑
i=1
| f (ui) − f (ui−1)| : n ∈ N, s = u0 ≤ u1 ≤ ... ≤ un = t

}
. (1)

ii. Using (1), show that v is càdlàg on [0,T].

Problem 4. Let H be a previsible process. Let Ft− = σ(Fs : s < t). Show that Ht is Ft−-measurable, for
any t > 0.

Problem 5. Let (Ft )t≥0 be a filtration, let T be a stopping time, and let

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft ∀t ≥ 0} .

i. Show that FT is a σ-algebra.
ii. Show that T is FT -measurable.
iii. Suppose that X is a càdlàg, adapted process. Show that XT is FT -measurable.

Problem 6. Let (Tn)n≥1 denote a sequence of stopping time for a filtration (Ft )t≥0.
i. Show that T? = supn Tn is a stopping time for (Ft )t≥0.
ii. Show a random variable T is a stopping time for the filtration Ft+ =

⋂
s>t Fs if, and only if,

{T < t} ∈ Ft+

for all t ≥ 0.
iii. Show that T? = infn Tn is a stopping time for (Ft+)t≥0.

Problem 7. (†) Let B be a standard Brownian motion.
i. Let T = inf{t ≥ 0 : Bt = 1}. Show that H defined by Ht = 1{T ≥ t} is previsible.
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ii. Let

sgn(x) =

{
−1 if x ≤ 0
1 if x > 0.

Show that Ht = sgn(Bt ), t ≥ 0 is a previsible process, but such that

P(H is left continuous) = P(H is right continuous) = 0. (2)

Problem 8. Let N be a Poisson process of rate 1, and let Xt = Nt − t for t ≥ 0. Show that X is of finite
variation. Show that both X and X2

t − t are martingales.

Problem 9. (Stochastic Calculus of a Total Variation Processes) Let T and ξ denote two independent
random variables defined on the same probability space (Ω,F ,P) with

P(T ≤ t) = t for t ∈ [0,1], P(ξ = 1) = P(ξ = −1) = 1/2.

Define Xt = ξ1t≥T and Ft = σ(Xs : s ≤ t). Show that X is a martingale with respect to (Ft )t∈[0,1], and
that it is of finite variation. For bounded processes H, define pathwise

Yt (ω) :=
∫
(0,t]

Hs(ω)dXs(ω) for all ω ∈ Ω,

where the right-hand side is a Lebesgue-Stieltjes integral. Verify that, if H is a simple process

Ht = au1t∈(u,v], au ∈ L∞(Fu), 0 ≤ u < v ≤ 1,

then (Yt ) is a martingale; use a monotone class argument to extend this to bounded, previsible H. What
happens if we take H = X?

Problem 10. Suppose that X ∈ L1(Ω,F ,P). Show that the family

X = {E[X | G] : G ⊆ F is a σ-algebra} is UI.

Problem 11. (†) Let X be a continuous local martingale. Show that if

E
(

sup
0≤s≤t

|Xs |

)
< ∞ ∀t ≥ 0

then X is a martingale.

Problem 12. (A silly martingale) Construct a filtered probability space (Ω,F , (Ft )t≥0,P), a L∞-bounded
martingale (Mt )

1
t=0 and a stopping time T taking values in [0,1], such that

E(MT ) , E(M0).

Problem 13. (†) Let B be a standard Brownian motion and fix t ≥ 0. For n ≥ 1, let ∆n = {0 : t0(n) <
t1(n) < · · · < tmn (n) = t} be a partition of [0, t] such that

hn = max
1≤i≤mn

(
ti(n) − ti−1(n)

)
→ 0 as n→∞.

Show that

[B]nt =
mn∑
i=1
(Bti − Bti−1)

2 → t in L2. (3)

Show that if the subdivision is dyadic, then the convergence is also almost sure.

Problem 14*. This question continues with the ideas of Problem 13; we will show that the convergence
in (3) is almost sure as the subdivisions are nested, for a single fixed t.

Suppose that, for each n ≥ 3, ∆n is obtained from ∆n−1 by adding a new point, let us say ti(n).
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i. Show that there exists a Brownian motion B′ and a random variable ν, with P(ν = ±1) = 1
2 , such

that
Bs = B′min (s,ti (n)) + ν(B

′
s − B′min (s,ti (n)))

and such that ν is independent of B′.
ii. Show that, for k ≥ n, [B]kt = [B′]kt , and compute [B]nt − [B]n−1

t in terms of [B′]nt − [B′]n−1
t and ν.

iii. Write Gn for the σ-algebra Gn = σ([B]mt : m ≥ n). Deduce from the steps above that

E[[B]n−1
t |Gn] = [B]

n
t almost surely.

Conclude that
[B]nt → t almost surely.

Problem 15*. (Law of the Iterated Logarithm) Let (Bt )t≥0 be a standard Brownian motion starting at 0,
and for t ≥ 0, let

St = sup
s≤t

Bs . (4)

i. Fix ε > 0, and consider tn = (1 + ε)n. Show that, almost surely,

Stn ≤ (1 + ε)
√

2tn log log tn for all n large enough. (5)

Hence, show that
lim sup
t→∞

St√
2t log log t

≤ 1 almost surely. (6)

ii. Let θ > 1, tn = θn, and fix 0 < α <
√

1 − θ−1. Show that, almost surely,

Btn − Btn−1 ≥ α
√

2tn log log tn infinitely often. (7)

Conclude that
lim sup
t→∞

St√
2t log log t

≥ 1 almost surely. (8)

iii. Finally, deduce that

lim sup
t→0

Bt√
2t log log 1

t

= 1 almost surely. (9)
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