Problem 1．Let X be a continuous semimartingale under \mathbb{P} ，and let $\tilde{\mathbb{P}}$ be another probability measure on the same space such that $\tilde{\mathbb{P}} \ll \mathbb{P}$ ．Suppose that X is also a semimartingale under $\tilde{\mathbb{P}}$ ．Show that X has the same quadratic variation process under \mathbb{P} and under $\tilde{\mathbb{P}}$ ．

Problem 2．Let b be bounded and measurable．Use Girsanov＇s theorem to construct a weak solution to the SDE

$$
d X_{t}=b\left(X_{t}\right) d t+d B_{t}
$$

over the finite（non－random）time interval $[0, T]$ ．
Problem 3．(\dagger) Show that the SDE

$$
d X_{t}=3 X_{t}^{1 / 3} d t+3 X_{t}^{2 / 3} d B_{t}, \quad X_{0}=0
$$

has strong existence but not pathwise uniqueness．
Problem 4．Find the unique strong solution to the SDE

$$
d X_{t}=\frac{1}{2} X_{t} d t+\sqrt{1+X_{t}^{2}} d B_{t}, \quad X_{0}=x
$$

（Hint：consider the change of variables $Y_{t}=\sinh ^{-1}\left(X_{t}\right)$ ．）
Problem 5．（ \dagger ）Construct a filtered probability space on which a Brownian motion B and an adapted process X are defined and such that

$$
X_{t}=\int_{0}^{t} \frac{X_{s}}{s} d s+B_{t}, \quad B_{0}=X_{0}=0
$$

Is X adapted to the filtration generated by B ？Is B a Brownian motion in the filtration generated by X ？
Problem 6．Let X be a solution of the SDE

$$
d X_{t}=X_{t} g\left(X_{t}\right) d B_{t}
$$

where g is bounded and $X_{0}=x>0$ is non－random．
i ．By applying Ito＇s formula to

$$
X_{t} \exp \left(-\int_{0}^{t} g\left(X_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} g^{2}\left(X_{s}\right) d s\right)
$$

show that $\mathbb{P}\left(X_{t}>0\right.$ for all $\left.t \geq 0\right)=1$ ．
ii．Show that $\mathbb{E}\left(X_{t}\right)=X_{0}$ for all $t \geq 0$ ．
iii．Fix a non－random time horizon $T>0$ ．Show that there exists a measure $\widehat{\mathbb{P}}$ on $\left(\Omega, \mathcal{F}_{T}\right)$ which is mutually absolutely continuous with respect to \mathbb{P} and a $\widehat{\mathbb{P}}$－Brownian motion \widehat{B} such that

$$
d Y_{t}=Y_{t} g\left(1 / Y_{t}\right) d \widehat{B}_{t}
$$

where $Y_{t}=1 / X_{t}$ ．

Problem 7. Consider the Cauchy problem for the quasi-linear parabolic equation

$$
\frac{\partial V}{\partial t}=\frac{1}{2} \Delta V-\frac{1}{2}|\nabla V|^{2}+k \quad \text { on } \quad(0, \infty) \times \mathbb{R}^{d}
$$

with $V(0, x)=0$ for $x \in \mathbb{R}^{d}$ where $k: \mathbb{R}^{d} \rightarrow[0, \infty)$ is a continuous function. Suppose also that $V:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is continuous on its domain, of class $C^{1,2}$ on $(0, \infty) \times \mathbb{R}^{d}$, and satisfies the quadratic growth condition for every $T>0$:

$$
-V(t, x) \leq C+a|x|^{2}, \quad(t, x) \in[0, T] \times \mathbb{R}^{d}, \quad a<\frac{1}{2 T}
$$

Show that $V(t, x)$ is given by

$$
V(t, x)=-\log \mathbb{E}_{x}\left[\exp \left(-\int_{0}^{t} k\left(W_{s}\right) d s\right)\right]
$$

for $t \geq 0$ and $x \in \mathbb{R}^{d}$.
Problem 8. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ be bounded and continuous. For each n, j, set $t_{j}^{n}=n 2^{-j}$ and $\psi_{n}(t)=t_{j}^{n}$ if $t \in\left[t_{j}^{n}, t_{j+1}^{n}\right)$. Assume that $\left(X_{0}^{n}\right)$ is a tight sequence, and that X^{n} solves

$$
\begin{equation*}
X_{t}^{n}=X_{0}^{n}+\int_{0}^{t} b\left(X_{\psi_{n}(u)}^{n}\right) d u+\int_{0}^{t} \sigma\left(X_{\psi_{n}(u)}^{n}\right) d B_{u} \tag{1}
\end{equation*}
$$

Show that for each $m, T>0$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\mathbb{E}\left[\left|X_{t}^{n}-X_{s}^{n}\right|^{2 m}\right] \leq C(t-s)^{m} \quad \text { for all } \quad 0 \leq s<t \leq T \tag{2}
\end{equation*}
$$

Explain what it means for the sequence $\left(X^{n}\right)$ to be tight in the space $C\left([0, T], \mathbb{R}^{d}\right)$. By looking at the proof of Kolmogorov's continuity criterion, explain why (2) implies that $\left(X^{n}\right)$ is tight.

Problem 9. Consider the SDE

$$
d X_{t}=X_{t}^{2} d B_{t}
$$

i. By considering the process $\widetilde{X}_{t}=1 /\left|B_{t}-\xi\right|$ where B is a three-dimensional Brownian motion and ξ is a standard Gaussian in \mathbb{R}^{3} independent of B, show that the SDE has a weak solution.
ii. Let $\Phi(s)=\int_{-\infty}^{s} e^{-t^{2} / 2} d t / \sqrt{2 \pi}$ be the Gaussian distribution function. Verify that both

$$
u^{1}(t, x)=x(2 \Phi(1 /(x \sqrt{t}))-1) \quad \text { and } \quad u^{2}(x, t)=x
$$

solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{x^{4}}{2} \cdot \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, x)=x \quad \text { on }(0, \infty) \times(0, \infty)
$$

iii. Which of these solutions corresponds to $u(t, x)=\mathbb{E}_{x}\left(X_{t}\right)$?

You may find it helpful to explain why SDEs with locally Lipschitz coefficients have uniqueness in law.
Problem 10*. The goal of this question is to show the following existence result for SDEs with continuous coefficients. Suppose $b, \sigma: \mathbb{R} \rightarrow \mathbb{R}$ are bounded and continuous, and $x \in \mathbb{R}$. Then, for any $T>0$, there exists a weak solution $\left(X_{t}\right)_{t=0}^{T}$ to the SDE

$$
\left\{\begin{array}{l}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t} \tag{3}\\
X_{0}=x
\end{array}\right.
$$

i. Define $\left(X_{t}^{n}\right)_{t=0}^{T}$ by (1), as in Question 8 , with $X_{0}^{n}=x$, and using potentially different Brownian motions B^{n}. Let μ_{n} denote the law of $\left(X_{n}\right)_{t=0}^{T}$. Recalling Prohorov's Theorem, explain why there is a subsequence $\mu_{n_{k}}$ which converge weakly to a probability measure μ.
ii. By looking up Skorohod's Representation Theorem, explain why $\left(X_{t}^{n}\right)_{t=0}^{T}$ can be realised on a common filtered probability space, such that $X^{n} \rightarrow X$ uniformly, almost surely, where X has law μ.
iii. We claim that X is a weak solution to (3). Let $0 \leq s \leq t \leq T$, and suppose $G: C[0, T] \rightarrow \mathbb{R}$ is bounded and continuous, such that $G(X)$ only depends on $\left.X\right|_{[0, s]}$, and that $f \in C_{b}^{2}(\mathbb{R})$. Explain why it is sufficient to prove that

$$
\begin{equation*}
\mathbb{E}\left[\left(f\left(X_{t}\right)-f\left(X_{s}\right)-\int_{s}^{t} L f\left(X_{u}\right) d u\right) G(X)\right]=0 \tag{4}
\end{equation*}
$$

where

$$
L f(x)=b(x) f^{\prime}(x)+\frac{1}{2} \sigma(x)^{2} f^{\prime \prime}(x)
$$

iv. Define, for $f \in C_{b}^{2}(\mathbb{R})$,

$$
L_{u}^{n_{k}} f(x)=b\left(X_{u}^{n_{k}}\right) f^{\prime}(x)+\frac{1}{2} \sigma\left(X_{u}^{n_{k}}\right)^{2} f^{\prime \prime}(x)
$$

Show that $L_{u}^{n_{k}} f\left(X_{u}^{n_{k}}\right) \rightarrow L f\left(X_{u}\right)$ as $k \rightarrow \infty$, and deduce that

$$
\int_{s}^{t} L_{u}^{n_{k}} f\left(X_{u}^{n_{k}}\right) d u \rightarrow \int_{s}^{t} L f\left(X_{u}\right) d u
$$

v. Conclude.

