Problem 1．Suppose that $\left(Z_{t}\right)_{t \geq 0}$ is a continuous local martingale which is strictly positive almost surely． Show that there is a unique continuous local martingale M such that $Z=\mathcal{E}(M)$ ，where

$$
\mathcal{E}(M)_{t}=\exp \left(M_{t}-\frac{1}{2}\langle M\rangle_{t}\right)
$$

Problem 2．Let M be a continuous local martingale with $M_{0}=0$ ．For any $a, b>0$ ，show that

$$
\mathbb{P}\left(\sup _{t \geq 0} M_{t} \geq a,\langle M\rangle_{\infty} \leq b\right) \leq \exp \left(-\frac{a^{2}}{2 b}\right)
$$

Problem 3．(\dagger) Let B be a standard Brownian motion and，for $a, b>0$ ，let $\tau_{a, b}=\inf \left\{t \geq 0: B_{t}+b t=a\right\}$ ． Use Girsanov＇s theorem to prove that the density of $\tau_{a, b}$ is given by

$$
a\left(2 \pi t^{3}\right)^{-1 / 2} \exp \left(-(a-b t)^{2} / 2 t\right)
$$

Problem 4．Suppose that M is a continuous local martingale with $\langle M\rangle_{t} \rightarrow \infty$ almost surely as $t \rightarrow \infty$ ． Show that $M_{t} /\langle M\rangle_{t} \rightarrow 0$ as $t \rightarrow \infty$ and conclude that $\mathcal{E}(M)_{t} \rightarrow 0$ almost surely．

Problem 5．（Gronwall＇s lemma）Let $T>0$ and let f be a non－negative，bounded，measurable function on $[0, T]$ ．Suppose that there exist $a, b \geq 0$ such that

$$
f(t) \leq a+b \int_{0}^{t} f(s) d s \quad \text { for all } \quad t \in[0, T]
$$

Show that $f(t) \leq a e^{b t}$ for all $t \in[0, T]$ ．
Problem 6．(\dagger) Suppose that X is a continuous local martingale with quadratic variation

$$
\langle X\rangle_{t}=\int_{0}^{t} A_{s} d s
$$

for a non－negative，previsible process $\left(A_{t}\right)_{t \geq 0}$ ．Show that there exists a Brownian motion B（possibly defined on a larger probability space）such that

$$
X_{t}=\int_{0}^{t} A_{s}^{1 / 2} d B_{s}
$$

Problem 7．Suppose that σ and b are Lipschitz．Explain why uniqueness in law holds for the SDE $d X_{t}=\sigma\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t$.

Problem 8．Suppose that $\mathbb{Q} \ll \mathbb{P}$ ．Show that if $X_{n} \rightarrow X$ in probability with respect to \mathbb{P} ，then $X_{n} \rightarrow X$ in probability with respect to \mathbb{Q} ．

Problem 9．Suppose that σ, b and σ_{n}, b_{n} for $n \in \mathbb{N}$ are Lipschitz with constant K uniformly in n ．Suppose that $\sigma_{n} \rightarrow \sigma$ and $b_{n} \rightarrow b$ uniformly．Suppose that X and X^{n} are defined by

$$
\begin{align*}
d X_{t} & =\sigma\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t, \quad X_{0}=x \tag{1}\\
d X_{t}^{n} & =\sigma_{n}\left(X_{t}^{n}\right) d B_{t}+b_{n}\left(X_{t}^{n}\right) d t, \quad X_{0}^{n}=x \tag{2}
\end{align*}
$$

Show for each $t>0$ that

$$
\mathbb{E}\left(\sup _{0 \leq s \leq t}\left|X_{s}^{n}-X_{s}\right|^{2}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Suppose instead that b_{n}, σ_{n} are only assumed to be continuous，and b, σ are Lipschitz．Suppose that X^{n}, X still satisfy（？？－？？），although this may not uniquely determine X^{n} ．What happens now？

Problem 10. Let b be bounded and σ be bounded and continuous.
i. Suppose that X is a weak solution of the $\operatorname{SDE} d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$. Show that the process

$$
f\left(X_{t}\right)-\int_{0}^{t}\left(b\left(X_{s}\right) f^{\prime}\left(X_{s}\right)-\frac{1}{2} \sigma^{2}\left(X_{s}\right) f^{\prime \prime}\left(X_{s}\right)\right) d s
$$

is a local martingale for all $f \in C^{2}$.
ii. Let X be a continuous, adapted process such that

$$
f\left(X_{t}\right)-\int_{0}^{t}\left(b\left(X_{s}\right) f^{\prime}\left(X_{s}\right)-\frac{1}{2} \sigma^{2}\left(X_{s}\right) f^{\prime \prime}\left(X_{s}\right)\right) d s
$$

is a local martingale for each $f \in C^{2}$. Suppose that $\sigma(x)>0$ for all x. Using Problem 6 , show that there exists a Brownian motion such that $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$.

Problem 11. Let W be a standard Brownian motion.
i. Let $B_{t}=W_{t}-t W_{1}$. Show that $\left(B_{t}\right)_{t \in[0,1]}$ is a continuous, mean-zero Gaussian process. What is the covariance $\mathbb{E}\left[B_{S} B_{t}\right]$?
ii. Is B adapted to the filtration generated by W ?
iii. Let

$$
d X_{t}=-\frac{X_{t}}{1-t} d t+d W_{t}, \quad X_{0}=0
$$

Verify that

$$
X_{t}=(1-t) \int_{0}^{t} \frac{d W_{s}}{1-s} \quad \text { for } \quad 0 \leq t<1
$$

Show that $X_{t} \rightarrow 0$ as $t \uparrow 1$.
$i v$. Show that X is a continuous, mean-zero Gaussian process with the same covariance as B, which we call a Brownian bridge.

Problem 12. (The Reflection Principle Revisited) Using the results of this course, give a short proof of the reflection principle: if T is a stopping time and B is a standard Brownian motion, then

$$
W_{t}= \begin{cases}B_{t} & t \leq T \\ 2 B_{T}-B_{t} & t>T\end{cases}
$$

is also a standard Brownian Motion.
Problem 13*. A Bessel process of dimension δ is given by the solution to the SDE:

$$
d X_{t}=\frac{\delta-1}{2} \cdot \frac{1}{X_{t}} d t+d B_{t}, \quad X_{0}>0
$$

where B is a standard Brownian motion, at least up until the first time t that $X_{t}=0$.
i. Show that $M_{t}=X_{t}^{2-\delta}$ is a continuous local martingale.
ii. For each a, let $\tau_{a}=\inf \left\{t \geq 0: X_{t}=a\right\}$. For $a<X_{0}<b$, compute $\mathbb{P}\left[\tau_{a}<\tau_{b}\right]$.
iii. Assume that $\delta<2$. For $b>1$, explain how one can condition on the event that $\tau_{b}<\tau_{0}$ using M.
$i v$. Using the previous part and the Girsanov theorem, describe the law of $\left.X\right|_{\left[0, \tau_{b}\right]}$ conditioned on $\tau_{b}<\tau_{0}$.
v. Explain why, informally, the statement "A standard Brownian motion conditioned to be positive is a 3-dimensional Bessel process" is true.

Problem 14*. Show that the $\operatorname{SDE} d X_{t}=\operatorname{sgn}\left(X_{t}\right) d B_{t}$ does not have a strong solution using the following steps.
i. For all $t \geq 0$, show that $B_{t}=\int_{0}^{t} \operatorname{sgn}\left(X_{s}\right) d X_{s}$, and conclude that B_{t} is $\sigma\left(X_{s}: s \leq t\right)$.
ii. By relating the Riemann sum approximations to $\int_{0}^{t} \operatorname{sgn}\left(X_{s}\right) d X_{s}$ to $\left|X_{t}\right|$, show that B_{t} is in fact $\sigma\left(\left|X_{s}\right|: s \leq t\right)$-measurable for each t.
iii. Explain why the conclusion of the previous step leads to a contradiction if we assume that X is a strong solution to the SDE.

