Problem 1．Suppose that M is a continuous local martingale with $M_{0}=0$ ．Show that，if $\mathbb{E}\left([M]_{t}\right)<\infty$ for all $t \geq 0$ ，then M is a true martingale．Show further that M is an L^{2}－bounded martingale if，and only if， $\mathbb{E}\left([M]_{\infty}\right)<\infty$ ．

Problem 2.

i．Suppose that M, N are independent continuous local martingales．Show that $[M, N]_{t}=0$ ．In particular，if $B^{(1)}$ and $B^{(2)}$ are the coordinates of a standard Brownian motion in \mathbb{R}^{2} ，this shows that $\left[B^{(1)}, B^{(2)}\right]_{t}=0$ for all $t \geq 0$ ．
ii．Let B be a standard Brownian motion in \mathbb{R} and let T be a stopping time which is a．s．not constant． Show that T is measurable with respect to the σ－algebras generated by both B^{T} and $B-B^{T}$ ，and conclude that the converse to the previous part is false．

Problem 3．（ \dagger ）（Burkholder inequality）Fix $p \geq 2$ and let M be a continuous local martingale with $M_{0}=0$ ． Use Itô＇s formula，Doob＇s inequality，and Hölder＇s inequality to show that there exists a constant $C_{p}>0$ such that

$$
\mathbb{E}\left(\sup _{0 \leq s \leq t}\left|M_{S}\right|^{p}\right) \leq C_{p} \mathbb{E}\left([M]_{t}^{p / 2}\right)
$$

Problem 4．Suppose that $f:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function．Show that if f has finite variation then it has zero quadratic variation．Conversely，show that if f has finite and positive quadratic variation then it must be of infinite variation．

Problem 5．Let B be a standard Brownian motion．Use Itô＇s formula to show that the following are martingales with respect to the filtration generated by B ．

$$
\begin{aligned}
\text { i. } & X_{t}=\exp \left(\lambda^{2} t / 2\right) \sin \left(\lambda B_{t}\right) \\
\text { ii. } & X_{t}=\left(B_{t}+t\right) \exp \left(-B_{t}-t / 2\right) \\
\text { iii. } & X_{t}=\exp \left(B_{t}-t / 2\right)
\end{aligned}
$$

Problem 6．We recall that a real－valued process $\left(X_{t}\right)$ is Gaussian if for any finite family $0 \leq t_{1}<t_{2}<$ $\cdots<t_{n}<\infty$ ，the random vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is Gaussian．
Let $h:[0, \infty) \rightarrow \mathbb{R}$ be a measurable function which is square－integrable when restricted to $[0, t]$ for each $t>0$ ，and let B be a standard Brownian motion．Show that the process $H_{t}=\int_{0}^{t} h(s) d B_{s}$ is Gaussian，and compute its covariance．

Problem 7．Show that convergence in $\left(\mathcal{M}_{c}^{2},\|\cdot\|\right)$ implies ucp convergence．
Problem 8．Show that the covariation $[\cdot, \cdot]$ is symmetric and bilinear．That is，if $M_{1}, M_{2}, M_{3} \in \mathcal{M}_{c, \text { loc }}$ and $a \in \mathbb{R}$ ，then

$$
\left[a M_{1}+M_{2}, M_{3}\right]=a\left[M_{1}, M_{3}\right]+\left[M_{2}, M_{3}\right] .
$$

Problem 9．Let B be a standard Brownian motion and let

$$
\widehat{B}_{t}=B_{t}-\int_{0}^{t} \frac{B_{s}}{s} d s
$$

i．Show that \widehat{B} is not a martingale in the filtration generated by B ．
ii. Show that \widehat{B} is a continuous Gaussian process and identify its mean and covariance. Hence show that \widehat{B} is a martingale in its own filtration.
You may find the following property of Gaussian random variables helpful: if X_{n} is a sequence of Gaussian random variables taking values in \mathbb{R}^{d}, and if $X_{n} \rightarrow X$ almost surely, then X is also Gaussian.

Problem 10. (\dagger) Fix $d \geq 3$ and let B be a Brownian motion in \mathbb{R}^{d} starting at $B_{0}=\bar{x}=(x, 0, \ldots, 0) \in \mathbb{R}^{d}$ for some $x>0$. Let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^{d}. For each $a>0$, let $\tau_{a}=\inf \left\{t>0:\left\|B_{t}\right\|=a\right\}$.
i. Let $D=\mathbb{R}^{d} \backslash\{0\}$ and let $h: D \rightarrow \mathbb{R}$ be defined by $h(x)=\|x\|^{2-d}$. Show that h is harmonic on D and that $M_{t}=\left\|B_{t}^{\tau_{a}}\right\|^{2-d}$ is a local martingale for all $a \geq 0$. For which values of x is M a true $\mathbb{P}_{\bar{x}^{-}}$ martingale?
ii. Use the previous part to show that for any $a<b$ such that $0<a<x<b$,

$$
\mathbb{P}_{\bar{x}}\left[\tau_{a}<\tau_{b}\right]=\frac{\phi(b)-\phi(x)}{\phi(b)-\phi(a)}
$$

where $\phi(u)=u^{2-d}$. Conclude that if $x>a>0$, then

$$
\mathbb{P}_{x}\left[\tau_{a}<\infty\right]=(a / x)^{d-2}
$$

Problem 11.

i. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be analytic and let $Z_{t}=X_{t}+i Y_{t}$ where (X, Y) is a Brownian motion in \mathbb{R}^{2}. Use Itô's formula to show that $M=f(Z)$ is a local martingale in \mathbb{R}^{2}. Show further that M is a time-change of Brownian motion in \mathbb{R}^{2}.
ii. Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and fix $z \in \mathbb{D}$. What is the hitting distribution for Z on ∂D in the case that $Z_{0}=0$? By applying a Möbius transformation $\mathbb{D} \rightarrow \mathbb{D}$ and using the previous part, determine the hitting distribution for Z on $\partial \mathbb{D}$.

Problem 12 (Liouville's Theorem in $\mathbf{d}=2$) Suppose that $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is bounded, and harmonic, and fix $x, y \in \mathbb{R}^{2}$. Let B be a Brownian motion; for $\epsilon>0$, let

$$
T_{\epsilon}=\inf \left\{t \geq 0:\left|B_{t}-y\right| \leq \epsilon\right\}
$$

Show that

$$
u(x)=\mathbb{E}_{x}\left(u\left(B_{T_{\epsilon}}\right)\right)
$$

Deduce that $u(x)=u(y)$, and conclude that u is constant.
Problem 13*. (Mean Value Property) Let $U \subset \mathbb{R}^{d}$ be an open set. We say that a function $u \in L_{\text {loc }}^{\infty}(U)$ satisfies the mean value property if, whenever $S(x, r) \subset U$, we have

$$
\begin{equation*}
u(x)=\int_{S(x, r)} u(y) \mu_{x, r}(d y) \tag{MVP}
\end{equation*}
$$

where we write $\mu_{x, r}$ for the uniform distribution on the sphere $S(x, r)=\partial B(x, r)$.
i. Suppose $u \in C^{2}(U)$ is harmonic. Show that u satisfies (MVP).
ii. Suppose, conversely, that u satisfies (MVP). For any compact subset $K \subset U$, express $\left.u\right|_{K}$ as a convolution, and deduce that $u \in C^{\infty}(U)$.
iii. Suppose u satisfies (MVP). Fix $x \in U$ and $r>0$ such that $\overline{B(x, r)} \subset U$. Let B be a Brownian Motion started at x, and let $\tau_{r}=\inf \left\{t>0:\left\|x-B_{t}\right\|=r\right\}$. Show that

$$
\forall t \geq 0, \quad \mathbb{E}\left(\int_{0}^{t \wedge \tau_{r}} \Delta u\left(B_{s}\right) d s\right)=0
$$

Deduce that u is harmonic. Hence (MVP) is an equivalent characterisation of harmonic functions.

Problem 14*. (Liouville's Theorem) Let $d \geq 3$, and suppose that $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is bounded and harmonic. Let B be a Brownian motion starting at 0 .
i. Show that $M_{t}=u\left(B_{t}\right)$ is a bounded martingale. Conclude that M_{t} converges, almost surely and in L^{1}, to a random variable M_{∞}.
ii. Recall Blumenthal's 0-1 law. Show that the tail σ-algebra

$$
\tau=\cap_{t \geq 0} \sigma\left(B_{s}: s \geq t\right)
$$

contains only events of probability 0 and 1 , and deduce that M_{∞} is almost surely constant.
iii. Using the relationship between M_{∞} and M_{1}, show that M_{1} is almost surely constant, and conclude that u is constant.

Problem 15*. (Winding Numbers of Planar Brownian Motion)

i. Let X, Y be independent Brownian motions in one dimension, starting at 0 , and for $x>0$, let τ_{x} be the hitting time $\tau_{x}=\inf \left\{t \geq 0: X_{t}=x\right\}$. Find the distribution of $Y_{\tau_{x}}$.
ii. Let Z be a $2-$ dimensional Brownian motion, started at $(\epsilon, 0)$, and let τ be the hitting time

$$
\tau=\inf \left\{t \geq 0:\left|Z_{t}\right|=1\right\}
$$

Let W_{ϵ} be the number of windings of Z around 0 before time τ; that is, every time Z completes a clockwise circuit of the origin, increase W_{ϵ} by 1 , and similarly decrease W_{ϵ} by 1 for every counterclockwise circuit. Show that $\frac{2 \pi W_{\epsilon}}{\log \epsilon}$ converges in distribution as $\epsilon \rightarrow 0$, and identify the limit.

