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Preface

The different sections are inspired by various references, in particular (but not exclusively): Section 1 by
[43, 28], Section 2 by [43, 6, 5, 30], Section 3 by [8, 21, 28], Section 4 by [11, 27], Section 5 by [2, 23],
Section 6 by [2, 20, 19].

Warning: These notes are in progress and change from week to week. They are likely to contain errors!
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1 Introduction

Spin systems are collections of many random vectors, spins, associated to the vertices of a graph, and
typically with locally specified dependence. They were invented as simple models for ferromagnetism, but
have now become fundamental models for phase transitions, of which many aspects can be understood
rather well. Part of the fascination of the subject results from their rich structure and the many different
tools that have turned out useful in their study, and also from their connections to other areas such as
quantum field theory.

1.1 Spin systems

Spin systems are formulated on graphs (which will always be simple undirected graphs). Thus a graph
G = (V,E) is given by a vertex set V and a set of edges E which are subsets of V with two elements.

Definition 1.1 (Spin system on finite graph). Let G be a finite graph, and n > 0 an integer. Let µ be a
finite positive measure on Rn with

∫
et|s|

2
µ(ds) <∞ for any t > 0. The spin system on G with spin-spin

coupling J = (Je) ∈ RE+, single spin measure µ, and external field h = (hx) ∈ (Rn)V is the probability
measure

P (dϕ) =
1

Z
e−H(ϕ)µ⊗V (dϕ) (1.1)

where
H(ϕ) = −

∑
xy∈E

Jxy(ϕx · ϕy)−
∑
v∈V

hx · ϕx. (1.2)

The expectation with respect to P is written as 〈·〉, and we sometimes denote the support of µ by Ω ⊂ Rn.
We write the covariance (or truncated expectation) as 〈F ;G〉 = 〈FG〉 − 〈F 〉〈G〉.

The graph of primary interest for spin systems is the infinite graph Zd and its finite approximations.
The definition on infinite graphs is more subtle, and requires the specification of boundary conditions. For
any subset Λ ⊂ Zd, the outer (vertex) boundary is defined by

∂Λ = {x ∈ Zd \ Λ : x ∼ y for some y ∈ Λ}, (1.3)

where x ∼ y denotes that xy ∈ E. The closure of Λ is Λ̄ = Λ ∪ ∂Λ.

Definition 1.2 (Gibbs measures). (a) Given Λ ⊂ Zd finite, the spin system on Λ with boundary condi-
tion ω ∈ (Rn)∂Λ is the probability measure (finite volume Gibbs measure)

PΛ,ω(dϕ) =
1

Z
e−H(ϕ̄)µ⊗Λ(dϕ), (1.4)

where ϕ̄x = ϕx for x ∈ Λ and ϕ̄x = ωx for x ∈ ∂Λ, and H is defined by (1.2) with G replaced by Λ̄.

(b) A probability measure P on (Rn)Z
d

is an infinite volume spin system on Zd (infinite volume Gibbs
measure) if for all finite Λ ⊂ Zd and P -almost every ϕ|∂Λ, it obeys the DLR condition

P (·|ϕ|∂Λ) = PΛ,ϕ|∂Λ
(·). (1.5)

In practice, the study of infinite volume Gibbs measures requires study of their finite approximations,
with sufficient uniformity in Λ and the boundary conditions. Throughout the course, we almost exclusively
focus on methods to study finite volume Gibbs measures. Moreover, a particularly useful approximation
of Zd that is not exactly an example of the above definition is the torus Tdm = Zd/mZd.
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Remark 1.3. (a) The assumption J > 0 means that the spin system is ferromagnetic; antiferromagnetic
spin systems, for which J < 0, are also of interest, but this is a different story.

(b) In more generality, the single spin measure µ might be space dependent, i.e., µ is replaced by measures

µx. By replacing µ(ds) by µx(ds) = e
∑
y∼x Jxy |s|2µ(ds), one can then replace the interaction part of the

Hamiltonian by the (discrete) Dirichlet energy since

−
∑
xy∈E

Jxy(ϕx · ϕy) =
1

2

∑
xy∈E

Jxy|ϕx − ϕy|2 +
∑
x∈V

(∑
y∼x

Jxy

)
|ϕx|2. (1.6)

The second can on the right-hand side is irrelevant if |ϕx| is constant (which is the case for the O(n)
models; see below), and can otherwise be included in the single spin measure(s).

(c) It is customary to include a parameter β > 0 (inverse temperature) in (1.4), but we will usually omit
it. It can either be included in J or (by rescaling the field) in the single spin measure.

1.2 Models

O(n) symmetric models. The following are important examples of spin systems with O(n) symmetry.

(a) In the O(n) model, µ is the surface measure on the unit sphere in Rn and J is constant, i.e., Je = β.
Equivalently, by rescaling, it is given by the surface measure on the n-sphere of radius

√
β and with J = 1.

For n = 1, 2, 3, the O(n) model is known as the Ising (n = 1), XY or rotator model (n = 2), and classical
Heisenberg model, respectively. For example, the Ising model is given by

Jxy = β, µ(dϕ) = δ−1(dϕ) + δ+1(dϕ), (β > 0), (1.7)

or (after rescaling)
Jxy = 1, µ(dϕ) = δ−

√
β(dϕ) + δ+

√
β(dϕ), (β > 0). (1.8)

For the O(n) models, it is customary to denote the spin variable by σ (with |σ| = 1).

(b) The Gaussian model, or Gaussian Free Field, is given by the probability measure

P (dϕ) =
1

Z
e−S(ϕ) dϕ, S(ϕ) =

1

2

∑
x∼y
|ϕx − ϕy|2 +

1

2
m2
∑
x

|ϕx|2, (1.9)

where dϕ on the right-hand side denotes the Lebesgue measure on RV and m > 0 is called the mass. This
is a spin system with single spin measure

Jxy = 1, µx(dϕ) = e−(Jx+ 1
2
m2)|ϕ|2 dϕ, (1.10)

where Jx =
∑

y∼x Jxy.

(c) The Ginzburg–Landau–Wilson |ϕ|4 model is given by the probability measure

P (dϕ) =
1

Z
e−S(ϕ) dϕ, S(ϕ) =

1

2

∑
x∼y
|ϕx − ϕy|2 +

∑
x

(
1

2
ν|ϕx|2 +

1

4
g|ϕx|4

)
. (1.11)

where g > 0 and ν ∈ R. It is a spin system with single spin measure

Jxy = 1, µx(dϕ) = e−
1
4
g|ϕ|4−(Jx+ 1

2
ν)|ϕ|2 dϕ. (1.12)
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In general, if the single spin measure µ is absolutely continuous with some density e−U(t) with respect
to the Lebesgue measure on (RV )n, we also write the spin measure as

P (dϕ) =
1

Z
e−S(ϕ) dϕ, (1.13)

where dϕ is the n|V |-dimensional Lebesgue measure on (RV )n and

S(ϕ) = H(ϕ) + U(ϕ). (1.14)

Potts models. The Potts models are examples of spin models with discrete symmetry.

(a) Let ϑ1, . . . , ϑq in Rq−1 be q unit vectors with

ϑi · ϑj =

{
1 (i = j)
−1
q−1 (i 6= j).

(1.15)

The q-state Potts model is given by µ the uniform measure on ϑ1, . . . , ϑq. Identifying ϕx ∈ {ϑ1, . . . , ϑq}
with σx ∈ {1, . . . , q}, the energy becomes

−
∑
xy

Jxy(ϕx · ϕy) = −
∑
xy

Jxy(1σx=σy −
1

q − 1
1σx 6=σy) = −

∑
xy

q

q − 1
Jxy1σx=σy +

1

q − 1

∑
xy

Jxy. (1.16)

Since the second term is a constant, and rescaling J to K = (q/(q − 1))J , the Hamiltonian can also be
represented as

−
∑
xy

Kxy1σx=σy . (1.17)

(b) The Zq-clock Potts model is given by single-spin measure the uniform measure on Zq ⊂ S1.

Exercise 1.4. Show that the |ϕ|4 model interpolates between the O(n) model and the Gaussian model in
the sense that, on any finite graph, the probability measures of the O(n) model and the Gaussian model
are limits of that of the |ϕ|4 model.

Exercise 1.5. Interpret the Ising model as a lattice gas.

1.3 Mean field theory for the Ising model

Most of the course will focus on the study of spin systems on approximations to Zd. However, to get
some intuition, we first consider mean field theory, which is obtained by replacing the spin ϕ by its mean

m = m(ϕ) =
1

|V |
∑
x∈V

ϕx. (1.18)

Then the interaction becomes

−
∑
xy

Jxyϕxϕy  −
β|V |

2

1

|V |
∑
x

ϕx
1

|V |
∑
y

ϕy = −β
2
|V ||m|2, β =

2

|V |
∑
xy

Jxy, (1.19)

−
∑
x

hx · ϕx  −|V |h ·
1

|V |
∑
x

ϕx = −|V |h ·m, h =
1

|V |
∑
x

hx. (1.20)
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This is equivalent to a spin model on the complete graph on N = |V | vertices with Jxy = β/N for all x, y
and hx = h for all x. (The complete graph KN consists of N vertices with all possible edges between the
vertices.) Thus mean field theory is given by G = KN with interaction Jxy = β/N for all x, y ∈ [N ] and
hx = h for all x ∈ [N ], i.e.,

HN (ϕ) = −N
2
β|m|2 −Nh ·m. (1.21)

Much is exactly computable in mean field theory and provides intuition for the general case.
In the remainder of this section, we study the mean field Ising model, the Curie–Weiss model. Then

the possible values that m can assume are

MN =

{
−1,−1 +

2

N
,−1 +

4

N
, . . . ,+1

}
, (1.22)

and each of these values of m, the number of x such that ϕx = +1 is 1+m
2 N , which means that the number

of possible configurations ϕ with m(ϕ) = m is

N !

(1+m
2 N)!(1−m

2 N)!
. (1.23)

Thus:

Z =
∑

m∈MN

N !

(1+m
2 N)!(1−m

2 N)!
e
N
2
βm2+Nhm =

∑
m∈MN

e−Nfβ,h(m)+o(N) (1.24)

where, using Stirling’s formula, log n! = n(log n− 1) + o(n),

fβ,h(m) =

(
−β

2
m2 − hm

)
︸ ︷︷ ︸

energy

−
(
−1 +m

2
log

1 +m

2
− 1−m

2
log

1−m
2

)
︸ ︷︷ ︸

entropy

= −hm+ fβ(m). (1.25)

Proposition 1.6.

lim
N→∞

1

N
logZN = − min

m∈[−1,1]
fβ,h(m) = max

m∈[−1,1]
(hm− fβ(m)). (1.26)

Proof. Let m0 be an absolute minimum of f . Since f is continuous,

min
m∈MN

f(m) = f(m0) + o(1), as N →∞. (1.27)

Therefore
ZN = e−Nf(m0)

∑
m∈MN

e−N(f(m)−f(m0))+o(N) (1.28)

and since
eo(N) 6

∑
m∈MN

e−N(f(m)−f(m0))+o(N) 6 Neo(N) 6 eo(N) (1.29)

the claim follows.

Exercise 1.7. For any interval J ⊂ [−1, 1] show that the magnetization concentrates around the minima
of f , in the sense that

Pr

(
1

N

∑
x

σx ∈ J

)
= e−NI(J)+o(N), I(J) = min

m∈J
f(m)− min

m∈[−1,1]
f(m). (1.30)
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Proposition 1.8. The local minima of fβ,h satisfy the self-consistent equation

m = tanh(βm+ h), m ∈ (−1, 1). (1.31)

Let βc = 1. Then

(a) For β 6 βc, the function fβ,h has one absolute minimum m0(β, h), and m0(β, 0) = 0.

(b) For β > βc and h = 0, the function fβ,0 has two absolute minima ±m0(β, 0).

(c) For β > βc and h 6= 0, the function fβ,h has one absolute minimum m0(β, h) 6= 0, and m0(β, 0+) =
−m0(β, 0−).

Proof.

f ′(m) = −βm− h+
1

2
log

1 +m

1−m
= −(βm+ h) + artanh(m) (1.32)

Since f ′(m)→ ±∞ as m→ ±1 the minima lie in (−1, 1) and obey f ′(m) = 0. The rest is an exercise.

Two important observables for spin systems are the (mean) magnetisation and the (magnetic) sus-
ceptibility, defined respectively by

M = lim
|V |→∞

1

|V |
∑
x∈V
〈ϕx〉, χ = lim

|V |→∞

1

|V |
∑
x,y∈V

〈ϕx;ϕy〉, (1.33)

defined along a suitable sequence of graphs (and possibly boundary conditions), and regarded as functions
of the parameters of the Hamiltonian, here (β, h).

Exercise 1.9. Show that for (β, h) 6= (βc, 0), it holds that

M =
∂

∂h
lim
N→∞

1

N
logZN , χ =

∂2

∂h2
lim
N→∞

1

N
logZN . (1.34)

It follows that

M = − ∂

∂h
fβ,h(m0(β, h)) = − f ′β,h(m0)︸ ︷︷ ︸

0

∂m

∂h
− ∂

∂h
fβ,h(m0) = m0(β, h) (1.35)

For the susceptibility, note that 0 = f ′β,h(m0(β, h)) implies

0 =
∂2

∂h∂m
fβ,h(m0(β, h))︸ ︷︷ ︸
−1

+
∂2

∂m2
fβ,h(m0(β, h))

∂m0

∂h︸ ︷︷ ︸
χ

(1.36)

and therefore

χ =
1

f ′′β,h(m0(β, h))
=

1

−β + (1−m0(β, h)2)−1
. (1.37)

Proposition 1.10 (Critical exponents). (a) The magnetisation obeys

M(β, 0+)

{
> 0 (β > βc)

= 0 (β > βc),
(1.38)

and
M(β, 0+) ∼ C(β − βc)

1
2 (β ↓ βc). (1.39)
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(b) The susceptibility is finite for β 6= βc and (Curie–Weiss law)

χ(β, 0) ∼ C±|β − βc|−1 (β − βc → ±0). (1.40)

Proof. (a) tanh(x) = x− 1
3x

3 + o(x3) and m0(β, 0+)→ 0 as β → βc implies

m0(β, 0+) = tanh(βm(β, 0+)) = βm0(β, 0+)− 1

3
(βm0(β, 0+))3 + o(βm0(β, 0+))3 (1.41)

and therefore

(β − 1)m =
1

3
(βm)3 + o(βm)3. (1.42)

The claim follows by dividing by m/3 and taking the square root.

(b)

χ =
1

−β + (1−m0(β, 0+)2)−1
=

1

1− β
=

1

βc − β
(β < βc), (1.43)

χ ∼ 1

−β + (1− 3(β − 1))−1
∼ 1

1− β + 3(β − 1)
=

1

2(β − βc)
(β > βc), (1.44)

as claimed.

Much of the theory of phase transition concerns proving similar results for Zd, and understanding the
behaviour of the system. Spin systems are a paradigm for other systems that undergo phase transitions.

The problem can roughly be divided into the high temperature regime (β � 1 or ν � 0), the low
temperature regime, as well as the critical temperature and its approach. The regime that is by far easiest
to understand is the high temperature (or phase uniqueness) regime. The low temperature regime is well
understood for the Ising model, and should be similar for models with discrete symmetry (n = 1), but
is much more difficult to understand for n > 1 (and many aspects are open). The abelian case n = 2 is
more tractable than the nonabelian case n > 3 (which includes the Heisenberg model).

The critical point has the most delicate and most interesting behaviour. However, even is uniqueness
is rather nontrivial and in general not known (it is a priori conceivable that high and low temperature
phases alternate in some way, though it is highly unplausible). The exponents 1

2 and 1 in (1.39) and (1.40)
are examples of critical exponents. They characterize the shape of the phase diagram, and are believed
to be universal with very general scope. For example, experimentally, certain fluids should are found to
have the same exponents as spin models. The universality of phase transitions is open except in special
cases.

1.4 Mean field theory by Hubbard–Stranonovich transform

Exercise 1.11. Compute the Laplace transform of the standard Gaussian measure:

e
1
2
t2 =

1√
2π

∫ ∞
−∞

e−
1
2
x2+tx dx. (1.45)

This implies

e−H(ϕ) = e
β

2N

∑
x,y ϕxϕy+h

∑
x ϕx =

(
βN

2π

)n/2 ∫
Rn

e−
1
2
Nβψ2+(ψβ+h)

∑
x ϕx dψ, (1.46)
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and thus

Z =

∫
e−H(σ) µ⊗H(dϕ) =

(
βN

2π

)n/2 ∫
Rn

e−
1
2
Nβψ2

(∫ N∏
x=1

e(ψβ+h)·ϕxµ⊗N (dϕ)

)
︸ ︷︷ ︸∏N

x=1

∫
e(ψβ+h)·sµ(ds)=eNv(ψβ+h)

dψ, (1.47)

with the definition ev(y) =
∫

ey·sµ(ds). (For example, for the Ising model, ev(y) = 2 cosh(y).) Therefore
the partition function is equal to the integral

Z =

(
Nβ

2π

)n/2 ∫
Rn

e−NS(ψ) dψ, S(ψ) =
1

2
βψ2 − v(ψβ + h). (1.48)

Theorem 1.12 (Laplace’s Principle). Let S : Rn → R be continuous and bounded below, and assume
that {ψ ∈ Rn : S(ψ) 6 minS + 1} is compact and that

∫
e−S dψ <∞.

(a) For any bounded continuous f : Rn → R+ with f(ψ0) 6= 0 for some ψ0 with S(ψ0) = minS, we have∫
f(ψ)e−tS(ψ) dψ = e−tminS+o(t), (t→∞). (1.49)

(b) Assume that S is in C2 and has a unique global minimum at ψ0. Then for any bounded continuous
f : Rn → R with f(ψ0) 6= 0, we have∫

f(ψ)e−tS(ψ) dψ =

√
(2π)n

tdet(∇2S(ψ0))
f(ψ0)e−tS(ψ0)(1 + o(1)), (t→∞). (1.50)

Proof. Assume without loss of generality that minS = S(0). First, it suffices to show the claim with the
integral replaced by the integral over K = [−δ, δ]n with arbitrary δ > 0. Indeed, since S is continuous
and {ψ : S(ψ) 6 minS + 1} is compact, there is α > 0 such that S(ψ) > S(0) + α for ψ 6∈ K. Thus∣∣∣∣∫

Kc

f(ψ)e−tS(ψ) dψ

∣∣∣∣ 6 ‖f‖∞e−(t−1)(S(0)+α)

∫
e−S dψ = O

(
e−tS(0)e−αt

)
, (1.51)

which is smaller than the right-hand sides.

(a) Clearly, for any compact K, we have∫
K
f(ψ)e−tS(ψ) dψ 6 ‖f‖∞|K|e−tminS = e−tminS+O(1). (1.52)

On the other, if we choose δ > 0 sufficiently small that for ψ ∈ K we have

S(ψ) 6 minS + ε, f(ψ) >
1

2
f(ψ0), (1.53)

it follows that ∫
K
f(ψ)e−tS(ψ) dψ >

1

2
f(ψ0)|K|e−t(minS+ε) = e−t(minS+ε)+O(1). (1.54)

The claim follows since ε > 0 is arbitrary.

(b) Choose δ > 0 such that for ψ ∈ K we have

|∇2S(0)−∇2S(ψ)| 6 ε, |f(0)− f(ψ)| 6 ε. (1.55)
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Then ∫ δ

−δ
f(ψ)e−tS(ψ) dψ 6 · · · 6 (f(0) + ε)e−tS(0)

√
2π

t(S′′(0)− ε)
. (1.56)

Since ∫ δ
−δ e−tx

2
dx∫∞

−∞ e−tx2 dx
=

∫ √tδ
−
√
tδ

e−y
2
dy∫∞

−∞ e−y2 dy
→ 1 as t→∞, (1.57)

similarly ∫ δ

−δ
f(ψ)e−tS(ψ) dψ > · · · > (1 + o(1))(f(0)− ε)e−tS(0)

√
2π

t(S′′(0) + ε)
, (1.58)

as claimed.

Using Laplace’s Principle, we can now study (1.48). Clearly,

S(ψ) = 1
2βψ

2 − v(ψβ + h), (1.59)

∇S(ψ) = βψ − β∇v(ψβ + h), (1.60)

∇2S(ψ) = β − β2∇2v(ψβ + h). (1.61)

Example 1.13. For the Ising model, we have

v(y) = log cosh(y) + log 2, v′(y) = tanh(y) ∈ [−1, 1], v′′(y) =
1

cosh(t)2
∈ (0, 1]. (1.62)

In particular, S is strictly uniformly convex if β > β2, i.e., if β < 1; see Proposition 1.8.

Exercise 1.14. Assume that µ is non-degenerate and
∫

ec|s|
2
µ(ds) <∞. Then ∇2v(y) is strictly positive

definite for each y, and ∇v(y) is bounded in y. Compute the critical temperature for the mean field O(n)
model.

Sketch. The strict convexity follows from the fact that [∇2v(y)](h, h) is the variance of s · h under the
probability e−v(y)+y·sµ(ds) which by assumption always has more than one point in its support. ∇v(y) is
the mean of s · h under e−v(y)+y·sµ(ds) and therefore bounded.

Since −∇hS(ψ) = ∇v(ψβ + h), the magnetization is given by

M = lim
N→∞

∂

∂h

1

N
logZ = − lim

N→∞

∫
∇hS(ψ) e−NS(ψ) dψ∫

e−NS(ψ) dψ
= lim

N→∞

∫
∇v(ψβ + h) e−NS(ψ) dψ∫

e−NS(ψ) dψ
. (1.63)

Laplace’s Principle shows that M = ∇v(ψ0β + h) if S has a global minimum at ψ0. Since then ψ0 must
satisfy ∇S(ψ0) = 0 this gives ψ0 = ∇v(ψ0β + h), and we again obtain a self-consistent equation for the
magnetization:

M = ∇v(Mβ + h). (1.64)

Laplace’s Principle also implies

lim
N→∞

1

N
logZN = −minS = −1

2
βM2 + v(βM + h), (1.65)

where the second inequality only holds if the global minimum is unique.
Let

pMF = − inf
ψ∈Rn

S(ψ) = sup
ψ∈Rn

(
−β

2
|ψ|2 + v(βψ + h)

)
. (1.66)

Then we have already shown the following proposition.
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Proposition 1.15. For the mean field model with single spin measure µ, it holds that

lim
N→∞

1

N
logZN = pMF. (1.67)

Exercise 1.16 (Kac model). Consider, say, the torus Tdm, and spin-spin interaction

Jxy = m−dη((x− y|)/m), (1.68)

for a continuous function η that is compactly supported in (−1
2 ,

1
2)d. Show that the pressure of the Kac

model converges to the mean field pressure,

m−d logZ −→ pMF (m→∞), (1.69)

with mean field model defined by β =
∫
Rd η(x) dx. The Kac model is essentially a mean field model.

The following proposition shows that mean field theory always provides a lower bound on the pressure.

Proposition 1.17 (Mean field bound for partition function). For any spin model on a graph, the partition
function is bounded below by

1

|V |
logZ > pMF, (1.70)

with the mean field model defined by the same single spin measure and

β =
2

|V |
∑
xy

Jxy, h =
1

|V |
∑
x

hx. (1.71)

Lemma 1.18.

pMF = sup
ψ∈Rn

(
−S(ψ) +

1

2β
|∇S(ψ)|2

)
. (1.72)

Proof. Let T (ψ) = −S(ψ) + 1
2β |∇S(ψ)|2. Then

∇T (ψ) = −∇S(ψ) +
1

β
∇S(ψ) · ∇2S(ψ) = −∇S(ψ) +

1

β
∇S(ψ) · (β − β2∇2v(ψβ + h))

= −β∇S(ψ) · ∇2v(ψβ + h)

= −β2(ψ −∇v(βψ + h)) · ∇2v(ψβ + h). (1.73)

Now, by Exercise 1.14, ∇2v(y) is strictly positive definite for each y, and thus ∇T (ψ) = 0 if and only if
∇S(ψ) = 0. Moreover, ∇v(y) is bounded, and thus thus (ψ −∇v(βψ + h)) · u→∞ if |ψ| → ∞, for any
u ∈ Rn, and ∇T · u < 0 outside a compact set. Thus T assumes its maximum in a compact set.

Lemma 1.19.

sup
ψ∈Rn

(
−S(ψ) +

1

2β
|∇S(ψ)|2

)
= sup

ψ∈Rn

(
v(ψ)− ψ · ∇v(ψ) +

1

2
β|∇v(ψ)|2 + h · ∇v(ψ)

)
(1.74)

Proof. Indeed, by direct computation,

|∇S(ψ)|2 = β2 |ψ −∇v(βψ + h)|2 = β2
(
|ψ|2 − 2ψ · ∇v(βψ + h) + |∇v(βψ + h)|2

)
, (1.75)
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and therefore

−S(ψ) +
1

2β
|∇S(ψ)|2 = v(βψ + h)− βψ · ∇v(βψ + h) +

1

2
β|∇v(βψ + h)|2

= v(βψ + h)− (βψ + h) · ∇v(βψ + h) +
1

2
β|∇v(βψ + h)|2 + h · ∇v(βψ + h).

(1.76)

The claim now follows by replacing βψ + h by ψ.

Proof of Proposition 1.17 [43]. For any F (ϕ) > 0, since t 7→ et is convex, Jensen’s inequality applied to
the measure F (ϕ)µ⊗V (dϕ) implies

logZ = log

∫
e−H(ϕ)−logF (ϕ)F (ϕ)µ⊗V (dϕ) > −

∫
(H(ϕ)F (ϕ) + F (ϕ) logF (ϕ))µ⊗V (dϕ). (1.77)

Let F (ϕ) =
∏
x(e−v(y)ey·ϕx) for an arbitrary y ∈ Rn. Then since ∇v(y) =

∫
se−v(y)+y·s µ(ds) and

1 =
∫

e−v(y)+y·s µ(ds), we have

−
∫
H(ϕ)F (ϕ)µ⊗V (dϕ) =

∫ ∑
xy∈E

Jxy(ϕx · ϕy) +
∑
x∈V

hx · ϕx

F (ϕ)µ⊗V (dϕ)

=

∑
xy∈E

Jxy

∫ (s · s′)e−v(y)+y·sµ(ds) e−v(y)+y·s′µ(ds′) +

(∑
x∈V

hx

)
·
∫
s e−v(y)+y·sµ(ds)

=

∑
xy∈E

Jxy

 |∇v(y)|2 +

(∑
x∈V

hx

)
· ∇v(y) = |Λ|

(
1

2
β|∇v(y)|2 + h · ∇v(y)

)
, (1.78)

and

−
∫
F (ϕ) logF (ϕ)µ⊗V (dϕ) = −

∑
x

∫
F (ϕ)(−v(y) + y · ϕx)µ⊗V (dϕ) = |Λ|(v(y)− y · ∇v(y)). (1.79)

Together we have

−
∫

(H(ϕ)F (ϕ) + F (ϕ) logF (ϕ))µ⊗V (dϕ) = |Λ|
(

1

2
β|∇v(y)|2 + h · ∇v(y) + (v(y)− y · ∇v(y))

)
.

(1.80)

Since y was arbitrary, by Lemmas 1.18–1.19, we obtain

logZ > |V | sup
ψ

(
1

2
β|∇v(ψ)|2 + h · ∇v(ψ) + (v(ψ)− y · ∇v(ψ))

)
= |V |pMF. (1.81)

This was the claim.
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2 High temperature by inequalities

For sufficiently high temperature, there are various techniques to show that the spontaneous magnetization
(the limit of the magnetization as h ↓ 0) vanishes, and that the correlation functions decay exponentially.
Due to its interpretation in quantum field theory, exponential decay of the two-point function is often
called a mass gap, and the rate of exponential decay is called the mass. In this section, we consider
non-expansion methods that are effective at high temperatures.

2.1 Preparation: Griffith/GKS inequalities

The is a zoo of correlation inequalities for ferromagnetic spin systems (J > 0), which are very useful for
their understanding. The number of available inequalities decreases with n, and this is one of the reasons
that in many respects n-component models with larger n become more difficult to study.

Notation. For any A ⊂ V × [n], where [n] = {1, . . . , n}, write

ϕA =
∏

(x,a)∈A

ϕax. (2.1)

Moreover, we write J > 0 if Je > 0 for all e ∈ E (which we always assume), and similarly h > 0 if hax > 0
for all x ∈ V and a ∈ [n] (which we do not always assume, but which is often a helpful assumption).

Proposition 2.1 (First Griffith/GKS inequality). Assume that the single spin measure µ is O(n) invari-
ant, and that h > 0. Then for any A, it holds that

〈ϕA〉 > 0. (2.2)

Proof. Let A = {(x1, a1), . . . , (xk, ak)}. By expanding e−H(ϕ) (which can be justified by the assumption
that

∫
et|s|

2
µ(ds) <∞ for any t), it follows that

〈ϕA〉 ∝
∞∑
l=0

1

l!

∫
ϕa1
x1
· · ·ϕakxk

(∑
x,y,a

Jxyϕ
a
xϕ

a
y +

∑
x

haxϕ
a
x

)l
µ⊗V (dϕ). (2.3)

For any rotation invariant single spin measure µ on Rn, and any components a1, . . . , ak, it holds that∫
sa1 · · · sak µ(ds) > 0, (2.4)

because the integral is 0 if any component appears an odd number of times, and is nonnegative otherwise.
This and J > 0 and h > 0 imply the claim.

Proposition 2.2 (Second Griffith/GKS inequality for one-component spins). Let n = 1. Then for h > 0
and any A,B, it holds that

〈ϕA;ϕB〉 > 0. (2.5)

In particular, 〈ϕA〉 is increasing in each of the spin-spin couplings Jxy and in the hx. The same holds for
any Hamiltonian that is a polynomial in the spins with nonnegative coefficients.

Proof. Let ϕ′ be an independent copy of ϕ. Then

〈ϕA;ϕB〉 =
1

2
〈(ϕA − ϕ′A)(ϕB − ϕ′B)〉, (2.6)
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and

−H(ϕ)−H(ϕ′) =
∑
xy

Jxy(ϕxϕy + ϕ′xϕ
′
y) + hx(ϕx + ϕy). (2.7)

By expanding the exponential, it suffices to prove∫ ∏
A

(ϕA ± ϕ′A)µ⊗V (dϕ)µ⊗V (dϕ′) > 0, (2.8)

where the product ranges over a finite number of sets of vertices. By the identities

ab+ a′b′ =
1

2
(a+ a′)(b+ b′) +

1

2
(a− a′)(b− b′) (2.9)

ab− a′b′ = 1

2
(a+ a′)(b− b′) +

1

2
(a− a′)(b+ b′), (2.10)

the claim reduces to ∫ ∏
(s± s′)µ(ds)µ(ds′) > 0. (2.11)

As a consequence, then

∂

∂Jxy
〈ϕA〉 = 〈ϕA;ϕxϕy〉 > 0,

∂

∂hx
〈ϕA〉 = 〈ϕA;ϕx〉 > 0, (2.12)

and the claim about monotonicity follows immediately.

The analysis of two-component spin system (such as the XY model) is often made possible by Fourier
analysis. In polar coordinates, ϕx = (rx cos θx, rx sin θx) for hx = (h1

x, 0, . . . , 0) > 0,

H(ϕ) = −
∑
xy

Jxyrxry(σx · σy)−
∑
x

hx · σx = −
∑
xy

Jxyrxry cos(θx − θy)−
∑
x

h1
xrx cos θx. (2.13)

In particular, with r fixed, −H is positive definite on S1, i.e., it has nonnegative Fourier coefficients. For
m ∈ Zk and θ ∈ Tk we abbreviate cos(mθ) = cos(m1θ1 + · · ·+mkθk).

Proposition 2.3 (First and second Griffith inequality for two-component spins; Ginibre inequalities).
Let n = 2 and assume that µ is O(2)-invariant or that θ is uniform on 2π[q]/q. Then for h = (h1, 0) > 0
and any a, b ∈ ZV ,

〈cos(aθ)〉 > 0, 〈cos(aθ); cos(bθ)〉 > 0. (2.14)

In particular, 〈cos(aθ)〉 is increasing in J and h. The same holds for any Hamiltonian H that is negative
definite on (S1)V .

Remark 2.4. Since

cos(mθ) cos(m′θ) =
1

2
(cos((m+m′)θ) + cos((m−m′)θ)), (2.15)

the inequalities (2.14) extend to any product of cosines with positive coefficients.

It does not seem to be known whether the second Griffith inequality holds for n > 3; see [47].
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Proof [26]. For simplicity of notation, assume that rx = 1. Moreover, we only give the proof for O(2)
symmetry; the Zq case is analogous (but requires some care in the change of variables below).

First, for any m ∈ ZN , one has (2π)−N
∫
TN eimθ dθ ∈ {0, 1}. This and cos t = 1

2(eit + e−it) imply that
for any m ∈ Zk, one also has the inequality∫

TN

∏
cos(mθ) dθ > 0. (2.16)

The first inequality in (2.14) follows from (2.16), expanding the exponential as

e−H(σ) =

∞∑
k=0

1

k!
(−H(σ))k =

∞∑
k=0

1

k!

(∑
xy

Jxy cos(θx − θy) + h1
∑
x

cos θx

)k
(2.17)

and using (2.15) since all coefficients are by assumption nonnegative.
To show the second inequality in (2.14), denote by σ′ and independent copy of σ. Then

e−H(σ)−H(σ′) =
∞∑
k=0

1

k!

(∑
xy

Jxy
(
cos(θx − θy) + cos(θ′x − θ′y)

)
+ h1

∑
x

(
cos θx + cos θ′x

))k
∝
∑∏

(cos(mθ) + cos(mθ′)), (2.18)

where the sum and product range over collections of m ∈ ZN . Therefore, with some sequence of signs ±,

〈cos(aθ); cos(bθ)〉 =
1

2
〈(cos(aθ)− cos(aθ′))(cos(bθ)− cos(bθ′))〉

∝
∫
TN

∫
TN

∑∏
(cos(mθ)± cos(mθ′)) dθ dθ′. (2.19)

It remains to show that the right-hand side is nonnegative. Since

cos(mθ) + cos(mθ′) = 2 cos(m(θ + θ′)/2) cos(m(θ − θ′)/2) (2.20)

cos(mθ)− cos(mθ′) = 2 sin(m(θ + θ′)/2) sin(m(θ − θ′)/2), (2.21)

for any sequence of signs ±, there exists F : TN → R such that∫
TN

∫
TN

n∏
i=1

(cos(miθ)± cos(miθ
′)) dθ dθ′ =

∫
TN

∫
TN

F ((θ + θ′)/2)F ((θ − θ′)/2) dθ dθ′

=

∫
TN

∫
TN

F (α)F (β) dα dβ =

(∫
TN

F (α) dα

)
> 0, (2.22)

where we used the change of variables α = (θ + θ′)/2 and β = (θ − θ′)/2.

Proposition 2.5 (FKG inequality). Let P be a probability measure on RN given by

P (dϕ) =
1

Z
e−H(ϕ) µ⊗N (dϕ) . (2.23)

with ∂ϕi∂ϕjH(ϕ) 6 0 whenever i 6= j. Then P is positively correlated, i.e., for all increasing functions
F,G : RN → R,

〈F ;G〉 > 0 . (2.24)

Here F : RN → R is increasing if F (ϕ) 6 F (ϕ′) if ϕi 6 ϕ′i for all i.
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Proof [7]. The proof is by induction in N . For N = 1, denote by ϕ̃ an independent copy of ϕ. Then

〈F ;G〉 =
1

2
〈(F (ϕ)− F (ϕ̃))(G(ϕ)−G(ϕ̃))〉 > 0, (2.25)

where the last inequality follows since F and G are increasing. Now assume the claim on RN−1 and write
ϕ = (ϕ′, ϕN ). Then

〈FG〉 = 〈〈FG|ϕN 〉〉, (2.26)

where 〈·|ϕN 〉 is the conditional expectation on ϕN . The latter is proportional to e−H(ϕ′,ϕN )µ⊗(N−1)(dϕ′),
which clearly satisfies the hypothesis of the proposition. Thus, by the FKG inequality on RN−1,

〈FG〉 = 〈〈FG|ϕN 〉〉 > 〈〈F |ϕN 〉〈G|ϕN 〉〉. (2.27)

Next, we show that 〈F |ϕN 〉 and 〈G|ϕN 〉 are increasing in ϕN . Indeed,

∂

∂ϕN
〈F |ϕN 〉 = 〈− ∂H

∂ϕN
F |ϕN 〉+ 〈F |ϕN 〉〈

∂H

∂ϕN
|ϕN 〉 = 〈− ∂H

∂ϕN
;F |ϕN 〉 > 0, (2.28)

where we used that the assumption implies that − ∂H
∂ϕN

is increasing in ϕ′ and that the FKG inequality
holds for 〈·|ϕN 〉. Thus 〈F |ϕN 〉 and 〈G|ϕN 〉 are increasing on R, and the one-dimensional FKG inequality
implies that

〈FG〉 > 〈〈F |ϕN 〉〈G|ϕN 〉〉 > 〈〈F |ϕN 〉〉〈〈G|ϕN 〉〉 = 〈F 〉〈G〉, (2.29)

which was the claim.

2.2 Mean field bounds on correlations

Throughout this section, the single spin measure µ is the surface measure on Sn−1 ⊂ Rn. In particular, for
constant coupling J > 0, this is the O(n) model at inverse temperature J . Proposition 1.17 shows that the
partition function can always be estimated from below by the corresponding mean field approximation.
The goal now is to prove that if 1

n

∑
y Jxy < 1 (the critical temperature of the mean field approximation)

then the model is in the high temperature phase, in the sense that:

(a) The spontaneous magnetization at h = 0 vanishes.

(b) There is a mass gap, i.e., there exists m > 0 such that 〈σx · σy〉 6 e−md(x,y).

Theorem 2.6. Consider the O(n)-model with n > 1 and general spin-spin couplings J .

(a) For constant external field h = (h, 0, . . . , 0),

〈σ1
x〉 6

1

n

∑
y

Jxy〈σ1
y〉+ h. (2.30)

(b) For any x 6= z, for h = 0,

〈σ1
xσ

1
z〉 6

1

n

∑
y

Jxy〈σ1
yσ

1
z〉 . (2.31)

In fact, if n = 1, (a) holds with h replaced by tanhh 6 h, and (b) holds with Jxy replaced by tanh Jxy 6 Jxy.

In particular, on the torus Tdm with translation invariant J , by (a) the function m(h) = 〈σ1
x〉h obeys

m(h) 6 JMFm(h) + h where JMF = 1
n

∑
y Jxy, and thus m(0+) = 0 if JMF < 1. Thus the spontaneous

magnetization vanishes. Morever, (b) implies that the two-point function decays exponentially if JMF < 1,
as shown by the following proposition and the fact that, by translation invariance and continuity, on the
torus the assumption JMF < 1 implies that (2.32) below holds for some µ > 0.
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Proposition 2.7. Let d : V ×V → [0,∞) be a metric and assume that (2.31) holds. Assume further that

sup
x

1

n

∑
y

Jxye
µd(x,y) < 1 (2.32)

for some µ > 0. Then there exists m > 0 such that

〈σx · σy〉 6 e−md(x,y). (2.33)

Proof [6]. Let α > 0 be such that

sup
x

1

n

∑
y

Jxye
µd(x,y) = e−α. (2.34)

Let Xt be a discrete-time random walk with transition probability

P[Xt+1 = y|Xt = x] =
1

n
Jxye

µd(x,y)+αx , (2.35)

where αx > α is chosen such that the right-hand side is a probability distribution. Then the assumption
(2.31) implies

E[〈σXt+1σz〉e−αx−µd(x,Xt+1)|Xt = x] =
∑
z

P[Xt+1 = y|Xt = x]〈σzσz〉e−αx−µd(x,y)

=
∑
z

1

n
Jxy〈σyσz〉 > 〈σxσz〉. (2.36)

Since |σx| 6 1, it therefore follows that

〈σXtσz〉 6

{
E[〈σXt+1σy〉e−αXt−µd(Xt+1,Xt)|Xt] (Xt 6= z)

1 (Xt = z).
(2.37)

Define τN = min{t 6 N : Xt = z} with τN = N if the minimum is not assumed. Then τN is a stopping
time for the random walk. Using αx > α and the triangle inequality for d, we obtain

E〈σX0σz〉 6 E[〈σX1σz〉e−α−µd(X1,X0)] 6 · · · 6 E[〈σXτN σz〉e
−ατN−µd(XτN ,X0)]. (2.38)

Finally, with X(0) = x and N →∞,

E〈σxσz〉 6 〈σzσz〉e−µd(x,z) lim
N→∞

E[e−ατN ] 6 e−µd(x,z), (2.39)

as claimed.

Theorem 2.6 is proved differently for n = 1 and n > 2.

Proof of Theorem 2.6 (n = 1). The inequality (b) follows most easily from the random current represen-
tation, and its proof will therefore be deferred. To show (a), fix x ∈ V , and define

Je(λ) =

{
λJe (x ∈ e)
Je (x 6∈ e),

(2.40)

and consider the spin system with spin-spin coupling J(λ). For λ = 0, the spin σx completely decouples
from all other spins, and it is therefore clear that

〈σx〉λ=0 =

∑
s=±1 s e

sh∑
s=±1 e

sh
=

eh − e−h

eh + e−h
= tanhh. (2.41)
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Next,

∂

∂λ
〈σx〉λ = λ

∑
y

Jxy〈σx;σxσy〉λ = λ
∑
y

Jxy

(
〈σy〉λ − 〈σx〉λ〈σxσy〉λ

)
6
∑
y

Jxy〈σy〉λ=1, (2.42)

where the last inequality follows from the positivity of correlation functions and their monotonicity in λ
(first and second Griffith inequality). Integrating over 0 6 λ 6 1 gives

〈σx〉λ=1 − 〈σx〉λ=0 6
∑
y

Jxy〈σy〉λ=1, (2.43)

and thus
〈σx〉 6

∑
y

Jxy〈σy〉+ tanhh 6
∑
y

Jxy〈σy〉+ h, (2.44)

as claimed.

For n > 2, the proof of Theorem 2.6 uses the idea of local Ward identity.

Exercise 2.8. Let Ω be the support of the single spin measure µ and γt : ΩV → ΩV be a smooth family
of automorphisms that preserve the a priori measure µ⊗V . For a smooth observable A : ΩV → R, set

Ȧ =
∂

∂t
γt(A)

∣∣∣
t=0

. (2.45)

Show that the following local Ward identity holds:

〈Ȧ〉 = 〈AḢ〉 . (2.46)

We also require the following correlation inequalities for the O(n) model, which are similar to the first
Griffith inequality.

Lemma 2.9. For the O(n)-model, for all constant h = (h1, 0, . . . , 0) > 0,

〈((σ1
x)2 − (σ2

x)2)σ1
y〉 > 0, 〈((σ1

x)2 − (σ2
x)2)σ1

yσ
1
z〉 > 0. (2.47)

Proof. We show the first inequality; the second one is analogous. Use polar coordinates for the first two
components of σ:

σx = (cos θx, sin θx, σ
3, . . . , σn). (2.48)

Then
((σ1

x)2 − (σ2
x)2)σ1

y = ((cos θx)2 − (sin θx)2)2 cos θy = (cos 2θx)2 cos θy, (2.49)

and the inequality follows from the first inequality in (2.14), at least for n = 2. However, the essentially
same proof carries through for n > 2 (with the other components handled as in Proposition 2.1).

Proof of Theorem 2.6 (n > 2) [17, 6]. Let R(t) ∈ SO(n) be a rotation by angle t in the first two compo-
nents. Fix x ∈ V , and define γt : (Sn−1)Λ → (Sn−1)Λ by

[γt(ϕ)]y =

{
R(t)ϕx (y = x)

ϕy (y 6= x).
(2.50)

Then
Ḣ = −

∑
y

Jxy(σ
2
xσ

1
y − σ1

xσ
2
y) . (2.51)
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(a) Since σ̇1
x = σ2

x and σ̇2
x = −σ1

x, by (2.46) we have

〈σ1
x〉 = −〈σ̇2

x〉 = −〈σ2
xḢ〉 =

∑
y

Jxy〈σ2
x(σ2

xσ
1
y − σ1

xσ
2
y)〉 =

∑
y

Jxy〈(σ2
x)2σ1

y〉. (2.52)

Now (2.47) implies

〈σ1
y〉 = 〈(σi · σi)σ1

y〉 = (n− 1)〈(σ2
x)2σ1

y〉+ 〈(σ1
x)2σ1

y〉 > n〈(σ2
x)2σ1

y〉, (2.53)

and it follows that

〈σ1
x〉 6

1

n

∑
y

Jxy〈σ1
y〉. (2.54)

(b) Set A = σ2
xσ

1
y . Then Ȧ = σ1

xσ
1
y and (2.46) implies

〈σ1
xσ

1
z〉 = 〈Ȧ〉 =

∑
y

Jxy〈(σ2
x)2σ1

zσ
1
y − σ2

xσ
1
yσ

1
xσ

2
y〉 6

∑
y

Jxy〈(σ2
x)2σ1

zσ
1
y〉 (2.55)

Since by (2.47), analogously, we have 〈σ1
yσ

1
z〉 > n〈(σ2

x)2σ1
yσ

1
z〉, it follows that

〈σ1
xσ

1
z〉 6

1

n

∑
y

Jxy〈σ1
zσ

1
y〉, (2.56)

as claimed.

It is also possible to bound the two-point function of the XY model in terms of that of the Ising
model. This is of particular interest in d = 2 since there the critical temperature of the Ising model can
be computed explicitly.

Theorem 2.10 (Aizenman–Simon). For h = 0, it holds that 〈σx · σy〉XY
2J 6 〈σxσy〉

Ising
J .

Proof [5]. Let 〈·〉PJ be the two-component spin model taking values in {(1, 0), (0, 1), (−1, 0), (0,−1)}, i.e.,
the Z4 clock/Potts model, and consider more generally Hλ = H + λ

∑
x cos(4θx) with expectation 〈·〉λ.

Then 〈·〉P is the limit λ→∞ and 〈·〉XY is λ = 0. By invariance under rotations by π/2, clearly

〈σx · σy〉λJ = 2〈σ1
xσ

1
y〉λJ . (2.57)

Note that the second Griffith inequality for two-component spins (Proposition 2.3) applies to 〈·〉λ. There-
fore the right-hand side is increasing in λ, and

〈σx · σy〉XY
2J 6 2〈σ1

xσ
1
y〉PJ . (2.58)

To estimate the right-hand side, set sx = σ1
x + σ2

x and tx = σ1
x − σ2

x. Then

2
∑
xy

Jxyσx · σy =
∑
xy

Jxy(sxsy + txty), (2.59)

and thus s and t are independently distributed according to 〈·〉Ising under 〈·〉P . It follows that

2〈σ1
xσ

1
y〉P =

1

2
〈(sx + tx)(sy + ty)〉P = 〈sxsy〉P + 〈sxty〉P = 〈sxsy〉P = 〈σxσy〉Ising (2.60)

as claimed.
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2.3 Convexity: Helffer–Sjöstrand representation and Brascamp–Lieb inequality

Mean field theory is an example of an exactly solvable spin system and thus provides a very useful reference
for comparision, as we saw in the previous subsections. An equally important reference system is given
by the Gaussian free field, which is given by the probability measure

P (dϕ) =
1

Z
e−S(ϕ) dϕ, S(ϕ) =

1

2

∑
xy

|ϕx − ϕy|2 +
1

2
m2
∑
x

|ϕx|2, (2.61)

where dϕ is the Lebesgue measure on (Rn)V . For notational convenience, we restrict to n = 1 throughout
this section, though the content does not rely on it. The action S is quadratic, and its generator (which
is now the same as its constant Hessian) is

D2S = −∆ +m2, (2.62)

where ∆ is the graph Laplacian defined by (−∆f)x =
∑

y∼x(fx − fy). Indeed,

1

2

∑
xy

|ϕx − ϕy|2 =
1

4

∑
x

∑
y∼x
|ϕx − ϕy|2 =

1

4

∑
x

∑
y∼x

(
|ϕx|2 + |ϕy|2 − 2ϕx · ϕy

)
(2.63)

=
1

2

∑
x

∑
y∼x

ϕx · (ϕx − ϕy) =
1

2

∑
x

ϕx · (−∆ϕ)x. (2.64)

Much can now be calculated using the Gaussian structure. We can return to this in detail later. For now,
we only note that two-point function is always summable if m2 > 0, and thus the spin system is in a high
temperature phase if m2 > 0.

Exercise 2.11. Let m2 > 0. Show that

〈ϕxϕy〉 = (−∆ +m2)−1
xy ,

∑
y

〈ϕxϕy〉 =
1

m2
<∞, (2.65)

and that on the torus, (−∆ +m2)−1
xy actually decays exponentially in |x− y|.

Given an action S : RN → R, we now consider the general probability measure (assuming it is defined)

P (dϕ) =
1

Z
e−S(ϕ) dϕ, (2.66)

and denote its expectation by 〈·〉 or 〈·〉S (if another expectation appears). Compared to mean field theory,
where the dimension n was the number of spin components and therefore fixed (for example n = 1 for the
Ising model), now we are interested in the case that the dimension is N = n|V | is unbounded (proportional
to the number of vertices).

Notation. For any smooth enough functions F : RN → R, write DxF = ∂
∂ϕx

F , DF = (D1F, . . . ,DNF ),

and D2F for the Hessian of F . For two quadratic forms Q and Q′ (such as D2F (ϕ)), we write Q 6 Q′ if
Q(h, h) 6 Q′(h, h) for any h; in particular Q 6 c means Q(h, h) 6 c|h|2 for any h.

Definition 2.12. The Dirichlet form associated to P is

〈(DF )(DG)〉 =
∑
x

〈(DxF )(DxG)〉. (2.67)

Its symmetric generator (acting on sufficiently nice test functions) is given by

L = −
∑
x

D2
x +

∑
x

(DxS)Dx. (2.68)
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For Dirichlet forms, the generator L can always be defined as a self-adjoint linear operator on L2(P ).
There are many textbook references treating this in detail; e.g. [41, 39]. In this section, we will not be
too careful about such points. For the material of this section, see in particular [30].

Exercise 2.13. Check that L is the generator of (2.67) in the sense that for nice F and G it holds that

〈(DF )(DG)〉 = 〈F (LG)〉. (2.69)

Strong results about P relating to the Gaussian case (in which D2S is constant) exist if V is uniformly
strictly convex, which we will assume throughout this section.

Definition 2.14. S : RN → R is uniformly strictly convex if D2S(ϕ) > c id as quadratic forms for c > 0
independent of ϕ.

Proposition 2.15 (Helffer–Sjöstrand representation). Assume that S is uniformly strictly convex (and
perhaps that S and its derivatives obey some growth condition). Then for any F,G : RN → R (sufficiently
nice),

〈F ;G〉 = 〈DF (ϕ) · L−1DG(ϕ)〉, (2.70)

where L is the Witten Laplacian on L2(P )⊗ RN given by

L = L⊗ id +D2S. (2.71)

For the proof, we require some (perhaps somewhat technical) properties of L. Note that U : L2(RN )→
L2(P ), F 7→ UF = e

1
2
SF is a unitary map, and that

ULU−1 = −
∑
x

D2
x +

1

4

∑
x

(DxS)2 − 1

2

∑
x

D2
xS. (2.72)

Thus L is unitarily equivalent to the Schrödinger operator −
∑

xD
2
x+V with potential V = 1

4

∑
x(DxS)2−

1
2

∑
xD

2
xS.

Lemma 2.16. V →∞ implies that −
∑

xD
2
x + V (and thus L) have compact resolvent.

Proof. [40, Theorem XIII.67]

The assumption of the lemma can be weakened somewhat [30, Proposition 6.8.2]. The typical example
of a continuous spin model that we are interested in is the |ϕ|4 model given by S = 1

2(ϕ,−∆ϕ)+
∑

x v(ϕx)
with v(t) = 1

4gt
4 + 1

2νt
2 and g > 0. Then

DxS = (−∆ϕ)x + gϕ3
x + νϕx, D2

xS = 2d+ ν + 3gϕ2
x, (2.73)

and the growth assumption V →∞ is easily satisfied.

Lemma 2.17. Under the previous condition, ImL = {F ∈ L2(P ) : 〈F 〉 = 0}.

Proof. By the spectral theorem for compact self-adjoint operators, the eigenvalues of L are discrete and
since L is positive they are all nonnegative. The lowest eigenvalue 0 is simple because LF = 0 implies

0 = 〈F (LF )〉 = 〈(DF )2〉, (2.74)

and thus DF = 0 almost everywhere, which implies that F is constant. Therefore kerL = {constants},
and ImL = (kerL)⊥ since L is self-adjoint.
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Proof of Proposition 2.15. By Lemma 2.17, there exists U such that G− 〈G〉 = LU , and therefore

DG = DLU = LDU. (2.75)

Since L is a positive operator on L2(P ) and S is uniformly strict convex, so D2S is strictly positive, the
operator L is invertible on L2(P )⊗ RN . Thus (2.75) implies that DU = L−1DG. Thus

〈F ;G〉 = 〈F (G− 〈G〉)〉 = 〈F (LU)〉 = 〈(DF )(DU)〉 = 〈DF · L−1DG〉, (2.76)

so (2.70) holds as claimed.

Corollary 2.18 (Brascamp–Lieb inequality). Assume that S is uniformly strictly convex. Then

〈F ;F 〉 6 〈DF (ϕ) · [D2S(ϕ)]−1DF (ϕ)〉. (2.77)

Proof. We prove the inequality only for S such that the conclusion of Proposition 2.15 holds. By definition,
L is a positive operator on L2(P ), and by assumption D2S(ϕ) is positive and has bounded inverse. This
implies the quadratic form inequality

L−1 = (L⊗ 1 +D2S(ϕ))−1 6 (D2S(ϕ))−1. (2.78)

The claim then follows from (2.70).

In particular, the Brascamp–Lieb inequality implies bounds on correlations.

Corollary 2.19. Assume that S ∈ C2 is even and that D2S(ϕ) > Q for a strictly positive quadratic form
Q on RN , uniformly in ϕ. Then, for any h ∈ RN ,

〈e(h,ϕ)〉 6 e
1
2

(h,Q−1h). (2.79)

Proof. Set F (ϕ) = (h, ϕ) and v(t) = log〈etF 〉. Then the claim is equivalent to v(t) 6 1
2 t

2(h,Q−1h). Let

〈G〉t =
〈Ge−tF 〉
〈e−tF 〉

. (2.80)

Since F is linear in ϕ, the Brascamp–Lieb inequality (2.77) also applies to 〈·〉t instead of 〈·〉, and therefore

v′′(t) = 〈F ;F 〉t 6 〈DF · [D2S]−1DF 〉t 6 〈DF ·Q−1DF 〉t = (h,Q−1h). (2.81)

Since v(0) = 0 and v′(0) = 〈F 〉 = 0 (since V is even), this implies

v′(t) =

∫ t

0
v′′(s) ds 6 t(h,Q−1h), v(t) =

∫ t

0
v′(s) ds 6

t2

2
(h,Q−1h), (2.82)

as claimed.

Example 2.20 (Boundedness of the susceptibility). For any continuous spin model with S(ϕ) = D(ϕ) +∑
x v(ϕx) with D(ϕ) = 1

2

∑
xy |ϕx − ϕy|2 and v′′(t) > δ > 0, the Brascamp–Lieb inequality implies

χ =
1

|V |
∑
x,y

〈ϕx;ϕy〉 6
1

|V |
sup
ϕ

[D2S(ϕ)]−1(1, 1) 6
1

δ
. (2.83)

Thus a strictly convex action implies that the susceptibility is bounded (as in mean field theory).

Remark 2.21 (Decay of correlations). Using the Helffer-Sjöstrand representation, it can also be shown
that the two-point function decays exponentially; see [29].
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2.3.1. Application: Hubbard–Stratonovich transform in general spin systems. Let J be the
coupling matrix of the Ising or O(n) model. By addition of a constant diagonal matrix, we can assume
that J is positive definite; the addition of the constant does does not change the probability measure if
the length of the spins is constant.

Exercise 2.22. For any positive definite N ×N matrix J , it holds that

e
1
2

(σ,Jσ) ∝
∫
RN

e−
1
2

(ψ,Jψ)e(σ,Jψ) dψ ∝
∫
RN

e−
1
2

(ψ,J−1ψ)e(σ,ψ) dψ. (2.84)

Exactly as in (1.46)–(1.47), with the same definition of the function v : Rn → R as below (1.47), the
first identity in (2.84) implies∫

(Rn)V
e

1
2

(σ,Jσ)+(h,σ) µ⊗V (dσ) ∝
∫

(Rn)V
e−

1
2

(ψ,Jψ)
∏
x

ev((Jψ)x+hx) dψ = e
1
2

(h,J−1h)

∫
(Rn)V

e−S(ψ)+(h,ψ) dψ,

(2.85)
with action

S(ψ) =
1

2
(ψ, Jψ)−

∑
x

v((Jψ)x). (2.86)

In contrast to (1.47), the integral is now over nN instead of n variables. Regarding the partition function
Z = Z(h) as a function of h, the two-point function is given by

〈σxσy〉 = D2 logZ(0; δx, δy) = [J−1]xy + 〈ψxψy〉S . (2.87)

An alternative form is obtained using the second inequality of (1.47) (i.e, by rescaling by J−1). Then the
action becomes

S(ψ) =
1

2
(ψ, J−1ψ)−

∑
x

v(ψx). (2.88)

In this case, the spin-spin coupling J is not nearest-neighbour in the transformed variables ψ, but with
a diagonal added above it typically (say on the torus) has exponential decay; see below. In the following
proposition, we assume the form (2.86).

Proposition 2.23. Assume that sup∇2v 6 λ id and that ‖J‖ 6 (1− δ)/λ. Then

D2S(ψ) > δJ. (2.89)

In particular, S is then uniformly strictly convex. Thus (possibly subject to technical growth assump-
tions on v), the susceptibility is bounded (Example 2.20) and the two-point function decays exponentially
(at least if J−1 does and perhaps technical conditions to show Remark 2.21 are satisfied).

Proof. By definition,

D2
ϕ

(∑
x

v(ϕx)

)
= diag(∇2v(ϕx)) 6 λ id, (2.90)

where diag is a block diagonal matrix, consisting of n×n blocks. Thus, withD2
ψF (Jψ) = JT [D2F ](Jψ)J 6

cJTJ for F (ϕ) =
∑

x v(ϕx), it follows that

D2S(ψ) > J − λJTJ = (1− λJT )J, (2.91)

and since ‖J‖ 6 (1− δ)/λ the claim (2.89) follows.
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Example 2.24. Consider the nearest-neighbour Ising model on the torus Tdm, i.e., with Jxy = β1(x ∼
y) + β(2d + λ)1(x = y) the coupling matrix with a constant diagonal term added, making J strictly
positive definite for λ > 0. Indeed, its Fourier transform is

Ĵ(k)/β = 2
d∑
i=1

cos(ki) + 2d+ λ > 0 if λ > 0, (2.92)

and ‖J‖ 6 (4d+ λ)β. Moreover, since 1/Ĵ is analytic in a strip around the real axis, if λ > 0, it can be
shown that there exists some m > 0 such that

[J−1]xy 6 e−m|x−y|. (2.93)

By Example 1.13, for the Ising model,

v(t) = log cosh(t) + log 2, v′(t) = tanh(t) ∈ [−1, 1], v′′(t) =
1

cosh2(t)
6 1. (2.94)

Thus λ = 1 and the condition of Proposition 2.23 is satisfied if (4d+λ)β 6 1−δ. Hence, for any β < 1/4d,
there are some δ, λ > 0 so that the condition holds. (Can this be improved to give the mean field bound
β < 1/2d on the transition temperature? The loss of the factor 1/2 might be technical.)

The growth assumption V →∞ should also be satisfied. (Verify that (t+v′(t))2 →∞ as |t| → ∞ since
|v′| 6 1, and ‖Jψ‖ → ∞ as ‖ψ‖ → ∞ since ‖ψ‖ 6 1

λ‖Jψ‖. Thus (DxS)2 = ((Jϕ)x + v′((Jϕ)x))2 → ∞
and D2

xS is bounded, so that V →∞.)

Example 2.25. Instead of nearest-neighbour spin-spin coupling, one can of course consider more general
Jxy such as finite range distributions (e.g., constant in a band), or with exponential decay in |x−y| → ∞.
In these cases, the behaviour of the model is expected to remain identical. In particular, one can consider

J = β(1− w2∆)−1. (2.95)

Then 0 6 Jxy/β ≈ Ce−c|x−y|/w (so w is a measure of the bandwidth) and
∑

y Jxy = (J1)x = β (so β is
the mean field temperature). In particular, as w → 0, J becomes diagonal (independent spins), while in
the limit w →∞, Jxy becomes constant for all x, y ∈ V (mean field theory). Then, with this choice of J ,
instead of the first equality in (2.84) it is better to use the second one, giving

e
1
2

(σ,Jσ) ∝
∫
RN

e−
1
2

(ψ,J−1ψ)e(σ,ψ) dψ ∝
∫
RN

e
− 1

2β
(ψ,−w2∆ψ)− 1

2β
(ψ,ψ)

e(σ,ψ) dψ

∝
∫
RN

e−
β
2

(ψ,−w2∆ψ)−β
2

(ψ,ψ)e(σ,βψ) dψ. (2.96)

Thus the action after Hubbard–Stratonovich transform becomes

S(ψ) =
β

2
(ψ,−w2∆ψ) +

∑
x

(
β

2
|ψx|2 − v(βψx)

)
, (2.97)

which has nearest-neighbour spin-spin coupling in the ψ variables. In particular, for the Ising model, the
action becomes strictly convex if β > β2, i.e., β < 1 as in mean field theory.
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3 Low temperature by inequalities

Low temperatures are much more difficult to understand than high temperatures, and a robust under-
standing is still lacking for n > 2. In this section, we consider non-expansion methods applicable for low
temperature.

3.1 Peierls argument

The Peierls argument shows that the Ising model has a phase transition in dimensions d > 2.

Theorem 3.1. Let d > 2. For any Λ ⊂ Zd, for the nearest-neighbour Ising model on Λ with + boundary
conditions outside Λ, for any x ∈ Λ, it holds that 〈σx〉 → 1 as J →∞, uniformly in Λ and x.

Proof. We restrict to d = 2; the same argument applies in d > 2, but requires slightly more care there.
The energy of a spin configuration σ is

H = −J
∑
xy

σxσy, (3.1)

Thus the energy difference between a ++ and +− pair of spins is 2J . Moreover, the energy cost of an island
of − spins surrounded by + spins (or vice-versa) is 2J × (length of the boundary). The configurations σ
are in correspondence with contours separating + and − island; denote these contours by Γ. Then

H = 2J |Γ| − J |E|. (3.2)

Decompose Γ into disconnected components γ (breaking ambiguities). The probability of some γ is

p(γ) =

∑
Γ⊃γ e−2J |Γ|∑

Γ e−2J |Γ| . (3.3)

Since, given any γ, ∑
Γ

e−2J |Γ| >
∑

Γ′=Γ\γ,Γ⊃γ

e−2J |Γ′| = e+2J |γ|
∑
Γ⊃γ

e−2J |Γ|, (3.4)

it holds that
p(γ) 6 e−2J |γ|. (3.5)

Since 〈σx〉 = 1 − 2〈1σx=−1〉, and since σx = −1 implies that x is enclosed by some γ, written x ⊂ γ,
it suffices to estimate

〈1σx=−1〉 6
∑
γ⊃x

p(γ). (3.6)

Fix some y and consider contours γ with γ 3 y (on the contour). Let 2n be the number of horizontal
edges and 2m the number of vertical edges of γ. Then

(number of γ 3 y with given n,m) 6 3(2n+2m). (3.7)

Fix some x and a contour γ ⊃ x (enclosing x). Then

(number of translates γ′ of γ such that γ′ ⊃ x) 6 nm. (3.8)

It follows that

〈1σx=−1〉 6
∑
n,m

nm32n+2me−2J(2m+2n) =

(∑
n

ne2n(log 3−2J)

)
︸ ︷︷ ︸

g(J)

2

. (3.9)
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Clearly, g(J)→ 0 as J →∞. It follows that, as J →∞,

〈σx〉 > 1− 2g(J)2 → 1 (3.10)

as claimed.

3.2 Infrared bound and reflection positivity

The most important result for spin systems in dimensions greater than two is the infrared bound [21]. It
only applies to the discrete torus Tdm with constant spin-spin couplings J (and other interactions that are
reflection positive), which we assume throughout this section. For convenience, we normalize Je = 1 for
all e, by rescaling µ. The Hamiltonian (without magnetic field) is then

H = −
∑
xy

ϕx · ϕy =
1

2

∑
xy

|ϕx − ϕy|2 −
d

4

∑
x

|ϕx|2. (3.11)

The second term on the right-hand side can be kept or dropped at convenience, by changing the single
spin measure µ.

Theorem 3.2 (Infrared bound). Consider a spin system on (V,E) = Tdm with Je = 1 for all e ∈ E and
O(n) invariant single spin measure µ. Then for any h : V → Rn with

∑
x hx = 0,

〈e(h,ϕ)〉 6 e
1
2

(h,(−∆)−1h). (3.12)

In particular, for h with
∑
h = 0 then

〈(h, ϕ)2〉 6 (h, (−∆)−1h). (3.13)

In the above normalization, in which J = 1, the infrared bound provides a uniform bound on fluctua-
tions, independent of the measure µ (and thus the temperature), as opposed to (2.79), for example, which
is only effective at high temperature. On the other hand, the magnitude of the spin field ϕx can be made
large by choice of the single-spin measure µ. In particular, in the O(n) model with above normalization,
|ϕx| =

√
β becomes large for large β (small temperatures).

Proposition 3.3. Fix a single-spin measure µ1 and set µβ(ds) = µ1(ds/
√
β). As β →∞, it holds that

lim
N→∞

〈|ϕx|2〉β →∞. (3.14)

Proof. Let pN = 1
N logZ and p = limN→∞ pN . Let Mβ = max{|s| : s ∈ suppµβ}. First, we show

p(β) ∼ 2dM2
β = 2dβM2

1 (β →∞). (3.15)

Let A1 ⊂ Rn be a with s · s′ > (1− δ)M2
1 for s, s′ ∈ A1 and µ1(A1) > 0, and set A =

√
βA1. Then

e2dM2|V |µ(Rn)|V | > Z(β) > e2dM2|V |µ(A)|V |, (3.16)

and therefore
2dM2 + logµ(Rn) > pN > 2dM2 + logµ(A). (3.17)

Since µ(Rn) and µ(A) are independent of β, this shows

p(β) ∼ 2dβM2
1 (β →∞). (3.18)

Finally, the inequality et − 1 6 tet (convexity) implies

〈|ϕx|2〉 >
1

2d

∑
y∼x
〈ϕx · ϕy〉 > p(β)− p(0) ∼ 2dβM2

1 , (3.19)

and the claim follows.
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Notation. The Fourier transform of a function f : Zd → C or f : Tdm → C is given by f̂(k) = f̂k =∑
x eik·xfx, and k takes values in the Fourier dual (Zd)∗ = Td = [−π, π]d respectively in (Tdm)∗ = [−π, π]d∩

m−1Zd. These Fourier space tori are not to be confused with the torus Tdm in real space. In the last case,
we identify f̂ with a function that is constant on cubes of side length 1/m such that∫

Td
f(k) dk =

1

md

∑
k∈(Tdm)∗

f(k). (3.20)

The Fourier inversion formula is then fx = 1
2π

∫
eik·xf̂(k) dk.

Exercise 3.4. Let ∆̂(k) = 2
∑d

i=1(cos ki − 1) be the Fourier multiplier of the discrete Laplace operator
∆. Then ∫

Td

dk

−∆̂(k)

{
<∞ (d > 2)

=∞ (d 6 2),
(3.21)

where, in the discrete case, <∞ means uniformly bounded and =∞ means unbounded.

The infrared bound, together with observation that |ϕx| grows with β, implies that there is long-range
order for large β and d > 3. Long-range order means that the two-point function 〈ϕxϕy〉 does not decay
to 0 as the distance between x and y becomes large (as it does for high temperatures). In different terms,
it means that the ground state spin wave is macroscopically occupied. Without reflection positivity, which
is used in the proof of Theorem 3.2, such continuous symmetry breaking is very difficult to prove.

Corollary 3.5 (Long-range order, spin wave condensation).∑
y

〈ϕx · ϕy〉 > N

[
〈|ϕx|2〉 −

∫
(Tdm)∗\0

(−∆̂)−1(k) dk

]
, (3.22)

and in the infinite volume limit,

lim sup
|x−y|→∞

〈ϕx · ϕy〉 > 〈|ϕx|2〉 −
∫

(−∆̂)−1(k) dk. (3.23)

Since, in d > 3, the sum
∫

(Tdm)∗\0(−∆̂)−1(k) is uniformly bounded, it follows that the 0-mode is macro-

scopically occupied whenever 〈|ϕx|2〉 is sufficiently large.

Proof. Denoting by ϕ̂k =
∑

x eik·xϕx the Fourier transform of ϕ, and by ∆̂(k) = 2
∑d

i=1(cos ki − 1) the
Fourier multiplier of the discrete Laplace operator ∆, the infrared bound (3.13) implies that, for k 6= 0,

〈|ϕ̂k|2〉 6 N(−∆̂)−1(k). (3.24)

On the other hand, by Parseval’s identity,〈
1

N

∑
k

|ϕ̂k|2
〉

=

〈∑
x

|ϕx|2
〉

= N〈|ϕx|2〉. (3.25)

Thus∑
y

〈ϕx · ϕy〉 =
1

N

∑
x,y

〈ϕx · ϕy〉 =
1

N

〈∣∣∣∑
x

ϕx

∣∣∣2〉

=
1

N
〈|ϕ̂0|2〉 = N〈|ϕx|2〉 −

1

N

∑
k 6=0

〈|ϕ̂k|2〉 > N

〈|ϕx|2〉 − 1

N

∑
k 6=0

(−∆̂)−1(k)

 , (3.26)

as claimed.
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Proof [21]. 〈ϕx · ϕy〉 is a positive definite Tdm × Tdm matrix. Bochner’s theorem implies that there exists
a positive measure ω on (Tdm)∗ such that

〈ϕx · ϕy〉 =

∫
eik·(x−y) ω(dk). (3.27)

The infrared bound implies that for any h with ĥ(0) = 0, it holds that∫
|ĥ(k)|2 ω(dk) = 〈(h, ϕ)2〉 6 (h, (−∆)−1h) =

∫
|ĥ(k)|2

−∆̂(k)
dk. (3.28)

Since h is arbitrary with ĥ(0) = 0, this implies that

ω = cδ0 + g (3.29)

for some constant c > 0 and g : Td → R absolutely continuous with g(k) 6 1/(−∆̂(k)). Since d > 3, in
particular

∫
g dk is bounded independently of β. It follows that

〈|ϕx|2〉 =

∫
dω = c+

∫
g dk (3.30)

Thus

〈ϕx · ϕy〉 =

∫
eik·(x−y) ω(dk) = c+

∫
eik·(x−y) g(k) dk = 〈|ϕx|2〉 −

∫
g(k) dk +

∫
eik·(x−y) g(k) dk, (3.31)

as claimed.

The proof of Theorem 3.2 relies on the method of reflection-positivity. While powerful when applicable,
it exploits symmetries of the torus in a crucial way, and fails for more general geometries (for which the
infrared bound is believed to continue to hold, but few methods of proof are known).

Let H(ϕ) = 1
2(ϕ,−∆ϕ). Since, for any h with

∑
h = 0,

H(ϕ)− (h, ϕ) =
1

2
(ϕ,−∆ϕ)− (h, ϕ) = H(ϕ−∆−1h) +

1

2
(h, (−∆)−1h), (3.32)

we have∫
e−H(ϕ)+(h,ϕ)µ⊗V (dϕ) = e

1
2

(h,(−∆)−1h)

∫
e−H(ϕ−∆−1h)µ⊗V (dϕ) = e

1
2

(h,(−∆)−1h)Z(−∆−1h) (3.33)

where

Z(h) =

∫
e−H(ϕ+h)µ⊗V (dϕ). (3.34)

To prove Theorem 3.2, it therefore suffices to show that Z(h) 6 Z(0) for any h.

Consider a plane going through the midpoints of edges (an edge plane) that splits the torus into two
halves. (It is also possible to consider planes going through vertices instead of edges.) The plane gives
a decomposition V = V+ ∪ V− and E = E+ ∪ E− ∪ E0, with E0 the edges between the two halves. Let
θ : V± → V∓ be the reflection about this plane, and

(θϕ)x = ϕθ(x), (θF )(ϕ) = F (θϕ). (3.35)
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Definition 3.6 (reflection positivity). Let (V,E) = Tdm. A measure on ΩV is reflection positive if

〈FθG〉 = 〈GθF 〉, 〈FθF 〉 > 0. (3.36)

Lemma 3.7. Any product measure µ⊗V is reflection positive.

Proof. Clearly, ϕ|V+ and ϕ|V− are independent, so

〈FθG〉 = 〈F 〉〈θG〉 = 〈F 〉〈G〉, (3.37)

and both conditions for reflection positivity are obvious from this.

By definition, reflection positivity of 〈·〉means that 〈FθG〉 is a symmetric positive semi-definite bilinear
form. The importance of reflection positivity results from the Cauchy–Schwarz inequality

〈FθG〉2 6 〈FθF 〉〈GθG〉. (3.38)

Lemma 3.8. Let θ be a reflection and 〈·〉 reflection positive. Then for any A,B,C,D : ΩV+ → R,

〈eA+θB+CθD〉2 6 〈eA+θA+CθC〉〈eB+θB+DθD〉, (3.39)

and the measures 〈(·)eA+θA+CθC〉 and 〈(·)eB+θB+DθD〉 are reflection positive. In fact, the same holds with
CθD, CθC, and DθD replaced by sums of such terms.

Proof. Expand the exponential as

eA+θB+CθD =
∞∑
k=0

1

k!
(eACk)︸ ︷︷ ︸

Xk

θ (eBDk)︸ ︷︷ ︸
Yk

. (3.40)

Then the Cauchy-Schwarz inequality (twice) implies

〈eA+θB+CθD〉2 6

[ ∞∑
k=0

1

k!
〈XkθXk〉1/2〈YkθYk〉1/2

]2

6
∞∑
k=0

1

k!
〈XkθXk〉

∞∑
k=0

1

k!
〈YkθYk〉. (3.41)

By (3.40) and reflection positivity of 〈·〉, we also have

〈(FθF )eA+θA+CθC〉 =

∞∑
k=0

1

k!
〈(FXk)θ(FXk)〉 > 0. (3.42)

This completes the proof.

Lemma 3.9 (Gaussian domination). For any h : V → R,

Z(h) 6 Z(0). (3.43)

Proof. By definition,

H(ϕ) =
1

2

∑
E+

|ϕx − ϕy|2 +
1

2

∑
E−

|ϕx − ϕy|2 +
1

2

∑
E0

|ϕx − ϕy|2 = H+(ϕ) +H−(ϕ) +H0(ϕ), (3.44)

Since H−(ϕ) = θH+(ϕ), and since

H0(ϕ) =
1

2

∑
xy∈E0

|ϕx − ϕy|2 =
1

2

∑
x∈V+∩E0

(|ϕx|2 + θ|ϕx|2 + 2ϕx · θϕx), (3.45)
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we see that H(ϕ) is of the form

H(ϕ) = A+ θA+
∑

CθC, (3.46)

with A,C : ΩV+ → R. From this, it follows that H(ϕ+ h) is of the form

H(ϕ+ h) = Ah+ + θAh− +
∑

Ch+θCh− , (3.47)

with Ah± , Ch± : ΩV+ → R. Lemma 3.8 implies that

Z(h)2 6 Z(h+)Z(h−) (3.48)

where h+ = h on V+ and h+ = θh on V− and similarly for h−. Note that ∇eh± = 0 for e ∈ E0 and that
∇eh = 0 implies ∇eh± for any e ∈ E. Thus, by iteration, it follows that

Z(h) 6 sup
f :∇f=0

Z(f) (3.49)

where ∇f = 0 means ∇ef = 0 for all e ∈ E. Thus f is constant and therefore Z(f) = Z(0).

Reflection positivity extends a number of other very interesting models, but not for example to next-
to-nearest neighbour interactions, and is in this sense rather special. It is a major open problem to prove
continuous symmetry breaking without reflection positivity.

3.3 Mermin–Wagner Theorem; McBryan–Spencer Theorem

Theorem 3.10 (Mermin–Wagner Theorem). For the O(n) model with n > 2 on the discrete torus, with
magnetic field h = (h1, 0, . . . , 0) > 0, for small k, it holds that∑

x

eik·x〈σ2
0σ

2
x〉 > c〈σ1

0〉2/(β|k|2 + h1〈σ1
0〉). (3.50)

In particular, in d = 2, since
∫
|k|−2 dk =∞, it follows that 〈σ1

0〉 → 0 as h1 → 0 for any β > 0.

We will only give the proof for n = 2. The general case follows by considering the first two components.
In preparation, recall that the Hamiltonian is then

H = −
∑
xy

β cos(θx − θy)−
∑
x

h1 cos θx. (3.51)

The Ward identity (2.46) associated to global spin rotation (all spins are rotated by the same angle), with
observable A = sin θ0, is

〈cos θ0〉 = 〈Ȧ〉 = 〈AḢ〉 = h1
∑
x

〈sin θ0 sin θx〉. (3.52)

(Compare this to the Ward identity in random matrix theory: ImGxx(z) = (Im z)
∑

y |Gxy(z)|2. In fact,
many aspect of random matrix theory can be viewed in terms of supersymmetric spin systems [45, 46].)

Proof [24, 45]. Let D = N−1/2
∑

x e−ik·x ∂
∂θx

and Ŝ(k) = N−1/2
∑

x eik·x sin θx. By integration by parts
and the Cauchy–Schwarz inequality then

〈cos θ0〉 = 〈DŜ(k)〉 = 〈Ŝ(k)(DH)〉 6 〈|Ŝ(k)|2〉1/2〈|DH|2〉1/2, (3.53)

and thus
〈|Ŝ(k)|2〉 > 〈cos θ0〉2/〈|DH|2〉 = 〈σ1

0〉2/〈|DH|2〉. (3.54)
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By translation invariance, the left-hand side is

〈|Ŝ(k)|2〉 =
1

N

∑
x,y

eik·(x−y)〈sin θx sin θy〉 =
1

N

∑
x,y

eik·(x−y)〈sin θx−y sin θ0〉 =
∑
x

eik·x〈sin θx sin θ0〉

=
∑
x

eik·x〈σ2
xσ

2
0〉. (3.55)

Since ∑
u,v

∂2

∂θx∂θy
cos(θu − θv) =

{
+2 cos(θx − θy) (x 6= y)

−2
∑

v cos(θx − θv) (x = y),
(3.56)

and by another integration by parts,

〈|DH|2〉 = 〈DDH〉 =
1

N

∑
xy

〈2β cos(θx − θy)(1− eik·(x−y)) + h1 cos θx〉

6
1

N

∑
xy

〈β| cos(θx − θy)||k|2|x− y|2 + h1 cos θx〉

6 2d(β|k|2 + h1〈cos θ0〉) 6 2d(β|k|2 + h1〈σ1
0〉). (3.57)

This completes the proof.

There is also a quantitative version of the Mermin–Wagner Theorem for the two-point function.

Theorem 3.11 (McBryan–Spencer Theorem). For the O(n) model with n > 2 on the discrete torus, with
magnetic field h = 0, it holds that

〈σ0 · σx〉 6 Cβ,ε(1 + |x|)−(1−ε)/(2πβ). (3.58)

Exercise 3.12. In d = 2, define the Green’s function on the discrete torus by Cx =
∑

k 6=0 eik·x(−∆̂(k))−1.
Show that

Cx ∼
1

2π
log |x| as |x| → ∞, (3.59)

(in the sense of first taking the infinite volume limit and then |x| → ∞), and that

|Cx − Cy| 6 2 for x ∼ y. (3.60)

Proof [32]. Again we only provide the proof for n = 2; the general case is again analogous by applying the
argument to the first two components and using rotational invariance. The point x is fixed throughout
the proof. By definition and since 〈sin(θ0 − θx)〉 = 0,

〈σ0 · σx〉 = 〈cos(θ0 − θx)〉 = 〈ei(θ0−θx)〉 =
1

Z

∫
eβ

∑
yz cos(θy−θz)+i(θ0−θx) dθ. (3.61)

Use the complex translation (and periodicity to cancel the vertical parts of the contours)

θy 7→ θy + iay, ay =
1

β
(Cy − Cy−x). (3.62)

Then, since cos(u+ iv) = cos(y) cosh(v) + i sin(y) sinh(v), and since

〈cos(θx − θ0)〉 = e−(a0−ax) 1

Z

∫
eβ

∑
yz cos(θy−θz+iay−iaz)+i(θ0−θx) dθ

6 e−(a0−ax) 1

Z

∫
eβ

∑
yz cos(θy−θz) cosh(ay−az) dθ 6 e−(a0−ax)+β

∑
yz(cosh(ay−az)−1). (3.63)
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To estimate the right-hand side, use |ay−az| 6 4/β for |y−z| = 1 by the exercise, so that for β sufficiently
large depending on ε, by Taylor approximation of cosh,∑

yz

(cosh(ay − az)− 1) 6
1

2
(1 + ε)

∑
yz

(ay − az)2 =
1

2
(1 + ε)(a,−∆a) =

1 + ε

2β
(a0 − ax). (3.64)

Since a0 − ax = − 2
β (Cx − C0), this gives

〈cos(θx − θ0)〉 6 e−(1−ε)(a0−ax)/2 = e(1−ε)(Cx−C0)/β = |x|−(1−ε)/(2πβ)+o(1), (3.65)

as claimed.

For high temperatures β < 1, we have already seen that this bound on the two-point function is
not sharp: the two-point function actually decays exponentially. It is believed, though unproved, that
exponential decay persists in d = 2 for all temperatures if n > 3 (in particular for the Heisenberg model).
One of the deepest theorems in the theory of spin systems is that for d = 2 and n = 2, for low temperatures
β � 1, power law decay is actually correct. Thus there is a phase transition without long range order,
and in fact many interesting properties: the Kosterlitz–Thouless transition.

Theorem 3.13 (Fröhlich–Spencer). For the O(2) model in d = 2, for any sufficiently large β, there exists
β′ > 1/(4π) such that

〈σ0 · σx〉 > Cβ(1 + |x|)−1/(2πβ′). (3.66)

The proof [22] of Theorem 3.13 is very interesting, but long and difficult, and will not be given for
now. Time permitting, we will come back to it at a later point in class.

What remains?

(a) What happens between high and low temperatures? In particular, how does the transition between
the two regimes occur? As in mean field theory, is there a unique transition temperature, are there critical
exponents, and what are they?

(b) Are there expansions at high and low temperatures that can give more precise information than the
upper and lower bounds presented? Are there expansions that converge near the transition?

(c) How do spin systems with nonabelian continuous symmetry behave in two dimensions? How is the
existence of the Kosterlitz–Thouless transition for abelian spin systems proved? How can one prove the
existence of a phase transition in spin systems with continuous symmetry without reflection positivity?

(d) Is the phase transition universal? In particular, are critical exponents independent of the single spin
measure µ?
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4 Expansions for high and low temperature

The bounds for high and low temperatures presented in the previous sections are very elegant. Expansion
is messier, but they are generally much more robust and can give more complete information when they
apply. Their ideas play a role in much of statistical mechanics.

4.1 High temperature expansion

For simplicity, we consider the Ising model, although without difficulties high temperature expansions
apply more generally. The partition function of the Ising model is

Z =
∑

σ∈{±1}V

∏
xy∈E

eβσxσy
∏
x∈V

ehxσx =
∑

σ∈{±1}V

∏
xy∈E

(eβσxσy − 1 + 1)
∏
x∈V

ehxσx . (4.1)

Since ∏
i∈I

(1 + ai) =
∑
J⊆I

∏
i∈J

ai, (4.2)

the partition function can be rewritten as

Z =
∑

σ∈{±1}V

∑
X⊂E

∏
xy∈X

(eβσxσy − 1)
∏

x∈V (X)

ehxσx
∏

x∈V \V (X)

ehxσx (4.3)

=
∑
X⊂E

 ∑
σ∈{±1}V (X)

∏
xy∈X

(eβσxσy − 1)
∏

x∈V (X)

ehxσx

 ∑
σ∈{±1}V \V (X)

∏
x∈V \V (X)

ehxσx

 (4.4)

The second sum is equal to∑
σ∈{±1}V \V (X)

∏
x∈V \V (X)

ehxσx =
∏

x∈V \V (X)

∑
σ∈{±1}

ehxσ =
∏

x∈V \V (X)

2 cosh(hx). (4.5)

The partition function becomes

Z =

(∏
x∈V

2 cosh(hx)

) ∑
X⊂E

 ∑
σ∈{±1}V (X)

∏
xy∈X

(eβσxσy − 1)
∏

x∈V (X)

ehxσx(2 cosh(hx))−1


=

(∏
x∈V

2 cosh(hx)

) ∑
X⊂E

K(X), (4.6)

with

K(X) =
∑

σ∈{±1}V (X)

∏
xy∈X

(eβσxσy − 1)
∏

x∈V (X)

ehxσx(2 cosh(hx))−1. (4.7)

Using

eβσxσy = cosh(β)(1 + tanh(β)σxσy), (4.8)

an alternative form of the high temperature expansion is given by

Z =

(∏
x∈V

2 cosh(hx)

)
cosh(β)|E|

∑
X⊂E

K(X) (4.9)
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with
K(X) = tanh(β)|X|

∑
σ∈{±1}V (X)

∏
xy∈X

σxσy
∏

x∈V (X)

ehxσx(2 cosh(hx))−1. (4.10)

Let B = E be the edges and P the set of subgraphs (i.e., subsets of B). Elements of P are also called
polymers. Clearly, if X,Y ∈ P have no vertices in common, we have K(X ∪ Y ) = K(X)K(Y ), and up to
a multiplicative constant the partition function takes the form

Z =
∑
X∈P

K(X). (4.11)

This is an example of a polymer system. Correlation functions can also be expressed in terms of polymer
gas partition functions. By definition, the truncated correlation functions are

〈σx1 ; · · · ;σxk〉 =
∂k

∂hx1 · · · ∂hxk
logZ. (4.12)

In particular,

〈σx1 ;σx2〉 = 〈σx1σx2〉 − 〈σx1〉〈σx2〉, (4.13)

〈σx1 ;σx2 ;σx3〉 = 〈σx1σx2σx3〉 − 〈σx1σx2〉〈σx3〉 − 〈σx1σx3〉〈σx2〉 − 〈σx2σx3〉〈σx1〉
+ 2〈σx1〉〈σx2〉〈σx3〉. (4.14)

Set A = (x1, . . . , xk) and

KA(X) =

( ∏
x∈X∩A

∂

∂hx

)
K(X), (4.15)

with empty product interpreted as 1. Then

〈σx1 ; · · · ;σxk〉 =

∑
X∈PKA(X)∑
X∈PK(X)

= exp

[
log
∑
X

KA(X)− log
∑
X

K(X)

]
(4.16)

Thus it is very useful to be able to understand the logarithm of the polymer partition function. This will
be done in a more general context. To motivate it, we consider another example of polymer systems.

4.2 Peierls expansion

In this section, we again consider the Ising model. But now this is not merely a question of convenience;
the Peierls expansion does not apply to n > 1. Drop the last term in

H(σ) = −
∑
xy

βσxσy −
∑
x

hxσx = −
∑
xy

β(σxσy − 1)−
∑
x

hx(σx − 1)−

(∑
xy

β +
∑
x

hx

)
(4.17)

Denote by ZΛ,± the partition functions with ± boundary conditions on ∂Λ:

ZΛ,± =
∑

σ∈{±1}Λ
e−HΛ,±(σ). (4.18)

As in Section 4.2, denote by Γ the set of phase boundaries and by Γ0 the outermost boundaries (which
are well defined given + or − boundary conditions on ∂Λ). Then

ZΛ,+ =
∑
Γ0

∏
γ∈Γ0

(
Zintγ,−e−2β|γ|

)
=
∑
Γ0

∏
γ∈Γ0

(Zintγ,+K(γ)) , K(γ) = e−2β|γ|Zintγ,−
Zintγ,+

. (4.19)
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Iterating this identity until the γ do not enclose further phase boundaries, it follows that

ZΛ,+ =
∑

Γ

K(Γ), K(Γ) =
∏
γ∈Γ

K(γ). (4.20)

Let B be the set of simple phase boundaries and P the unions of such. Then again the partition function
takes the form of a polymer system ∑

X∈P
K(X), (4.21)

with K(X ∪ Y ) = K(X)K(Y ) for disjoint X,Y .

4.3 Polymer expansion

The high and low temperature expansions of the Ising model are examples of a polymer gas, which have
a wide range of other applications in statistical mechanics (see [27, 11, 12] and references).

Definition 4.1 (Polymer system). (a) Let B be a finite set, with a symmetric, reflexive relation express-
ing nonintersection of its elements. Let P be the set of subsets of B, and extend the notion of intersection
to P, so that X and Y intersect if γ and γ′ intersect for some γ ∈ X and γ′ ∈ Y . The X ∈ P are called
polymers. The set of connected polymers is denoted C.

(b) The activity is a function K : P→ C such that K(X∪Y ) = K(X)K(Y ) if X and Y do not intersect,
and with K(∅) = 1. The polymer partition function is

Z =
∑
X∈P

K(X). (4.22)

(c) Given X1, . . . , Xn ∈ C, we associate the graph G = G(X1, . . . , Xn) on vertices [n] with edges E(G) =
{ij : Xi and Xj intersect}. Then X1, . . . , Xn are disjoint if G is empty, and connected if G is connected.

Remark 4.2. Our connected polymers C are often simply called polymers (e.g. in [27]). More generally
than in the definition above, the activity could take values in a commutative normed algebra (for example
regarding the polymer activity as a function of a magnetic field h).

Exercise 4.3. (a) Show that the polymer partition function can be written as

Z =

∞∑
n=0

1

n!

∑
X1,...,Xn∈C

disjoint

K(X1) · · ·K(Xn) =

∞∑
n=0

1

n!

∑
X1,...,Xn∈C

K(X1) · · ·K(Xn)
∏
i<j

U(Xi, Xj), (4.23)

where
U(X,Y ) = 1X∩Y=∅. (4.24)

Thus the polymer partition function takes the form of a grand canonical partition function of a gas of
particles Xi which interact via the two-body interaction U (which is a hard-core repulsion). This explains
the name polymer gas.

(b) Show that the polymer partition function generalizes the product over B in the sense that∏
γ∈B

(1 +R(γ)) =
∑
X∈P

K(X) for K(X) =
∏
γ∈X

R(γ). (4.25)
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For a connected graph G, define the index or Ursell function of the hard core polymer gas by

I(G) =
∑
H⊂G

(−1)|E(H)|. (4.26)

The sum is over all spanning subgraphs H ⊂ G (thus H and G have the same vertex set).

Theorem 4.4 (Formal polymer expansion). As formal power series in K,

logZ =

∞∑
n=1

1

n!

∑
X1,...,Xn∈C
connected

K(X1) · · ·K(Xn)I(G(X1, . . . , Xn)). (4.27)

Proof. Given X1, . . . , Xn ∈ C, denote by G = G(X1, . . . , Xn) the connection graph associated to the Xi.
Then, since U(X,Y ) = 1 + (U(X,Y )− 1), by expansion,∏

i<j

U(Xi, Xj) =
∑
H⊂G

∏
ij∈H

(U(Xi, Xj)− 1) =
∑
H⊂G

(−1)|E(H)|. (4.28)

Thus

K(X1) · · ·K(Xn)
∏
i<j

U(Xi, Xj) =
∑
H⊂G

(−1)|E(H)|K(X1) · · ·K(Xn). (4.29)

The sum over the subgraphs H of G can be performed by first summing over partitions of the vertices
into connected components Vs and then over the connected subgraphs Hs with vertex sets Vs:

∑
H1,...,Hr

r∏
s=1

(−1)|E(Hs)|
∏
i∈Vs

K(Xi) =

r∏
s=1

∑
Hs⊂G|Vs

(−1)|E(Hs)|
∏
i∈Vs

K(Xi)

=
r∏
s=1

I(G|Vs)
∏
i∈Vs

K(Xi). (4.30)

Summing over the choices of X1, . . . , Xn such that G has connected components V1, . . . , Vr, writing Vs =
{vs,1, . . . , vs,ns} with |Vs| = ns, this becomes

r∏
s=1

[ ∑
Xvs,1 ,...,Xvs,ns∈C

G(Xvs,1 ,...,Xvs,ns )=G|Vs

I(G|Vs)
∏
i∈Vs

K(Xi)

]
. (4.31)

The term in the bracket only depends on G|Vs up to relabelling of its vertices. We may therefore replace
Vs by {1, . . . , ns} and the constraint G(Xvs,1 , . . . , Xvs,ns ) = G|Vs becomes that X1, . . . , Xns is connected.
Thus the term is the bracket equals:∑

X1,...,Xns∈C
connected

K(X1) · · ·K(Xns)I(G(X1, . . . , Xns)). (4.32)

For each choice of the sizes n1, . . . , nr of the connected components, the number of possibilities to choose
the sets V1, . . . , Vr is

n!

n1! . . . nr!
. (4.33)
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This gives

Z =
∞∑
n=0

1

n!

∑
X1,...,Xn∈C

K(X1) · · ·K(Xn)
∏
i<j

U(Xi, Xj)

=

∞∑
n=0

1

n!

∑
r

1

r!

∑
n1,...,nr

n!

n1! . . . nr!

r∏
s=1

[ ∑
X1,...,Xns∈C

connected

K(X1) · · ·K(Xns)I(G(X1, . . . , Xns))

]

=
∑
r

1

r!

[∑
n

1

n!

∑
X1,...,Xn∈C

connected

K(X1) · · ·K(Xn)I(G(X1, . . . , Xn))

]r

= exp

[∑
n

1

n!

∑
X1,...,Xn∈C

connected

K(X1) · · ·K(Xn)I(G(X1, . . . , Xn))

]
, (4.34)

which was the claim.

Example 4.5. Consider B = {γ} for a single element γ and K(γ) = z. Then

Z = 1 + z, logZ = log(1 + z) =

∞∑
n=1

1

n
(−1)n−1zk. (4.35)

The only connected X1, . . . , Xn are γ, . . . , γ, and the associated connectivity graph is the complete graph
Kn, whose index is

I(Kn) = (−1)n−1(n− 1)!, (4.36)

consistent with (4.27).

Next, we seek a criterion that guarantees convergence of the right-hand side of (4.27). For this we
need the following two preparatory lemmas.

Lemma 4.6 (Penrose resummation). Let vij ∈ [0,∞] for all ij ∈ Kn. Then∣∣∣∑
H

∏
ij∈H

(e−vij − 1)
∣∣∣ 6∑

T

∏
ij∈T
|e−vij − 1|, (4.37)

where the sum over H is over all connected spanning subgraphs of Kn, and the sum over T is over spanning
trees of Kn. In particular, we have (Rota’s Theorem)∣∣∣∑

H⊂G
(−1)|E(H)|

∣∣∣ 6 ∑
T⊂G

1, (4.38)

where the sum over H is over connected spanning subgraphs in G, and that over T is over spanning trees
in G.

Proof. Fix an order on the edges of Kn. Given a connected spanning subgraph H ⊂ Kn, select a spanning
tree T of H by selecting edges from H in the given order discarding any edge that completes a loop among
prior edges. This algorithm (Kruskal’s algorithm) defines a function H 7→ T (H), and we can write∑

H

∏
ij∈H

(e−vij − 1) =
∑
T

∑
H:T (H)=T

∏
ij∈H

(e−vij − 1). (4.39)
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From the construction of the algorithm it follows that for any T there is a maximal graph HT such that
T (HT ) = T and the sum over H such that T (H) = T is the sum T ⊂ H ⊂ HT . Therefore the inner sum
on the right-hand side becomes∑
T⊂H⊂HT

∏
ij∈H

(e−vij − 1) =
∏
ij∈T

(e−vij − 1)
∑

X⊂HT \T

∏
ij∈X

(e−vij − 1) =
∏
ij∈T

(e−vij − 1)
∏

ij∈HT \T

e−vij . (4.40)

Since the second factor is bounded by 1, the claim follows.

Lemma 4.7 (Cayley’s Theorem). The number of trees on [n] with degree sequence (d1, . . . , dn) is

(n− 2)!∏
i(di − 1)!

. (4.41)

Exercise 4.8. Prove Cayley’s Theorem using the following steps. Associate to each edge ij ∈ Kn a
weight wij and define the weighted Laplacian matrix

Lij = −1i 6=jwij + 1i=j
∑
k 6=i

wik. (4.42)

Look up Kirchhoff’s Matrix Tree Theorem which states that (for any k, l)∑
T

∏
ij∈T

wij = (−1)k+l detLkl, (4.43)

where the matrix Lkl is obtained by deleting the k-th row and l-th column. Set wij = xixj . Then∏
ij∈T

wij =
∏
i

x
degT (i)
i , (4.44)

and this gives the generating function∑
T

∏
i

x
degT (i)
i = det(L11) = x1 . . . xn(x1 + · · ·+ xn)n−2. (4.45)

The number of trees on [n] with degree sequence (d1, . . . , dn) is

n∏
i=1

1

di!

∂di

∂xdii

∑
T

∏
i

x
degT (i)
i

∣∣∣∣∣
x1=···=xn=0

=

n∏
i=1

1

di!

∂di

∂xdii
x1 . . . xn(x1 + · · ·+ xn)n−2

∣∣∣∣∣
x1=···=xn=0

. (4.46)

Since a spanning tree on [n] has n− 1 edges and each edge contributes to the degrees of two vertices, we
have

∑
di = 2n− 2, and the claim follows.

The following criterion guarantees convergence of the right-hand side of (4.27). Its assumption (4.47)
is not optimal, but it gives a fairly simple proof (along the lines of [27]). Sharper conditions and references
are given in [38].

Theorem 4.9 (Convergence of polymer expansion). Let A > e and α = (Ae)/(A− e)2, and assume that

‖K‖ := sup
γ∈B

∑
X∈C
X3γ

|K(X)|A|X| 6 1/α. (4.47)
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Then the right-hand side of (4.27) converges absolutely and

logZ 6 |B|

(
‖K‖+

∞∑
n=2

1

n(n− 1)
‖K‖nαn

)
. (4.48)

Moreover, there is s > 0 such that for any a > 1 and any Y ⊂ B, we have the improvement

∞∑
n=1

1

n!

∑
X1,...,Xn∈C
connected

|K(X1) · · ·K(Xn)I(G(X1, . . . , Xn))|1|X1|+···+|Xn|>a1(X1∪···∪Xn)∩Y 6=∅

6 |Y |e−sa
(
‖K‖+

∞∑
n=2

1

n(n− 1)
‖K‖nαn

)
. (4.49)

Proof of Theorem 4.9. First consider the term n = 1. Fix k and γ ∈ B and sum over X ∈ C with |X| = k
and X 3 γ, and then over the choices of γ and k > 1:∑

X∈C
|K(X)| 6

∑
k

∑
γ

∑
|X|=k,X3γ

|K(X)| 6 ‖K‖|B|
∑
k

A−k 6 ‖K‖|B|(A− 1)−1. (4.50)

Now consider the n > 1 terms. As for n = 1, fix γ1, . . . , γn ∈ B, k1, . . . , kn > 1, and sum over X1, . . . Xn ∈
C with X1 3 γ1, . . . , Xn 3 γn and |X1| = k1, . . . , |Xn| = kn, and then sum over the possible choices of
the γ and k. If Xr intersects Xs, then the sum over γr can be restricted to Xs; further if Xr intersects
multiple Xs we can choose which Xs the sum over γr should be restricted to. To specify the choice, use

|I(G)| 6
∑
T⊂G

1, (4.51)

where the sum runs over the set of spanning trees of G, by (4.38). Given a spanning tree T of G, choose
the summations of the γr as follows:

• For any leaf in T , choose the sum over the polymers associated to its unique neighbour.

• Remove the leaf and iterate the procedure.

• Once the tree only contains one vertex, sum the associated γr over all of B.

For T with degree sequence (d1, . . . , dn), this bounds the sum over the γ by

|B|
n∏
i=1

kdii , (4.52)

and thus gives the bound∑
X1,...,Xn∈C

connected

|K(X1) · · ·K(Xn)| 6 |B|‖K‖n
∑

k1,...,kn

∑
T⊂G

∏
i

kdii A
−ki . (4.53)

Lemma 4.7 implies that

∑
T⊂G

∏
i

kdii 6 (n− 2)!
∑

d1,...,dn

∏
i

kdii
(di − 1)!

6 (n− 2)!

n∏
i=1

∞∑
d=1

kdi
(d− 1)!

6 (n− 2)!

n∏
i=1

kie
ki . (4.54)
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Since (exercise) ∑
k

k(e/A)k =
e/A

(1− e/A)2
= α, (4.55)

we obtain the claim

logZ 6 |B|

(
‖K‖+

∞∑
n=2

1

n(n− 1)
‖K‖nαn

)
. (4.56)

For the improvement if |X1|+ · · ·+ |Xn| > a and (X1 ∪ · · ·Xn) ∩ Y = ∅, use that∑
k1+···+kn>a

n∏
i=1

ki(e/A)ki 6 (Ce/A)aαn 6 e−saαn, (4.57)

and that the factor |B| can be replaced by |Y |. This completes the proof.

4.3.1. Application of polymer expansion to the Ising model.

Lemma 4.10. For any A, the polymer activity of the high temperature expansion (4.7) obeys ‖K‖ = O(β)
as β → 0, and that the Peierls expansion obeys ‖K‖ = O(e−2β) as β →∞.

Proof. Since |eβσxσy − 1| 6 βeβ, from (4.7) we obtain

|K(X)| 6 (βeβ)|X|
∑

σ∈{±1}V (X)

∏
x∈V (X)

ehxσx(2 cosh(hx))−1 = (βeβ)|X|. (4.58)

Given any edge e ∈ B, the number of connected polymers X of size k containing e is bounded by (2d)k.
Therefore, for any A,

‖K‖ 6
∞∑
k=1

(2dAβeβ)k = O(β) as β → 0, (4.59)

as claimed. The claim for the Peierls expansion is an exercise.

Exercise 4.11. Complete the proof for the Peierls expansion. Use that by symmetry Z+ = Z− for h = 0.
For h > 0 show that Z− 6 Z+ by differentiating logZ− − logZ+ in h and using Griffith’s first inequality.

For a cube Λ ⊂ Zd denote by C(Λ) the connected polymers contained in Λ, and define analogously
C(Zd) such that C(Zd) = ∪ΛC(Λ).

Exercise 4.12. Use Theorem 4.9 to show that, for β � 1 and for β � 1 with + or − boundary conditions,
the pressure exists and is given by

|Λ|−1 logZ −→
∑
n=1

1

n!

∑
X1,...,Xn∈C(Zd)

connected

K(X1)

|X1|
. . .

K(Xn)

|Xn|
I(G(X1, . . . , Xn))10∈(X1∪···∪Xn). (4.60)

Show that the truncated correlation functions have tree graph decay :

〈σx1 ; · · · ;σxk〉 6 O(e−sτ(x1,...,xk)), (4.61)

where τ(x1, . . . , xk) is the length of the shortest tree connecting x1, . . . , xk.

Sketch. Existence of the limit involves bounding the difference of the right-hand side for Λ′ ⊃ Λ. This is
done using the exponential decay in the size of the clusters in (4.49). For the second claim, use that for
X1, . . . , Xn ∈ C connected and containing points x1, . . . , xk, it is necessary that

|X1|+ · · ·+ |Xn| > τ(x1, . . . , xk). (4.62)

More details can be found in [27, Section 20.5], for example.
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5 Abelian spin systems: currents, charges, and spin waves

5.1 Currents and charges

A very insightful approach to the study of spin systems with abelian symmetry (Ising and XY model) are
their representations by currents and charges, which follow from Fourier analysis on the abelian symmetry
groups O(1) = Z2 and O(2). For the XY model, such representations were extensively used in [23, 25]
(and other references), for the Ising model in [1]. For the Ising model, they provide a percolation picture,
while they relate the XY model to a Coulomb gas.

Ising model. The partition function of the Ising model is zero external field is

Z =
1

2|V |

∑
σ

∏
xy

eβσxσy (5.1)

where we added the convenient normalization 1/2|V |. Expanding the exponential as

eβσxσy =

∞∑
n=0

βn

n!
(σxσy)

n =
∞∑
n=0

wβ(n)(σxσy)
n, wβ(n) =

βn

n!
, (5.2)

the partition function can be rewritten as

Z =
∑

n:E→N0

Wβ(n)
1

2|V |

∑
σ

∏
xy

(σxσy)
nxy , Wβ(n) =

∏
xy

wβ(nxy). (5.3)

The map n : E→ N0 is called a current. The divergence of a current n is the map ∇ ·n : V → Z given by

(∇ · n)x =
∑
y∼x

nxy. (5.4)

Lemma 5.1. For any current n : E → N0 and m : V → {0, 1},
1

2|V |

∑
σ

σm
∏
xy

(σxσy)
nxy = 1∇·n=m, (5.5)

where the equality ∇ · n = m is interpreted mod 2.

Proof. Note that ∏
xy

(σxσy)
nxy =

∏
x

∏
y∼x

σ
nxy
x =

∏
x

σ(∇·n)x
x (5.6)

since in the product
∏
x

∏
y∼x each edge appears twice. The claim follows from

1

2

∑
σx∈{±1}

σ(∇·n)x+mx
x = 1(∇·n)x+mx is even. (5.7)

This completes the proof.

This represents the partition function and correlation functions as those of systems of currents:

Z =
∑
∇·n=0

Wβ(n), 〈σm〉 =

∑
∇·n=mWβ(n)∑
∇·n=0Wβ(n)

. (5.8)

Instead of (5.2), one can also write

eβσxσy = cosh(β) + sinh(β)σxσy =

1∑
n=0

wβ(n)(σxσy)
n, wβ(n) =

{
cosh(β) (n = 0)

sinh(β) (n = 1).
(5.9)

Then the partition function becomes a sum over currents n : E → {0, 1}.
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XY model. The expansion (5.2) should be viewed as that of a function on the abelian group Z2 into its
characters. In particular, analogous considerations apply to the XY model, with the abelian group now
SO(2). Indeed, the partition function of the XY model is

Z =
1

(2π)|V |

∫
eβ

∑
xy cos(θx−θy) dθ. (5.10)

By Fourier expansion, there are wβ(n) such that

eβ cos t =
∑
n∈Z

wβ(n)eint. (5.11)

It is convenient to select a standard orientation xy for every edge {x, y}. Then when writing xy ∈ E we
mean that xy is in the standard orientation. Integrating over θ, the partition function becomes

Z =

∫ ∏
xy

eβ cos(θx−θy) dθ =
∑
n

∫ ∏
xy

wβ(nxy)e
inxy(θx−θy) dθ,

=
∑
n

Wβ(n)

∫ ∏
xy

einxy(θx−θy) dθ, Wβ(n) =
∏
xy

wβ(nxy), (5.12)

where the sum is over all currents n : E → Z. Extend n to directed edges by nyx = −nxy. The divergence
is then defined by (on the right-hand side the edges xy are not necessarily in the standard orientation)

(∇ · n)x =
∑
y∼x

nxy. (5.13)

Lemma 5.2. For any current n : E → Z and m : V → Z,

1

(2π)|V |

∫
e−iθ·m

∏
xy

einxy(θx−θy) dθ = 1∇·n=m. (5.14)

Proof. The proof is analogous to that of Lemma 5.1 replacing σx by eiθx and using

1

2π

∫ 2π

0
eiθx((∇·n)x−mx) dθx = 1(∇·n)x=mx , (5.15)

which shows the claim.

Thus the partition function and correlations take the analogous form

Z =
∑
∇·n=0

Wβ(n), 〈cos(θ ·m)〉 =

∑
∇·n=mWβ(n)∑
∇·n=0Wβ(n)

. (5.16)

Interpretation. Correlations of the Ising and XY models are equivalent to current correlations. For the
Ising model, there sources and sinks are the same since +1 = −1 in Z2. On the other hand, for the XY
model, sources and sinks are distinct. They are vortices which which can turn in either direction. These
representations have many consequences, which we will discuss later.
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Villain XY model. For the usual XY model, the function wβ(n) in (5.11) can be computed explicitly in
terms of Bessel functions. A model that is somewhat easier to handle but has the same features as the
standard XY model is the Villain XY model, obtained by the replacement

fXY (t) = eβ(cos t−1)  fV (t) =
∑
n∈Z

wβ(t+ 2πn), wβ(t) = e−
1
2
βt2 . (5.17)

The right-hand side is a periodized Gaussian. It preserves the important features of the function fXY (t):
periodicity in 2π and the its behaviour for small t.

Proposition 5.3 (Poisson summation). Let f : R→ R have sufficient decay. Then∑
n∈Z

f(t+ 2πn) =
1

2π

∑
n∈Z

f̂(n)eint, f̂(k) =

∫
f(x)e−ikx dx. (5.18)

Proof. The left-hand side defines a 2π-periodic function g(t) and its Fourier coefficients are

ĝn =

∫ 2π

0
g(t)e−int dt =

∑
n∈Z

∫ 2π

0
f(t+ 2πn)e−int dt =

∫ ∞
−∞

f(t)e−int dt = f̂(n). (5.19)

The same holds for the right-hand side.

By the Poisson summation formula and the fact that the Fourier transform of a Gaussian is Gaussian,
the Villain interaction has the two dual representations

fV (t) =
∑
n∈Z

wβ(t+ 2πn) =
∑
n∈Z

wβ(n)eint, wβ(t) = e−
1
2
βt2 , wβ(n) =

1

2π
e−

1
2
n2/β. (5.20)

For the standard XY model, fXY (t) can also be represented as the periodization of a function wβ defined
on R; see [23, Appendix B].

5.2 Discrete calculus

Let G = (V,E) be graph that can locally be embedded into Zd, and denote its faces by F for d > 2, and
its cubes by Q if d > 3. Define oriented versions of V,E, F,Q (see Figure 1). Each vertex x corresponds
to two oriented vertices x (its standard orientation) and x−1 (its reversal). An edge has two boundary
vertices e = {x, y} and an orientation selects an order of these, written e = {x, y−1} with e−1 = {x−1, y}.
The faces have four consecutive boundary edges a = {e1, e2, e3, e4} and an orientation determines the
direction in which these are traversed; so, e.g., if e ∈ a then e−1 ∈ a−1. Denote the oriented vertices,
edges, faces, cubes by ~V , ~E, ~F , ~Q, and fix a standard orientation on V,E, F,Q. Define

• 0-form: s : V → R, extended to s : ~V → R by sx = −sx if x−1 ∈ V ;

• 1-form: v : E → R, extended to v : ~E → R by ve = −ve if e−1 ∈ E;

• 2-form: φ : F → R, extended to φ : ~F → R by φa = −φa if a−1 ∈ F ;

• 3-form: φ : Q→ R, extended to φ : ~Q→ R by φq = −φq if q−1 ∈ Q;

and k-forms of higher degree can be defined similarly. For s : V → R, v : E → R, φ : F → R, set

• Exterior derivative:

(ds)xy = (∇s)xy =
∑
x∈e

sx = sx − sy, (dv)a =
∑
e∈a

ve, (dφ)q =
∑
a∈q

φq. (5.21)

41



a

e
x y

a b

e

Figure 1: The vertices, edges, faces are drawn with an assigned standard orientation (for which we drop
the arrow). Left: e = xy = {x, y−1}. Right: e ∈ a but e−1 ∈ b, and in d = 2 one has (∇×φ)e = (d∗φ)e =
φa + φb−1 = φa − φb.

Figure 2: Free (left) and Dirichlet (right) boundary conditions.

• Codifferential:

d∗s = 0, (d∗v)x = (∇ · v)x =
∑
e3x

v~e, (d∗φ)e = (∇× φ)e =
∑
a3e

φ~a. (5.22)

Denote the standard Euclidean inner product on the spaces RV , RE , RF ,RQ of 0-, 1-, 2-, 3-forms by (·, ·).

Exercise 5.4. Verify that dd = 0 and d∗d∗ = 0 and that d and d∗ are adjoint. Then (d∗φ, ds) = (φ, d2s) =
0 implies that im d∗ ⊥ im d in RE . The 1-forms that are orthogonal both to im d and im d∗ obey d∗v = 0
and dv = 0. Thus they are harmonic, i.e., they lie in ker−∆ where −∆ = dd∗ + d∗d. Check that d and
d∗ both commute with ∆.

The following boundary conditions are most common:

• Periodic boundary conditions: G = (V,E) is a d-dimensional discrete torus.

• Dirichlet boundary conditions: G = (V̄ , E) is the subgraph of Zd shown in Figure 2 (right). Denote
the vertices completely contained by V and ∂V = V̄ \ V , and extend 0-forms s ∈ ZV by 0 to ∂V .

• Free boundary conditions: G = (V,E) is a hypercube in Zd and F is the set of its internal faces as in
Figure 2 (left). The boundary faces are denoted by ∂F , and 2-forms φ ∈ ZF are extended by 0 to ∂F .

Lemma 5.5. (Dirichlet boundary conditions) For s : V → R (with s|∂V = 0) and ds = 0, it follows that
s = 0. For any n : E → Z with dn = 0, there exists s : V → Z (with s|∂V = 0) such that ds = n. For any
q ∈ ZF with dq = 0, there exists n ∈ ZE such that dn = q. Thus:

ker d0 = ∅, ZE = im d0, ZF = im d1. (5.23)

The same holds with Z replaced by R, and ∆ is invertible on RE.
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y

x

Figure 3: For g = 1x−1y, an integer-valued solution to d∗h = g is given by a string from x to y. Orienting
the edges as shown in the bottom-left corner, h defined by he = +1 for the horizontal edges on the path,
he = −1 for the vertical edges, and he = 0 for all other edges, is indeed a solution to d∗h = g.

Sketch. For example, let n ∈ ZE with dn = 0. Then, for some x ∼ y with y ∈ ∂V , define sx = sx−sy = ne
with e the edge between x and y. This is consistent since if also x ∼ y′ then ne − ne′ = (dn)a = 0 some a
face a and so also φx = ne′ . Now one can proceed by induction (now regarding x as part of the boundary)
analogously.

Example 5.6. Let g ∈ ZV with
∑
g = 0. By linearity, it suffices to consider g = 1x − 1y, for x, y ∈ V .

Define h ∈ ZE by choosing a path γ ∈ (x0 = x, . . . , xn = y) and set he = ±1 if e = xixi+1 for some i < n,
with the sign determined by the orientation (see Figure 3). Then d∗h = g.

Two dimensions. In d = 2 the faces F form the dual graph. The dual graph the same same edges in the
sense that two faces are neighbours if they share an edge of the original graph. Free boundary conditions
are mapped to Dirichlet boundary conditions and vice versa (see Figure 2), and clearly periodic boundary
conditions are invariant. For example, let (V,E) and (V ∗, E∗) be the graphs in Figure 2 with free boundary
conditions and Dirichlet boundary conditions respectively. Then there are natural maps ∗ : ZV → ZF ∗ ,
∗ : ZF ∗ → ZV , and so on, and d∗ = ∗d∗. In particular, Lemma 5.5 implies that ker d∗2 = 0 if (V,E) has
free boundary conditions and ker d∗2 = {constants} if (V,E) has Dirichlet boundary conditions.

Example 5.7. (d∗φ)e = (∇× φ)e = φa − φb where a and b are the two faces containing e.

Closed 2-forms. For d = 2 (with Dirichlet boundary conditions), the condition dq = 0 is
∑
q = 0 and

such q are neutral configurations of charges. As in Example 5.6 there is n ∈ ZE such that dn = q, where
n can be interpreted as paths between the charges of opposite sign. In d > 3, the q ∈ ZF with dq = 0
form closed loops.

5.3 Dual models

To be concrete, assume that (V,E) is a (hyper)cube with free boundary conditions. Then, by Lemma 5.5,
for any n ∈ ZE with d∗n = 0 there exists φ : F → Z such that n = d∗φ. The partition function of the
Ising and XY model then take the form

Z =
∑
d∗n=0

Wβ(n) =
∑
φ

Wβ(d∗φ), (5.24)

where the sum runs over φ : F → Z respectively φ : F → Z2, in both cases with φ|∂F = 0.
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5.3.1. Ising model and Kramers–Wannier duality. By (5.24), the partition function of the Ising
model on (V,E) is

ZV,β =
∑
φ∈ZF2

Wβ(d∗φ) = (coshβ)|E|
∑
φ∈ZF2

∏
xy

(tanhβ)|(d
∗φ)xy |. (5.25)

Now assume that d = 2. Then (d∗φ)xy = φa − φb and

ZV,β = (coshβ)|E|
∑
φ∈ZF2

∏
ab

(tanhβ)|φa−φb| (5.26)

Identifying φ ∈ {0, 1} with τ ∈ {+1,−1}, we have |φa−φb| = 1
2(1− τaτb). Defining β∗ by e−2β∗ = tanhβ,

the partition function can thus be written as

ZV,β = (coshβ)|E|(tanhβ)|E|/2
∑

τ∈{±1}F

∏
ab

eβ
∗τaτb

= (coshβ)|E|(tanhβ)|E|/2ZF,β∗,0 (5.27)

Exercise 5.8. Assume that V is a (hyper)cube. Show that then ZV,β,ω = ZV,β,0 + o(N), and moreover
that the limit p(β) = limN→∞

1
N logZV,β,ω exists (for any boundary condition ω).

Since |V | = N , |F |/N → 1 and |E|/N → 2, it follows that (Kramers–Wannier duality)

p(β) = p(β∗) + 2 log coshβ + log tanhβ = p(β∗)− log(2 sinh 2β) (5.28)

The function log sinh is real-analytic on (0,∞). Assuming that p is analytic in β except at a single point
βc (this is not clear), it follows that βc must be fixed point of the function g(β) = artanh(e−2β).

Exercise 5.9. The function g as exactly one fixed point βc = 1
2 log(1+

√
2) and it maps (0, βc) to (βc,∞)

and vice-versa.

5.3.2. Villain model and discrete Gaussian. By (5.24), the partition function of the XY model is

Z =
∑

n∈ZE :d∗n=0

Wβ(n) =
∑

φ∈ZF / ker d∗

Wβ(d∗φ). (5.29)

In particular, the partition function of the Villain model is equal to

Z ∝
∑

φ∈ZF / ker d∗

e
− 1

2β
(d∗φ,d∗φ)

. (5.30)

Let d = 2. Then this is the partition function of discrete Gaussian model on the dual lattice at inverse
temperature β∗ = 1/β. The discrete Gaussian model is a discrete model for an interface. By yet another
Poisson summation, the partition function can be further rewritten as

Z ∝
∑

q∈ZF :
∑
q=0

e−
1
2

(2π)2β(d∗(dd∗)−1q,d∗(dd∗)−1q) =
∑

q∈ZF :
∑
q=0

e−
1
2

(2π)2β(q,(−∆)−1q). (5.31)

Here we assumed Dirichlet boundary conditions in the original graph so that ker d∗2 = {constants}. This
is the partition function of a Coulomb gas.
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5.3.3. Dual models via periodization. Now we use the representation

f(t) =
∑
m∈Z

wβ(t+ 2πm), (5.32)

and assume Dirichlet boundary conditions (on the original graph). (In particular, the Villain XY model

is the case wβ(n) = e−
1
2
βn2

.) The partition function then is

Z =
∑
m∈ZE

∫
TV
W β(dθ + 2πm) dθ. (5.33)

The sum over m ∈ ZE can written as a double sum over q ∈ ZF and then over m ∈ ZE with dm = q. The
nontrivial terms obey dq = 0 (which in d = 2 with Dirichlet boundary conditions on the original graph is
to be interpreted as

∑
q = 0):

Z =
∑

q∈ZF :dq=0

∑
m∈ZE :dm=q

∫
TV
W β(dθ + 2πm) dθ. (5.34)

By Lemma 5.5, for any q ∈ ZF with dq = 0 there exists m ∈ ZE with dm = q, and for any n ∈ ZE with
dn = 0 there is ψ ∈ ZV such that dψ = n, and ψ is unique for Dirichlet boundary conditions. It follows
that

Z =
∑

q∈ZF :dq=0

∑
ψ∈ZV

∫
TV
W β(dθ + dψ + 2πnq) dθ =

∑
q∈ZF :dq=0

∫
RV

W β(dϕ̃+ 2πnq) dϕ̃ (5.35)

By Lemma 5.5, and using that d commutes with ∆,

nq = −(dd∗ + d∗d)∆−1n = −dd∗∆−1nq − d∗∆−1q. (5.36)

Translating ϕ̃ to ϕ = ϕ̃− 2πd∗∆−1nq, it follows that

Z =
∑

q∈ZF :dq=0

∫
RV

W β(dϕ− 2πd∗∆−1q) dϕ. (5.37)

This gives a decomposition of the angle field θ into spin waves ϕ and vortex charges q. For the Villain
model, these contributions decouple:

W β(dϕ− 2πd∗∆−1q) = e−
1
2
β(dϕ,dϕ) × e−

1
2
β(2π)2(q,−∆−1q) (5.38)

using that the images of d and d∗ are orthogonal and (using dq = 0 in the last equality)

(d∗∆−1q, d∗∆−1q) = (dd∗∆−1q,∆−1q) = (q,−∆−1q)− (d∗d∆−1q,∆−1q) = (q,−∆−1q). (5.39)

5.4 Sine–Gordon representation

Let φ be a Gaussian field on the faces F (to match the set-up above) with covariance matrix β(dd∗+m2)−1

(a massive free field), and denote its expectation by Eβ,m2 . Its Fourier transform is

Eβ,m2(ei(q,φ)) = e−
1
2
β(q,(dd∗+m2)−1q) for any q : RF → R. (5.40)
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Lemma 5.10. As m2 ↓ 0,

lim
m2↓0

Eβ,m2(ei(q,φ)) =

{
e−

1
2
β(q,(dd∗)−1q) (dq = 0)

0 (dq 6= 0).
(5.41)

Proof. Write q = q1 + q2 with dq1 = 0 and d∗q2 = 0. Then

(q, (dd∗ +m2)−1q) =
(q2, q2)

m2
+ (q1, (dd

∗ +m2)−1q1). (5.42)

The second term is continuous as m2 ↓ 0, while the first term diverges if q2 6= 0.

In the following, we will simply write Eβ instead of limm2↓0 Eβ,m2 . It follows that the partition function
of the Coulomb gas can be written as

Z =
∑

q∈ZF :
∑
q=0

e−
1
2
β(2π)2(q,(−∆)−1q) =

∑
q∈ZF :

∑
q=0

Eβ(e2πi(q,φ)) = Eβ

∑
q∈ZF

e2πi(q,φ)

 . (5.43)

The sum can be rearranged to

∏
a

∑
q∈Z

e2πiqφa =
∏
a

1 + 2

∞∑
q=1

cos(2πqφa)

 , (5.44)

and in summary, we obtain the Sine–Gordon representation of the Coulomb gas:

Z = Eβ

∏
a

1 + 2
∞∑
q=1

cos(2πqφa)

 . (5.45)

Remark 5.11. This is formally the same as

(normalization)

∫
RF

e
− 1

2β
(d∗φ,d∗φ)

∏
a

1 + 2
∞∑
q=1

cos(2πqφa)

 =
∑
φ∈ZF

e
− 1

2β
(d∗φ,d∗φ)

(5.46)

since ∑
q∈Z

e2πiqx =
∑
m∈Z

δm(dx). (5.47)

5.5 Long-range order and Kosterlitz–Thouless transition of the XY model

The same derivation as (5.35) can be carried out for the expectation of a function F (dθ) that is 2π-periodic
in every edge. For such a function, the above shows that

〈F (dθ)〉 = 〈F (dϕ̃+ 2πnq)〉 = 〈F (dϕ− 2π∆−1d∗q)〉, (5.48)

where the first equality follows from 2π-periodicity of F . To study the two-point function between 0 and
x, set g = 1x − 10, and define h ∈ ZE as in Example 5.6 such that d∗h = g and thus

θ0 − θx = −(g, θ) = −(h, dθ). (5.49)
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It follows that
〈ei(θ0−θx)〉 = 〈ei(ϕ0−ϕx) × e−2πi(σ,q)〉, where σ = d∆−1h, (5.50)

and we used that
(h,∆−1d∗q) = (d∆−1h, q) = (σ, q). (5.51)

The first factor in the expectation on the right-hand side is the spin wave contribution, the second factor
the vortex contribution. For the Villain model, they are independent:

〈ei(θ0−θx)〉 = 〈ei(ϕ0−ϕx)〉〈e−2πi(σ,q)〉. (5.52)

5.5.1. Spin wave contribution. The spin wave contribution to the two-point function is (in the Villain
XY model):

〈ei(ϕ0−ϕx)〉 = e
− 1

2β
(g,−∆−1g)

. (5.53)

Since (−∆)−1
0x ∼ − 1

2π log |x| for d = 2 by (3.59) and similarly (−∆)−1
0x ∼ Cd|x|−(d−2) for d > 3, as |x| → ∞,

〈ei(ϕ0−ϕx)〉 ∼

{
C|x|−1/(2πβ) (d = 2)

C1 + C2|x|−(d−2) (d > 3).
(5.54)

Spin wave theory states that for sufficiently low temperatures the spin wave part should give the correct
behaviour of the system. It thus predicts that there is long-range order in d > 3, with power-law correction
(Goldstone mode), and there is power-law decay in d = 2.

5.5.2. Vortex gas contribution. The contribution of the vortex part to the two-point function is (again
in the Villain XY model)

〈e−2πi(σ,q)〉. (5.55)

Clearly, it is bounded from above by 1, and one immediately obtains that the spin wave part is an upper
bound on the two-point function. In particular, for the Villain XY model in d = 2,

〈ei(θ0−θx)〉 6 e
1

2β
(g,−∆−1g)

= O(|x|−1/(2πβ)). (5.56)

(Compare with Theorem 3.11.) The first bound in (5.56) of course also holds in d > 3, but does not
provide strong information since the Green’s function −∆−1 is bounded. The main difficulty is to obtain
a lower bound.

Proposition 5.12 (Fröhlich–Spencer). For the Villain XY model in d > 2, there is c(β) with c(β) → 0
as β →∞ such that

1 > 〈e−2πi(σ,q)〉 > ec(β)(g,−∆−1g). (5.57)

Together with the spin wave contribution (5.54), it follows that, for β sufficiently large,

e
1

2β
(g,−∆−1g) > 〈σx · σy〉 > e

( 1
2β

+c(β))(g,−∆−1g)
. (5.58)

An analogous estimate holds for the standard XY model, but its proof is more involved. Moreover, the
proof of (5.57) for d = 2 is significantly more difficult [23], and we will only consider d > 3 as in [25].

For d > 3, (5.58) implies that there is long-range order for sufficiently small temperatures (the right-
hand side is bounded below by a strictly positive constant). Using reflection positivity and the infrared
bound, in Corollary 3.5, we have already seen that the O(n) model exhibits long-range order for any d > 3
and n > 1, for small enough temperatures (and also seen in Theorems 3.10–3.11 that in d = 2 they do not
if n > 2). For the Ising model (n = 1), we have seen that long-range order can be proved by the Peierls
argument (and expansion). For d = 2, (5.58) implies the existence of the Kosterlitz–Thouless transition, a
phase transition without long-range order: for high temperatures correlations decay exponentially, while
for low temperatures they have power-law decay.
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5.5.3. Proof of Proposition 5.12 for d > 3. Define

Z(σ) =
∑
dq=0

e−
1
2
β(2π)2(q,−∆−1q)e−2πi(σ,q) (5.59)

where the sum runs over 2-forms q with dq = 0. Then

〈e−2πi(σ,q)〉 =
Z(σ)

Z(0)
. (5.60)

In the Sine–Gordon representation, it follows that

Z(σ) = Eβ

∑
dq=0

e2πi(φ+σ,q)

 (5.61)

Exercise 5.13. Let ζ1 and ζ2 be two independent centered Gaussian field with covariances C1 and C2.
Then φ = ζ1 + ζ2 is a centered Gaussian field with covariance C = C1 + C2.

Since dd∗ is bounded on `2(F ), there is a constant c > 0 such that (dd∗)−1 > c id. By Exercise 5.13,
the field φ can therefore be decomposed in distribution as φ = ζ + φ′, where ζ is a Gaussian field with
covariance βc id and φ′ has covariance β((dd∗)−1 − c id). Taking the conditional expectation over ζ then
gives

Z(σ) = Eβ

∑
dq=0

e−
1
2
cβ(q,q)e2πi(φ′+σ,q)

 . (5.62)

This is one step of renormalization that integrates out fluctuations on the smallest scale, and makes the
coefficients small for large β. Now write the partition function as

Z(σ) = Eβ

∑
X⊂F

∑
dq=0,supp q=X

e−
1
2
cβ(q,q)e2πi(φ′+σ,q)

 = Eβ

(∑
X

K(X,φ′ + σ)

)
(5.63)

where
K(X,φ′ + σ) =

∑
dq=0,supp q=X

e−
1
2
cβ(q,q)e2πi(φ′+σ,q). (5.64)

Note that K(X1 ∪X2) = K(X1)K(X2) if X1, X2 ⊂ F have distance at least 2. This factorization into
locally neutral contributions is where the condition d > 3 enters crucially. (In d = 2, the condition dq = 0
is the non-local condition

∑
q = 0, and a significantly more complicated argument is required.)

The next step is a cluster expansion that writes the polymer partition function as an exponential. In
order to do so, the next lemma verifies that the polymer activity K is small.

Lemma 5.14. For any A, the norm (4.47) satisfies

‖K‖ → 0 (β →∞). (5.65)

Proof. Since q can only take integer values qa 6= 0 for any face a in its support X,

|K(X)| 6

2
∞∑
q=1

e−
1
2
cβq2

|X| = ( 2e−
1
2
cβ

1− e−
1
2
cβ

)|X|
. (5.66)
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Given any a ∈ F , the number of connected sets X ⊂ F containing a are bounded by eC|X|. It follows that

‖K‖ = sup
a

∑
X3a
|K(X)|A|X| → 0 (β →∞), (5.67)

as needed.

By the polymer expansion, Theorems 4.4, 4.9, it follows that

Z(σ) = Eβ exp

 ∞∑
n=1

∑
X1,...,Xn∈C

1

n!
I(G(X1, . . . , Xn))K(X1) · · ·K(Xn)

 (5.68)

It is convenient to rewrite the term in the exponential as sum over charge configurations. The product
K(X1) · · ·K(Xn) is

K(X1) · · ·K(Xn) =
∑
q1

· · ·
∑
qn

e−
1
2
cβ

∑
i(qi,qi)e2πi(φ′+σ,q1+···+qn), (5.69)

where the sum over qi is over qi with dqi = 0 and supp qi = Xi. Thus

∞∑
n=1

∑
X1,...,Xn∈C

1

n!
I(G(X1, . . . , Xn))K(X1) · · ·K(Xn) =

∑
q

z(β, q)e2πi(q,φ′+σ) (5.70)

where the sum over q with connected support, and

z(β, q) =
∞∑
n=1

1

n!

∑
q1+···+qn=q

I(G(X1, . . . , Xn))e−
1
2
cβ

∑
i(qi,qi), (5.71)

where the sum is again over qi with dqi = 0 and Xi = supp qi.

Lemma 5.15. There is c > 0 such that for β large enough, |z(β, q)| 6 e−cβ‖q‖1.

Sketch. Since q is integer valued,

‖
∑
i

qi‖1 6
∑
i

‖qi‖1 6
∑
i

‖q2
i ‖1 =

∑
i

(qi, qi). (5.72)

The combinatorial factor can also be bounded.

In summary, and using that for every charge configuration q, the configuration −q also appears in the
sum, we have obtained

Z(σ) = Eβ exp

∑
dq=0

z(β, q) cos(2π(φ′ + σ, q))

 . (5.73)

Next, write

cos(2π(φ′ + σ, q)) = cos(2π(φ′, q)) cos(2π(σ, q))− sin(2π(φ′, q)) sin(2π(σ, q)) (5.74)

= cos(2π(φ′, q)) + cos(2π(φ′, q))(cos(2π(σ, q))− 1)︸ ︷︷ ︸
R(q,σ,φ′)

− sin(2π(φ′, q)) sin(2π(σ, q))︸ ︷︷ ︸
O(q,σ,φ′)

,

and note that O is odd in φ′. It remains to estimate R. Since dq = 0, by Lemma 5.5, there exists an
integer valued solution n = nq to dn = q. Thus

(φ′, q) = (d∗φ′, nq), (5.75)

is gradient perturbation to the free field. The 1-form nq can be chosen with good properties.
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Lemma 5.16. Let d > 3 and q be 2-form with dq = 0. Then there exists a 1-form nq with dnq = q such
that ‖nq‖∞ 6 ‖q‖1.

Sketch. Let T be a (well-chosen) spanning tree of G. Given x ∈ V then there is a unique path Γx from 0
to x. Given xy ∈ E choose Sxy be a (nonunique) surface with boundary {xy} ∪ γx ∪ γ−1

y , and

nxy =
∑
a∈Sxy

qa. (5.76)

Since dq = 0, this definition is independent of the choice of Sxy and the bound ‖n‖∞ 6 ‖q‖1 is obvious.
See e.g. [31, Appendix B] for a detailed proof.

Lemma 5.17. There is c(β) with c(β)→ 0 as β →∞ such that∑
q

|R(q, σ, φ′)| 6 c(β)(g,−∆−1g). (5.77)

Proof. Since h and nq are integer valued, it follows that

(σ, q) = (d∗σ, nq) = (d∗d∆−1h, nq) = (dd∗∆−1h, nq) = (d∆−1g, nq) mod 1. (5.78)

Thus
cos(2π(σ, q)) = cos(2π(d∆−1g, nq)), (5.79)

where

| cos(2π(σ, q))− 1| 6 2π2(d∆−1g, nq)
2 6 2π2(nq, nq)(d∆−1g, d∆−1g) = 2π2(nq, nq)(g,−∆−1g). (5.80)

It follows that

∑
q

|R(q, σ, φ′)| 6

(
2π2

∑
q

z(β, q)‖nq‖22

)
(g,−∆−1g) = c(β)(g,−∆−1g) (5.81)

and using ‖nq‖22 6 ‖q‖1, we obtain

c(β) 6 C
∑
q

e−cβ‖q‖1‖q‖1 (5.82)

from which the claim follows.

Proof of Proposition 5.12. Applying Jensen’s inequality, using that O(q, σ, φ′) is odd in φ′, it follows that

Z(σ) = Eβ exp

(∑
q

(
z(β, q) cos(2π(φ′, q))−O(q, σ, φ′) +R(q, σ, φ′)

))
> Z(0)ec(β)(g,−∆−1g). (5.83)

This completes the proof of Proposition 5.12.
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6 Random geometric representations

6.1 Random currents as percolation

For the Ising model, the representation (5.8) provides and interpretation in terms of percolation, a point
of view developed in [2]. A current n : E → N0 can be seen as a subgraph of G with nxy edges between
xy. For vertices x, y ∈ V , we write x↔ y in n if x and y are connected in n, i.e., if there exists a path γ
from x to y such that ne > 0 for e ∈ γ. We also write

∂n = {x ∈ V : (d∗n)x = 1 mod 2}. (6.1)

Proposition 6.1 (Switching Lemma). Let H ⊂ G be a subgraph, x, y ∈ V (H), A ⊂ V (G). Then, for
any function F : {±1}E(G) → R,∑
∂n1={x,y},∂n2=A

F (n1 + n2)W (n1)W (n2) =
∑

∂n1=∅,∂n2=A∆{x,y}

F (n1 + n2)W (n1)W (n2)1{x↔ y in n1 + n2},

(6.2)
where the sums run over currents n1 on H (thus ne = 0 for e ∈ G \H) and n2 on G.

Proof. Set n = n1 + n2 and first sum over n. Since ∂(n1 + n2) = ∂n1∆∂n2, and since

W (n1)W (n2) =
∏
e

(
J
n1
e

e

n1
e!

)∏
e

(
J
n2
e

e

n2
e!

)
= W (n1 + n2)

(
n1 + n2

n1

)
, (6.3)

the left-hand side of (6.2) is equal to

∑
∂n=A∆{x,y}

F (n)W (n)
∑

∂n1={x,y},n1⊆n

(
n

n1

)
, (6.4)

while the right-hand side of (6.2) is

∑
∂n=A∆{x,y}

F (n)W (n)1{x↔ y in n}
∑

∂n1=∅,n1⊆n

(
n

n1

)
. (6.5)

Thus to prove the claim, it suffices to show

∑
∂n1={x,y},n1⊆n

(
n

n1

)
= 1{x↔ y in n}

∑
∂n1=∅,n1⊆n

(
n

n1

)
. (6.6)

For n such that x 6↔ y in n both sides vanish. Therefore we assume x↔ y in n. View n as the multigraph
with nxy edges between vertices x and y. For any graph m, denote by ∂m the set of vertices with an odd
number of edges. Since x and y are connected in n, there exists a subgraph k ⊂ n such that ∂k = {x, y}.
Note that m 7→ m∆k is an involution and maps graphs with ∂m = ∅ to graphs with ∂m = {x, y}. In
particular, both sets of graphs have equal cardinality, i.e., (6.6) holds.

Corollary 6.2.

〈σxσy〉2 =

∑
∂n1=∅,∂n2=∅W (n1)W (n2)1{x↔ y in n1 + n2}∑

∂n1=∅,∂n2=∅W (n1)W (n2)
(6.7)
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Proof. By the switching lemma, the right-hand side of (6.7) is equal to∑
∂n1=∂n2={x,y}W (n1)W (n2)∑
∂n1=∅,∂n2=∅W (n1)W (n2)

=

(∑
∂n={x,y}W (n)∑
∂n=∅W (n1)

)2

= 〈σxσy〉2, (6.8)

as claimed.

Thus the square of the two-point function of the Ising model 〈σxσy〉 equals the two-point function of
the percolation configuration n1 + n2:

〈σxσy〉2 = E
(
x↔ y in n1 + n2

∣∣∅, ∅) , (6.9)

where E(·|A1, A2) denotes the expectation of two current configurations n1 and n2 with sources ∂n1 = A1

and ∂n2 = A2. Let Cn1+n2(x) = {y ∈ V : x ↔ y in n1 + n2} denote the connected cluster containing x.
Its expected size is

E
(
|Cn1+n2(x)|

∣∣∅, ∅) =
∑
y

〈σxσy〉2. (6.10)

Thus long-range order corresponds to percolation of the currents (the expected cluster size is infinite),
while exponential decay implies a finite expected cluster size. One can see many consequences from the
percolation point of view, see [2], as exemplified in the following proof of Simon’s inequality [42].

Corollary 6.3 (Simon’s inequality). Let B be a set such that V \B has at least two components, and let
x, y ∈ V be in distinct components. Then

〈σxσz〉 6
∑
y∈B
〈σxσy〉〈σyσz〉. (6.11)

Proof. For any B ⊂ V ,∑
y∈B

〈σxσy〉〈σyσz〉
〈σxσz〉

=
∑
y∈B

∑
∂n1={x,y}∂n2={y,z}W (n1)W (n2)∑
∂n1={x,z},∂n2=∅W (n1)W (n2)

=
∑
y∈B

∑
∂n1={x,z}∂n2=∅ 1{x↔ z in n1 + n2}W (n1)W (n2)∑

∂n1={x,z},∂n2=∅W (n1)W (n2)

= E
(
|B ∩ Cn1+n2(x)|

∣∣{x, z}, ∅) . (6.12)

The assumption that B separates x and z implies |B ∩ Cn1+n2(x)| > 1, and (6.11) follows.

Many results discussed in the previous sections apply mostly to high or low temperatures. To under-
stand the transition between these regimes is a fundamental question (of which many aspects are widely
open). For high temperatures, we have seen by various methods that

χ(β) <∞, where χ = lim
N→∞

∑
x∈V
〈σ0σx〉β,0, (6.13)

providing that the infinite volume limit is taken appropriately (e.g., along a sequence of finite tori). For
low temperatures, for the Ising model on Zd, we have seen that

M+(β) > 0, where M+(β) = lim
h↓0

lim
N→∞

〈σx〉β,h. (6.14)

Thus a natural charactization of the boundary of the high temperature phase is the temperature at which
(6.13) fails and that of the boundary of the low temperature phase at which (6.14) fails. Let

βχc = sup{β : χ(β) <∞}, βMc = inf{β : M+(β) > 0}. (6.15)
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Theorem 6.4. For the Ising model (and more general 1-component models that can be approximated by
Ising models such that the ϕ4 model), βχc = βMc .

This result is sometimes called the sharpness of the phase transition of the Ising model. Its proof [3]
makes use of inequalities between correlation function, derived using the random current representation;
we will not discuss it in detail. Recently, a new and shorter proof was given in [18]. For more general
n-component spin models, the result is certainly expected to be true, but in general this is not proved.

6.2 Random walks and local time

Spin systems also have representations by random walks (instead of random currents), for any number
of components n > 1. This point of view was developed in [10, 15]. It goes back to [48].

Continuous-time random walk. Let J be a symmetric matrix with no entries on the diagonal and nonnega-
tive entries elsewhere. The continuous-time simple random walk generated by J can be defined as follows.
Let Y = (Yn) be a discrete-time simple random with jump probability from x to y given by Jxy/Jx where
Jx =

∑
y Jxy, and given Y , let τn be a sequence of independent Exp(JYn) distributed random variables.

Here an Exp(a) random variable has density ae−at1t>0 and thus mean 1/a. Then (XT )T>0 is defined by

XT = YNT , NT = min

{
n :

n∑
i=1

τi < T

}
. (6.16)

Thus, at every step, from position x say, after waiting an exponential time with mean given by the inverse
of the total weight of the current vertex 1/Jx, the walk takes a step to one of its neighbors. Equivalently,
by properties of the exponential distribution, each edge has an exponential clock with mean given by its
inverse weight, and the walk then jumps to the neighbor whose clock rings first. We write Ex for the
expectation of X with initial condition X0 = x.

Exercise 6.5. X is a continuous-time Markov process with right-continuous sample paths and for any
f : V → R,

∂

∂t
E(fXt) = −E(Qf(Xt)), (Qf)x =

∑
y

Jxy(fx − fy). (6.17)

Sketch. That X is a Markov process follows from the property that the exponential distribution has no
memory (if τ has exponential distribution then P(τ > s+ t|τ > s) = P(τ > t)), and that Y is a discrete-
time Markov process. Thus conditioned on X0 = x, the next jump occurs at an Exp(Jx) distributed time,
and

1

t
Ex(fXt − fX0) =

1

t
Ex((fXt − fX0)1Nt61) +O(t) = Ex(fY1 − fx)︸ ︷︷ ︸∑

y
Jxy
Jx

(fy−fx)

1

t
E(τ1 < t)︸ ︷︷ ︸

1
t
(1−e−Jxt)

+O(t) = −(Qf)x +O(t),

(6.18)
where we used that

P(Nt > 2) = P(τ1 + τ2 6 t) = O(t2). (6.19)

This completes the sketch of the proof.

The local time of X up to time T at vertex x ∈ V is defined by

LTx =

∫ T

0
1Xt=x dt. (6.20)

Thus LTx is the time spent by the walk at that vertex x up to T .
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Proposition 6.6 (Feynman–Kac formula). Let b : V → R. Then, for any T > 0 and f : V → R,

(e−T (Q+b)f)x = Ex
(

e−(b,LT )fXT

)
= Ex

(
e−

∫ T
0 bXt dtfXT

)
. (6.21)

Proof. Define PT f by the right-hand side of (6.21). Since, by the Markov property, X[0,t] and X[t,t+s] are
independent given Xt, one can check that

(Pt+sf)x = (Pt(Psf))x. (6.22)

Thus P is a semigroup. Its generator is

PT − P0

T
=

1

T
Ex(fXT − fx)− Ex

(
1

T

∫ T

0
bXte

−
∫ t
0 bXs ds dt

)
fx → −(Qf)x − (bf)x. (6.23)

The claim follows from this (see, e.g., [49] for more details).

In the following, actually only use the integrated Feynman–Kac formula for the resolvent will be used:

(Q+ b)−1
xy =

∫ ∞
0

Ex
(

e−(b,LT )1XT=y

)
dT. (6.24)

Gaussian field. Let D be a diagonal V × V matrix with ReDxx > Jx, and set A = D − J so that A
has positive definite real part. Let ϕ = (ϕx)x∈V be the n-component Gaussian field whose density is
proportional to

e−
1
2

(ϕ,Aϕ) dϕ, (6.25)

where (ϕ,Aϕ) =
∑n

i=1(ϕi, Aϕi), and dϕ is the Lebesgue measure on (Rn)V . We write E for the expectation
of the Gaussian field and include it in the expectation for the random walk Ex. Abbreviate

τx =
1

2
|ϕx|2. (6.26)

Proposition 6.7 (Brydges–Fröhlich–Spencer representation). For x, y ∈ V and nice enough g : RV+ → R,

E(g(τ)ϕ1
xϕ

1
y) =

∫ ∞
0

Ex
(
g(LT + τ)e−(A−Q,LT )1XT=y

)
dT. (6.27)

In our applications, g will usually have sufficient decay to eventually take A→ Q, which we will then
do implicitly and then simply write A = Q.

Remark 6.8. The integral over the final time T of the random walk on the right-hand side of (6.27) can
be written in terms of a random walk with killing rate Axx −Qxx at vertex x. This is a random walk on
state space V ∪ {∂}, where ∂ is an additional vertex called cemetery state. At each step, the killed walk
jumps to ∂ with rate Axx − Qxx. Denoting the death time of such a walk X by T∂ , the right-hand side
of (6.27) is equal to

Ex(g(L∞ + τ)1XT∂=y). (6.28)

Thus (6.27) has an interpretation that τ under the signed measure ϕ1
xϕ

1
y × (Gaussian measure on ϕ) has

the same distribution as τ+L∞ under the product measure of the Gaussian field and a measure described
in terms of the random walk with transition rate Q and killing A−Q. See e.g. [49] for further development
of this point of view. The formula (6.27) is sometimes referred to as “Dynkin isomorphism.”
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Proof. It suffices to prove (6.27) for g(t) = e−(b,t) and arbitrary b ∈ RV . Indeed, replacing b by zb with
z ∈ C, one can check that both sides of(6.27) are analytic in z ∈ I = (−ε, ε) + iR, for ε > 0 small enough
that ReA > Q + ε|b|. Since both sides agree for z ∈ (−ε, ε) and are analytic in I, they must also agree
in all of I. Hence the Fourier transforms of both sides agree, which implies the equality.

Define

J(b) =

∫
e−

1
2

(ϕ,(A+b)ϕ) dϕ. (6.29)

Then the left-hand side of (6.27) is

E(g(τ)ϕ1
xϕ

1
y) = E(e−

1
2

(ϕ,bϕ)ϕ1
xϕ

1
y) =

J(b)

J(0)
(A+ b)−1

xy . (6.30)

The right-hand side of (6.27) factorizes into the product of the following two terms:∫ ∞
0

Ex(e−(LT ,b)1XT=y) dT = (A+ b)−1
xy , E(e−

1
2

(ϕ,bϕ)) =
J(b)

J(0)
, (6.31)

where the first equality follows from the integrated Feynman–Kac formula (6.24).

Given a nice function g : RV+ → R+, define for t ∈ RV+,

Z(t) = E(g(τ + t)), 〈F (ϕ)〉t =
1

Z(t)
E(F (ϕ)g(τ + t)), (6.32)

and abbreviate 〈·〉 = 〈·〉0.

Example 6.9. Let g(t) = e−
∑
x(gt2x+νtx). Then 〈·〉 is the expectation of the |ϕ|4 model.

For g(t) = e−
∑
x vx(tx), we have

∂

∂tx
〈F 〉t = −

〈
F ; v′x(τx + tx)

〉
t
. (6.33)

For n = 1, 2, under certain assumptions of F and vx, the second Griffith inequality implies that right-hand
side is nonpositive, and thus 〈F 〉t is monotone decreasing in t:

∂

∂t
〈F 〉t 6 0. (6.34)

This holds in particular for the |ϕ|4 model and appropriate F and we will assume (6.34) from now.

Lemma 6.10 (Gaussian integration by parts formula). Let Cxy = E(ϕ1
xϕ

1
y). Then

E(ϕ1
xF (ϕ)) =

∑
y

CxyE
(
∂F

∂ϕ1
y

)
=
∑
y

∫ ∞
0

Ex
(
∂F

∂ϕ1
y

1XT=y

)
dT. (6.35)

Proof. The last equality follows from integrating the Feynman–Kac formula. By integration by parts, the
right-hand side is of (6.35) is proportional to∑

y

Cxy

∫
∂F

∂ϕ1
y

e−
1
2

(ϕ,Aϕ) dϕ = −
∑
y

Cxy

∫
F (ϕ)

∂

∂ϕ1
y

e−
1
2

(ϕ,Aϕ) dϕ

=
∑
y

Cxy
∑
z

Ayz

∫
F (ϕ)ϕ1

ze
− 1

2
(ϕ,Aϕ) dϕ. (6.36)

This is equal to the left-hand side of (6.35) since C = A−1.
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The following non-Gaussian integration by parts formula generalizes (6.27) (and follows from essen-
tially the same proof).

Proposition 6.11 (BFS integration by parts).

〈ϕ1
xF (ϕ)〉 =

∑
y

∫ ∞
0

Ex

(
Z(L)

〈
∂F

∂ϕ1
y

〉
L

1XT=y

)
dT, where Z(t) =

Z(t)

Z(0)
. (6.37)

Proof. As in the proof of (6.27), first consider g(t) = e−(b,t), and recall J(b) from (6.29). Then by Gaussian
integration by parts and the integrated Feynman–Kac formula,

Z(0)〈ϕ1
xF (ϕ)〉 =

1

J(0)

∫
e−

1
2

(ϕ,(A+b)ϕ)ϕ1
xF (ϕ) dϕ =

1

J(0)

∫
e−

1
2

(ϕ,(A+b)ϕ)
∑
y

(A+ b)−1
xy

∂F

∂ϕ1
y

dϕ

=
∑
y

∫ ∞
0

Ex
(

e−(τ+LT ,b) ∂F

∂ϕ1
y

1XT=y

)
dT

=
∑
y

∫ ∞
0

Ex

(
Z(L)

〈
∂F

∂ϕ1
y

〉
L

1XT=y

)
dT. (6.38)

Since both sides are linear in g, as in the proof of (6.27), this identity extends to all nice g by analyticity
in b and Fourier transform.

Corollary 6.12 (Gaussian upper bounds). Assume (6.34). Then

〈ϕ1
xF (ϕ)〉 6

∑
y

〈ϕ1
xϕ

1
y〉
〈
∂F (ϕ)

∂ϕ1
y

〉
. (6.39)

Proof. By (6.37) and monotonicity of 〈·〉t in t,

〈ϕ1
xF (ϕ)〉 =

∑
y

∫ ∞
0

Ex(Z(L)

〈
∂F

∂ϕ1
y

〉
L

1XT=y) dT 6
∑
y

∫ ∞
0

Ex(Z(L)

〈
∂F

∂ϕ1
y

〉
0

1XT=y) dT. (6.40)

The right-hand side is equal to the right-hand side of (6.39).

In particular, (6.39) implies for n = 1, 2 and reasonable g that

〈ϕx1 · · ·ϕx2p〉 6
∑
π

〈ϕπ(1)ϕπ(2)〉 · · · 〈ϕπ(2p−1)ϕπ(2p)〉 (6.41)

where the sum runs over all pairings (matchings) of {1, . . . , 2p}. The case p = 2 is the Lebowitz inequality.

Corollary 6.13 (Lebowitz inequality).

〈ϕx1ϕx2ϕx3ϕx4〉 −
∑
π

〈ϕxπ(1)
ϕxπ(2)

〉〈ϕxπ(3)
ϕxπ(4)

〉 6 0 (6.42)
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6.2.1. Multiple walks. Let X1, . . . , Xp be independent simple random walks with local times L1, . . . Lp.

We write LT =
∑n

i=1 L
Ti
i for the total local time up to times T = (T1, . . . , Tp), and denote by Ex1,...,xp

the expectation with initial conditions X1
0 = x1, . . . , X

p
0 = xp.

Exercise 6.14. Iterate (6.37) to show that, for x1, . . . , x2p ∈ V ,

E(g(τ)ϕ1
x1
· · ·ϕ1

x2p
)

=
∑
π

∫ ∞
0
· · ·
∫ ∞

0
Exπ(1),...,xπ(p)

(g(LT + τ)1X1
T1

=xπ(p+1)
· · · 1Xn

Tp
=xπ(2p)

) dT1 · · · dTp. (6.43)

Lemma 6.15. Let A ⊂ V and TA be the first time that X exits A. Then, for x ∈ A,∫ ∞
0

Ex
(
Z(LT )1XT=y1TA<T

)
dT =

∑
z∈A

∑
z′ 6∈A

Jzz′

∫ ∞
0

∫ ∞
0

Ex,z′
(
Z(LT )1X1

T1
=z1X1

[0,T1]
⊂A1X2

T2
=y

)
dT1 dT2.

(6.44)

The left-hand side sums over walks from x to y going through z, while the right-hand side involves a
walk from x to z, then a step from z to z′ and then a walk from z′ to y.

Proof. We will estimate the integrand on the left-hand side for fixed T . Set In,i = [T2−ni, T2−n(i+ 1)),
for integers 0 6 i < 2n − 1. Then

Ex(Z(LT )1XT=y1z∈X[0,T )
) =

2n−1∑
i=0

Ex(Z(LT )1XT=y1TA∈In,i). (6.45)

Defining the interval-valued functions In : [0, T )→ 2[0,T ) by In(S) = In,i if S ∈ In,i, the right-hand side is∫ T

0
|In(S)|−1Ex(Z(LT )1XT=y1TA∈In(S)) dS. (6.46)

It suffices to show that, for every S ∈ [0, T ),

lim
n→∞

|In(S)|−1Ex(Z(LT )1XT=x1TA∈In(S)) =
∑
z∈A

∑
z′ 6∈A

Jzz′Ex,z′(Z(LS1 + LT−S2 )1X1
S=z1X1

[0,S]
⊂A1X2

T−S=y).

(6.47)
Since we also have the bound (exercise),

|I|−1Ex(Z(LT )1XT=x1Tz∈I) 6 |I|−1P (Tz ∈ I) = O(1), (6.48)

the claim then follows by integrating (6.47) and taking n→∞ (using dominated convergence) and that∫ ∞
0

dT

∫ T

0
dS f(S)g(T − S) =

∫ ∞
0

∫ ∞
0

f(T1)g(T2) dT1 dT2. (6.49)

To verify (6.47), consider any interval I = [a, b). Then

|Ex(Z(LT )1XT=y1TA∈I)− Ex(Z(LT )1XT=y1TA>a1Xa∈A1Xb 6∈A)|
6 Ex(|1Tz∈I − 1Tz>a1Xa∈A1Xb 6∈A|) 6 P(NI > 2) = O(|I|2), (6.50)

where NI is the number of jumps in the time interval I. Thus

Ex(Z(LT )1XT=y1TA∈I) = Ex(Z(LT )1XT=y1X[0,a]⊂A1Xb 6∈A) +O(|I|2). (6.51)
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Summing over the possibilities for Xa and Xb, write

Ex(Z(LT )1XT=y1X[0,a]⊂A1Xb 6∈A) =
∑
z∈A

∑
z′ 6∈A

Ex(Z(LT )1X[0,a]⊂A1Xa=z1Xb=z′1XT=y). (6.52)

Using the Markov property, the right-hand side has contributions from three independent walks: a walk
x→ z in time [0, a], a step z → z′ in time (a, b), and a walk z′ → y in time [b, T ]:

Ex(Z(LT )1Xa=z1Xb=z′1XT=y) = Ex,z′(Z(La1 + LT−b2 )1X[0,a]⊂A1Xa=z1XT−b=y)P(Xb = z′|Xa = z) +O(|I|2)

= Ex,z′(Z(La1 + LT−b2 )1X[0,a]⊂A1Xa=z1XT−b=y)Jzz′ |I|+O(|I|2), (6.53)

where the O(|I|2) errors accounts for omitting the contribution of the walk from a to b from Z and the
error from the replacement (see Exercise 6.5)

P (Xb = z′|Xa = z) = Jzz′ |I|+O(|I|2). (6.54)

Taking I = In(S), by right-continuity of the sample paths, as n→∞, left-hand side of (6.47) is bounded
by ∑

z∈A

∑
z′ 6∈A

Jzz′Ex,z′(Z(LS1 + LT−S2 )1XS=z1X[0,S]⊂A1XT−S=y), (6.55)

as claimed.

Corollary 6.16 (Lieb–Simon inequality). Let n = 1, 2 and A ⊂ V . Then

0 6 〈ϕxϕz〉 − 〈ϕxϕz〉A 6
∑

y∈A,y′ 6∈A
Jy′y〈ϕxϕy〉A〈ϕy′ϕz〉, (6.56)

where 〈·〉A denotes the expectation with Jxy set to 0 unless x, y ∈ A.

Proof. The lower bound is the second Griffith inequality. The left-hand side of the second inequality is

〈ϕxϕz〉 − 〈ϕxϕz〉A =

∫ ∞
0

Ex
(
Z(LT )1XT=z1TA<T

)
dT

=
∑
y∈A

∑
y′ 6∈A

Jyy′

∫ ∞
0

∫ ∞
0

Ex,y′
(
Z(LT )1X1

T1
=y1X1

[0,T1]
⊂A1X2

T2
=z

)
dT1 dT2

6
∑
y∈A

∑
y′ 6∈A

Jyy′〈ϕxϕy〉A〈ϕy′ϕz〉, (6.57)

where in the last step we used that∫ ∞
0

∫ ∞
0

Ex,y′
((
Z(LT )−Z(LT1

1 )Z(LT2
2 )
)

1X1
T1

=y1X1
[0,T1]

⊂A1X2
T2

=z

)
dT1 dT2

=

∫ ∞
0

Ex
(
Z(LT )1XT=y1X[0,T ]⊂A

(
〈ϕy′ϕz〉LT − 〈ϕy′ϕz〉0

))
dT 6 0 (6.58)

by monotonicity of 〈·〉t, i.e., (6.34).
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6.3 Triviality above dimension four

Both random current and random walk representations can be used to show the behaviour near the critical
point must be the same as that of mean field theory if d > 5, provided that n = 1, 2 (see [20, 2]). Let

χ = lim
m→∞

∑
x∈Tdm

〈ϕ0ϕx〉Tdm (6.59)

be the susceptibility, and define the critical point βc by

βc = sup{β : χ(β) <∞}. (6.60)

From Sections 2–3, χ is finite for high temperatures and infinite for low temperatures, and thus βc ∈ (0,∞).
By the second Griffith inequality, χ is monotone in β, assuming that n = 1, 2, which we do in this section.
Moreover, we assume homogenous nearest-neighbour spin-spin coupling, i.e.,

Jxy = β1x∼y, (6.61)

so that in particular the infrared bound (3.13) holds.

Comment: Should move a discussion of the infinite volume limit here.

Theorem 6.17 (Aizenman, Fröhlich). Let d > 5. For the Ising and XY model, and also the 1- and
2-component |ϕ|4 model, as ε = βc − β ↓ 0, the susceptibility obeys

c

ε
6 χ 6

C

ε
. (6.62)

(In fact, the lower bound holds in any dimension d > 3

Remark 6.18. (6.62) shows that for d > 5 the critical exponent for the susceptibility is 1 (in the sense
of upper and lower bounds), as in mean field theory (Proposition 1.10 (b)). Similar bounds can also be
established for other observables (in d > 5). For d = 4, the susceptibility (as well as other observables)
are expected to have logarithmic corrections to mean field theory. Using similar techniques as here, it
is known that corrections can be at most logarithmic. Full asymptotics are known under under stronger
assumptions (the |ϕ|4 model with small coupling constant g > 0), using the renormalization group. Then,
for example, as ε ↓ 0,

χ ∼ C 1

ε
(− log ε)(n+2)/(n+8). (6.63)

For d = 2, the divergence of the susceptibility is known for the Ising model, for which it diverges as

χ ∼ C 1

ε7/4
. (6.64)

The most interesting case d = 3 remains a great challenge for statistical physics.

The proof of Theorem 6.17 relies on the analysis of the truncated four-point function, defined by

U4(x1, x2, x3, x4) = 〈ϕx1ϕx2ϕx3ϕx4〉 −
∑
π

〈ϕxπ(1)
ϕxπ(2)

〉〈ϕxπ(3)
ϕxπ(4)

〉. (6.65)

The Lebowitz inequality (6.42) provides the upper bound U4(x1, x2, x3, x4) 6 0. Theorem 6.17 is proved
by proving a lower bound on U4(x1, x2, x3, x4). Such lower bounds can be obtained both from the random
current representation [2], and from the BFS random walk representation [20].

To illustrate it, we use the random walk representation and show the Aizenman–Fröhlich inequality
for the |ϕ|4 model with n = 1. In preparation of Fröhlich’s proof of the Aizenman–Fröhlich inequality, we
note the following inequality for the weight Z in the random walk representation.
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0 > > − + permutations

Figure 4: Diagrammatic representation of the Lebowitz and Aizenman–Fröhlich inequalities. On the
right-hand side, the dotted line symbolizes Jab, and the solid line a two-point function 〈ϕaϕb〉.

Lemma 6.19. For the |ϕ|4 model, the weight Z obeys

Z(t+ s) > Z(t)Z(s)e−2g(t,s). (6.66)

Proof. The logarithm of Z(t+ s) equals

logZ(t+ s) = logZ(t) +

∫ 1

0

∂

∂u
logZ(t+ us) du, (6.67)

and, using the remark below (6.33),

∂

∂u
logZ(t+ us) = −

∑
x

sx〈2g(τx + tx + usx) + ν〉t+us

> −
∑
x

sx〈2g(τx + usx) + ν〉us − 2
∑
x

gsxtx

=
∂

∂u
logZ(us)− 2g(s, t). (6.68)

The inequality (6.66) follows by reversing the previous steps.

Proposition 6.20 (Aizenman–Fröhlich inequality). For the 1-component |ϕ|4 model,

U4(x1, x2, x3, x4)

> −
∑
z

〈ϕxπ(1)
ϕz〉〈ϕxπ(2)

ϕz〉

[
δzxπ(3)

+
∑
z′

Jzz′〈ϕz′ϕxπ(3)
〉

][
δzxπ(4)

+
∑
z′′

Jzz′′〈ϕz′′ϕxπ(4)
〉

]
. (6.69)

Proof of Proposition 6.20. By (6.43), the truncated four-point function equals∑
π

∫ ∞
0

∫ ∞
0

Exπ(1),xπ(2)

((
Z(LT1

1 + LT2
2 )−Z(LT1

1 )Z(LT2
2 )
)

1X1
T1

=xπ(3)
1X2

T2
=xπ(4)

)
dT1 dT2. (6.70)

By (6.66), this is bounded below by∑
π

∫ ∞
0

∫ ∞
0

Exπ(1),xπ(2)

(
Z(LT1

1 )Z(LT2
2 )1X1

T1
=xπ(3)

1X2
T2

=xπ(4)

(
e−2g(L1,L2) − 1

))
dT1 dT2. (6.71)

The right-hand side vanishes unless X1 and X2 intersect, say at z ∈ V . Thus it is bounded below by

−
∑
z

∑
π

∫ ∞
0

∫ ∞
0

Exπ(1),xπ(2)

(
Z(LT1

1 )Z(LT2
2 )1X1

T1
=xπ(3)

1X2
T2

=xπ(4)
1z∈X1

[0,T1]
,z∈X2

[0,T2]

)
dT1 dT2. (6.72)
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The double integral on the right-hand side factorizes into two integrals of the type∫ ∞
0

Ex
(
Z(LT )1XT=y1z∈X[0,T )

)
dT 6 〈ϕxϕy〉δzx +

∑
z′

Jzz′〈ϕxϕz′〉〈ϕzϕy〉, (6.73)

where the inequality follows from the Simon inequality (6.56) with A = V \ {z}. Taking the sum over z,
this then shows the lower bound on the four-point function

−
∑
z

〈ϕxπ(1)
ϕz〉〈ϕxπ(2)

ϕz〉

[
δzxπ(3)

+
∑
z′

Jzz′〈ϕz′ϕxπ(3)
〉

][
δzxπ(4)

+
∑
z′′

Jzz′′〈ϕz′′ϕxπ(4)
〉

]
, (6.74)

as claimed.

To bound the right-hand side of (6.69), a real-space version of the infrared bound is useful. It proof
uses the following delicate monotonicity of the two-point function.

Lemma 6.21 (Schrader–Messager–Miracle-Solé inequality). Let n = 1, 2. For general single spin measure
and homogeneous nearest-neighbour coupling on Zd, it holds that

〈ϕ0ϕx〉 6 〈ϕ0ϕy〉 whenever |y|1 6 |x|∞. (6.75)

Proof.

Lemma 6.22 (Infrared bound, real-space version). Let n = 1, 2 and d > 3, and assume lim|x|→∞〈ϕ0ϕx〉 =
0. Then

〈ϕ0ϕx〉 6
C

β(1 + |x|)d−2
. (6.76)

Comment from RB: Be more precise about infinite volume limit.

Proof [44, Appendix A]. Let χ(x) = 1|x|∞6L and S(x, y) = S(x− y) = 〈ϕxϕy〉. By the infrared bound,

(χ, Sχ) 6
1

β
(χ,Gχ) =

1

β
O(Ld+2), (6.77)

where in the last bound we used that

∑
|x|6L

∑
|y|6L

1

1 ∨ |x− y|−(d−2)
6

1+log2 L∑
j=0

O(2−(d−2)j)
∑
|x|6L

∑
y

12j6|x−y|62j+1︸ ︷︷ ︸
O(2dj)

= O(Ld+2). (6.78)

Thus

min
|x|62L

S(x) 6 (2L+ 1)−2d
∑
|x|∞6L

∑
|y|∞6L

S(x− y) 6
1

β
O(L−(d−2)). (6.79)

The claim then follows from (6.75) and choosing L ≈ c|x|.

Lemma 6.23. Let d > 4. Then∑
u∈Zd

1

1 ∨ |u|d−2

1

1 ∨ |u− v|d−2
= O

(
1

1 ∨ |v|d−4

)
(6.80)
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Proof. Let v 6= 0. Then∑
|u|6|v|/2

1

|u|d−2

1

|u− v|d−2
6

1

(|v|/2)d−2

∑
|u|6|v|/2

1

|u|d−2
= O

(
1

|v|d−4

)
(6.81)

∑
|u|>2|v|

1

|u|d−2

1

|u− v|d−2
6

∑
|u|>2|v|

1

|u|d−2

1

(|u|/2)d−2
= O

(
1

|v|d−4

)
(6.82)

∑
|v|/26|u|62|v|

1

|u|d−2

1

1 ∨ |u− v|d−2
6

1

(|v|/2)d−2

∑
|u|62|v|

1

1 ∨ |u− v|d−2
= O

(
1

|v|d−4

)
, (6.83)

where in the last inequality we used that, given v ∈ Zd, there are O(2dj) points u ∈ Zd with 2j 6 |u−v| 6
2j+1, from which it follows that

∑
|u|62|v|

1

1 ∨ |u− v|d−2
6 1 +

1+log2 |v|∑
j=0

O(2dj2−(d−2)j) = O(|v|2). (6.84)

This completes the proof.

An immediate consequence of (6.69) is the inequality

−
∑
u,v,w

JuvU4(0, u, v, w) 6
∑
u,v,w

Juv
∑
z

〈ϕ0ϕz〉〈ϕuϕz〉

[
δzv +

∑
z′

Jzz′〈ϕz′ϕv〉

][
δzw +

∑
z′′

Jzz′′〈ϕz′′ϕw〉

]
6 |J |

∑
z

〈ϕ0ϕz〉2 (1 + |J |χ)2 = |J |B(1 + |J |χ)2 (6.85)

where B is the bubble diagram

B =
∑
z

〈ϕ0ϕz〉2 =

∫
|Ŝ(k)|2 dk. (6.86)

By the infrared bound, in d > 4, the bubble diagram is uniform bounded for β 6 βc. For the Ising and
1-component ϕ4 model, the inequality (6.85) can be improved to (Aizenman–Graham [4])

−
∑
u,v,w

JuvU4(0, u, v, w) 6 |J |B
(
β
∂χ

∂β
+ |J |χ

)
. (6.87)

(This is indeed an improvement, as seen by (6.88) below, together with the Lebowitz inequality U4 6 0.)

Comment: Can the proof of (6.62) also be completed using the weaker inequality
(6.69), as claimed in [20]?

Proof of Theorem 6.17 using (6.87). Differentiating the susceptibility gives

β
∂

∂β
χ =

∑
z

〈ϕ0ϕz;−βH(ϕ)〉

=
1

2

∑
x,y,z

Jxy (〈ϕ0ϕzϕxϕy〉 − 〈ϕ0ϕz〉〈ϕxϕy〉)

=
1

2

∑
x,y,z

Jxy (〈ϕ0ϕx〉〈ϕzϕy〉+ 〈ϕ0ϕy〉〈ϕxϕz〉+ U4(0, x, y, z)) .

= |J |χ2 +
1

2

∑
x,y,z

JxyU4(0, x, y, z) (6.88)
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The last term on the right-hand side is bounded above by Lebowitz’ inequality (6.42) (for all β) and from
below by the summed Aizenman–Graham inequality (6.87) (for β < βc):

χ2

1 + CB
− Cχ 6 ∂

∂β
χ 6 Cχ2. (6.89)

Let f(t) = 1/χ(βc− t). Then f is decreasing by Griffith inequality (for all t), f ′(t) = χ′(βc− t)/χ(βc−
t)2 6 C also for all t, and f(t) = 0 for t < 0 by (6.60), it follows that f(t) ↓ 0 as t ↓ 0, and

f(ε) =

∫ ε

0
f ′(t) dt 6 Cε (6.90)

i.e., χ > 1/(Cε). Moreover, the lower bound implies

f(ε) =

∫ ε

0
f ′(t) dt > cε, (6.91)

and thus also χ 6 1/(cε).

6.4 Continuum and scaling limits

Now consider the |ϕ|4 model on the scaled lattice (aZ)d with a > 0, and mostly n = 1. More precisely, it is
defined as follows. Let ϕ be distributed according to the probability measure proportional to e−Sa,R(ϕ) dϕ
on Λa,R = [−R,R]d ∩ (aZ)d, where

Sa,R(ϕ) = −1

2

∑
x,y

ϕxJxyϕy +
∑
x

(
1

4
gϕ4

x +
1

2
νϕ2

x

)
, (6.92)

where the sum only extends over x, y in Λa,R. Let a be fixed. Then, for any x1, . . . , xp ∈ (aZ)d, the limit

Sap (x1, . . . , xp) = lim
R→∞

〈ϕx1 · · ·ϕxp〉 (6.93)

exists by the second Griffith inequality (assuming n = 1). (Alternatively, one could consider a discrete
torus or a discretized domain (aZd) ∩D.) The correlation functions are also called Schwinger functions,
and can be interpreted as Schwartz distributions in S′(Rpd). The truncated correlation functions are
denoted by Uap . In particular,

Ua4 (x1, x2, x3, x4) = 〈ϕx1ϕx2ϕx3ϕx4〉a − 〈ϕx1ϕx2〉a〈ϕx3ϕx4〉a − 〈ϕx1ϕx3〉a〈ϕx2ϕx4〉a

− 〈ϕx1ϕx4〉a〈ϕx2ϕx3〉a. (6.94)

There are different ways to take continuum limits a ↓ 0 of the (truncated) Schwinger functions. Under
certain technical conditions (which we do not discuss), continuum limits of the correlation functions
correspond to random fields on Rd (in the sense that they are the correlation functions of a random
Schwartz distribution on Rd). Under further conditions (the Osterwalder–Schrader Axioms [36], involving
in particular reflection positivity), they are further in correspondence with relativistic Quantum Field
Theories in d− 1 space dimensions.
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Scaling limit (infrared problem). For fixed coupling constants J, g, ν, does there exist a scaling s = s(a)
such that sϕ converges to a nonvanishing random field as a→ 0?

This is the scaling of interest in statistical mechanics (describing the system’s large scale behaviour).
Above the critical temperature, any nontrivial scaling limit is (expected to be) white noise. (In particular,
for one-component spin systems and more general FKG systems, see [35, 34].) The most interesting case
is the critical point, at which the field is strongly correlated. The limiting random fields should be scale
invariant, and actually conformally invariant, at least in d = 2 (for the Ising model, which is believed to
have the same scaling limit as the critical one-component ϕ4 model, see [?]). The Wilson renormalization
group [50], for which Wilson received the Nobel Prize in 1982, provides a largely conjectural picture to
explain many of the associated heuristics.

Continuum limit (ultraviolet problem). For which a-dependent choices of bare coupling constants J(a),
g(a), ν(a) does ϕ converge to a nonvanishing random field as a→ 0?

The choice of coupling constants typically corresponds to much weaker interaction than for the scaling
limit (which in principle is a special case). Such scaling is of interest for Quantum Field Theory.

There are different natural topologies for convergence of the Schwinger functions. In particular, one of
them is weak convergence at non-coinciding arguments, in which Sap (x1, . . . , xp) is tested against function

in the Schwartz space S(Rpd) that vanish whenever xi = xj for some i 6= j. (It turns out that coinciding
arguments are irrelevant for QFT [36]; see also [19] for further discussion of topologies.)

Theorem 6.24 (Glimm–Jaffe). Let d = 2, 3 and n = 1. Then nontrivial (ultraviolet) continuuum limits
exist for which the Osterwalder–Schrader Axioms hold.

A simple proof of this result (except for rotation invariance), based on the random walk representation,
was given by Brydges–Fröhlich–Sokal [14].

On the other hand, non-Gaussian continuum limits of the |ϕ|4 model (for n = 1, 2) are known not to
exist for d > 4. In fact, the Aizenman–Fröhlich inequality (6.69) implies the following theorem.

Theorem 6.25 (Aizenman, Fröhlich). Let d > 5 and n = 1, 2. Assume that Sa2 (0, x) → 0 as x → 0 (no
long range order) for every a > 0, and that Sa2 → S2 weakly in S′(R2d) as a→ 0. Then

0 > Ua4 (x1, . . . , x4) > −Cad−4 (6.95)

if |xi−xj | > δ > 0 (with δ-dependent constant). This implies Ua4 → 0 weakly at non-coinciding arguments.
As a consequence of Ua4 → 0, it is known that in fact all truncated correlation functions converge to 0

(weakly at non-coinciding arguments), i.e., the continuum limit must be Gaussian.

For d = 4, it is conjectured that no non-Gaussian continuums limits exist either. (Results that prove
existence of Gaussian scaling limits exist for small coupling constants, but the ultraviolet problem remains
unsolved.)

Proof of Theorem 6.25. Write Jxy = β1x∼y, β = ad−2ζ with ζ = ζ(a) possibly depending on a. The
real-space infrared bound (6.76) implies that (assuming there is no long-range order)

Sa2 (0, x) 6
C

ζ(a+ |x|)d−2
. (6.96)

Therefore we can assume that lima→0 ζ < ∞, since otherwise lima→0 limSa2 = 0 is trivial. Furthermore,
the inequality (6.75) implies that

sup
a

sup
|x|>δ/2

Sa2 (0, x) <∞. (6.97)
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Indeed, otherwise (6.75) implies that there is a subsequence such that (along this subsequence)

inf
|x|6cδ

Sa2 (0, x)→∞, (6.98)

which is a contradiction to the assumption that Sa2 → S2.
The main contribution to (6.69) is essentially given by

|J |2
∑

z∈(aZ)d

S(x1, z)S(x2, z)S(x3, z)S(x4, z), (6.99)

with |J |2 ∝ ζ2a2d−4. (Indeed, the difference between z and its neighbours z′ and z′′ is unimportant and
the contributions involving δ are not difficult to see to be of lower order as a→ 0.) Using (6.96) for the
term involving x1, and (6.97) for the terms involving x2, x3, x4,

ζad
∑

z∈(aZ)d:|z−x1|6δ/2

S(x1, z)S(x2, z)S(x3, z)S(x4, z) 6 Ca
d

∑
z∈(aZ)d:|z|6δ2

1

(a+ |z|)d−2

6 Cad
∫
|z|6δ/2

1

|z|d−2
dz 6 C, (6.100)

and of course the same bound holds with x1 replaced by any of x2, x3, x4. On the other hand, again using
(6.96) and (6.97),

ζ2ad
∑

z∈(aZ)d:mini |z−xi|>δ/2

S(x1, z)S(x2, z)S(x3, z)S(x4, z)

6 Cad
∑

z∈(aZ)d:mini |z−xi|>δ/2

1

|z − x1|d−2

1

|z − x2|d−2
6 C. (6.101)

Therefore
|J |2

∑
z∈(aZ)d

S(x1, z)S(x2, z)S(x3, z)S(x4, z) = O(ad−4). (6.102)

Since the other contributions to (6.69) are smaller (as remarked above), this shows (6.95).

6.5 Supersymmetry and the self-avoiding walk

k-forms. Consider a two-component field (ux, vx)x∈V and denote by dux and dvx the associated 1-forms,
with the usual exterior algebra generator by the wedge product ∧. Thus

dux ∧ duy = −duy ∧ dux, dvx ∧ dvy = −dvy ∧ dvx, dvx ∧ duy = −dvy ∧ dux. (6.103)

Then k-forms are sums of forms f(u, v) dux1 ∧ · · · ∧ duxl ∧ dvxl+1
∧ · · · ∧ dvxk , with f(u, v) an ordinary

function of (u, v), say smooth. They define a real vector space (in fact an algebra) denoted Ωk. Differential
forms are formal linear combinations of k-forms:

Ω =

2N⊕
k=0

Ωk. (6.104)

Notice that k-forms only exist for k 6 2N , where N = |V | and 2N is the dimension of RV ⊕RV . Moreover,
any 2N -form ω can be uniquely written as

ω = f dux1 ∧ dvx1 ∧ · · · ∧ duxN ∧ dvxN , (6.105)
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where f is a function and x1, . . . , xN is an arbitrary enumeration of V . As usual in differential geometry,
the integral of ω ∈ Ω2N is then defined as∫

ω =

∫
f dux1dvx1 · · · duxNdvxN , (6.106)

with the integral on the right-hand side being the Lebesgue integral. For ω ∈ Ωk, k < 2N , it is useful for
our purposes to set ∫

ω = 0. (6.107)

The integral is then extended to Ω by linearity.

Complex field. We identify (u, v) with the complex field φ defined by

φx = ux + ivx, φ̄ = ux − ivx. (6.108)

Moreover, for an arbitrary fixed choice of square root, we define the 1-forms

ψx =
1√
2πi

dφx, ψ̄x =
1√
2πi

dφ̄x. (6.109)

Then, for example,

ψ̄x ∧ ψx =
1

2πi
dφ̄x ∧ dφx =

1

π
dux ∧ dvx. (6.110)

From now on, we will almost always omit ∧ from our notation, and write, e.g., ψ̄xψx = ψ̄x ∧ ψx.

Definition 6.26. For A = (Axy)x,y∈V with positive definite real part, define the differential form

S = SA =
∑
x,y

(
φxAxyφ̄x + ψxAxyψ̄x

)
. (6.111)

The super-Gaussian measure is the differential form (so not really a measure)

e−S = e−(φ,Aφ̄)
2N∑
k=0

(−1)k

k!

(∑
x,y

ψxAxyψ̄y

)k
. (6.112)

Given any differential form ω, we denote by ω|k its degree k part.

Proposition 6.27.

e−S
∣∣
2N

= (detA)e−(φ,Aφ̄)
N∏
i=1

dφ̄xdφx
2πi

= (detA)e−(φ,Aφ̄)
N∏
i=1

duxdvx
π

(6.113)

The right-hand side is the (normalized!) complex Gaussian measure, with covariance C = A−1.
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Proof. The right-hand side is

(detA)e−(φ,Aφ̄)
N∏
i=1

dφ̄xidφxi
2πi

=
∑
σ

(−1)σAx1σ(x1) · · ·AxNσ(xN )ψ̄x1ψx1 · · · ψ̄xNψxN

=
∑
σ

Ax1σ(x1) · · ·AxNσ(xN )ψ̄x1ψσ(x1) · · · ψ̄xNψσ(xN )

=
∑

y1,...,yN

Ax1y1 · · ·AxNyN ψ̄x1ψy1 · · · ψ̄xNψyN

=
1

N !

∑
x1,...,xN

∑
y1,...,yN

Ax1y1 · · ·AxNyN ψ̄x1ψy1 · · · ψ̄xNψyN

=
1

N !

(
−
∑
x,y

Axyψx1ψ̄y1

)N
. (6.114)

This is the same as the left-hand side.

Exercise 6.28. ∫
φx1 φ̄y1 · · ·φxk φ̄xk = per(Cxiyi)

k
i=1 (6.115)∫

ψx1ψ̄y1 · · ·ψxk ψ̄xk = det(Cxiyi)
k
i=1 (6.116)

where the determinant and permanent of a k × k matrix M are

det(M) =
∑
σ∈Sk

(−1)σMiσ(i), per(M) =
∑
σ∈Sk

Miσ(i). (6.117)

Exercise 6.29. Understand in which sense φ has the interpretation of a field of free bosons, while ψ
has the interpretation of the field of free fermions. To this end, let H be the finite-dimensional complex
Hilbert space with inner product C, i.e.,

(f, g)H =
∑
x,y

Cxyfxḡy. (6.118)

Let F =
⊕∞

k=0H⊗k be the Fock space generated by H, where H⊗0 ∼= C is spanned by a vector Ω called
the vacuum. Let Fs and Fa be the symmetric and antisymmetric subspaces of F . Define the creation
and annihilation operators a∗x and ax on Fs respectively Fa by

axψ = ..., a∗xψ = (...). (6.119)

Define the field operators by

φx = ax + ia∗x, ... (6.120)

Show that

(Ω, φx1φ
∗
x1
· · ·φxkφ

∗
xk

Ω) = (...) (6.121)

the relation of (6.115)–(6.116).

Next, we require some more notation.
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Exterior derivative and interior product. For ω = fdux1 ∧ · · · ∈ Ωk, the exterior derivative is

dω =
∑
x

∂f

∂ux
dux ∧ (dux1 ∧ . . . ) +

∑
x

∂f

∂vx
dvx ∧ (dux1 ∧ . . . ). (6.122)

It extends to Ω by linearity and has the properties

d2 = 0, d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ (dη) if η ∈ Ωk. (6.123)

Given a vector field X : R2N → R2N and ω ∈ Ωk, the interior product ιXω ∈ Ωk−1 is defined by (...). In
particular, for the vector field (...), we have

ιXdφx = −2πiφx, ιdφ̄x = 2πiφ̄x. (6.124)

Definition 6.30. The supersymmetry generator is

Q = d+ ι, (6.125)

and a form ω ∈ Ω is supersymmetric if Qω = 0.

Proposition 6.31. The forms φxφ̄y + ψxψ̄y are supersymmetric and

φxφ̄y + ψxψ̄y ∈ imQ. (6.126)

Proof. Indeed,

Q(φxφ̄y + ψxψ̄y) = d(φxφ̄y) + ι(ψxψ̄y) = (dφx)φ̄y + φx(dφ̄y)− φx(dφ̄y)− (dφx)φ̄y = 0, (6.127)

showing the supersymmetry, and

Q(φxdφ̄y) = (d+ ι)(φx + dφ̄y) = dφxdφy + (2πi)φxφ̄y (6.128)

implies that φxφ̄y + ψxψ̄y ∈ imQ.

Definition 6.32. For even forms ω1, . . . , ωp and F ∈ C∞(Rp), define F (ω1, . . . , ωp) by Taylor expansion
about the 0-degree parts of the forms ωi. More precisely, set

F (ω1, . . . , ωp) =
∑

k1,...,kp

∂k1

∂ωk1
1

· · · ∂
k1

∂ωk1
1

F (ω1|0, . . . , ωp|0)
(ω1 − ω1|0)k1

k1!
· · · (ωp − ωp|0)kp

kp!
∈ Ω, (6.129)

where the sum can be restricted to k1 + · · ·+ kp 6 N .

Exercise 6.33.

QF (ω1, . . . ωp) =

p∑
i=1

∂

∂ωi
F (ω1, . . . , ωp)Qωi. (6.130)

Thus supersymmetric fields can be generated as functions of supersymmetric forms. We apply this in
particular applied to the forms (the “square” of (φ, ψ))

τx = φxφ̄x + ψxψ̄x. (6.131)

It is not a coincidence that we use the same letter τ as in (6.26). The apparently missing factor 1
2 is due to

normalization conventions for complex Gaussian measures. For example, in terms of the two-component
field (u, v), we have φ̄φ = 1

2(u2 + v2).
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Proposition 6.34 (Localization Lemma). Let S be supersymmetric. Then for any F ∈ C∞(RN ),∫
F (τ)e−S = F (0)

∫
e−S . (6.132)

Thus, for functions of the square of the super-Gaussian field, the saddle point approximation is exact.

Proof. It suffices to show that the following derivative vanishes:

∂

∂λ

∫
F (λτ)e−S =

∑
x

∫
Fx(λτ)τxe−S

=
∑
x

∫
Q(Fx(λτ)ωxe−S), where τx = Qωx, (6.133)

and the last equality follows from Q(e−S) = 0 and Q(Fx(λτ)) = 0. For any form ω (with sufficient decay),
we have by the definition of

∫
and Stokes’ Theorem∫

Qω =

∫
dω = 0, (6.134)

and the claim follows.

Example 6.35. Let S be supersymmetric with
∫

e−S = 1. Then

0 =

∫
(φxφ̄y + ψxψ̄y)e

−S implies

∫
ψ̄yψxe−S =

∫
φ̄yφxe−S . (6.135)

The following is a supersymmetric version of the BFS representation (6.27).

Proposition 6.36. For g ∈ C∞(RN ) with at most exponential growth (say),∫
g(τ)φxφ̄ye

−S =

∫ ∞
0

Ex
(
g(LT )e−(A−Q,LT )1XT=y

)
dT. (6.136)

The crucial difference to (6.27) is that the right-hand side only involves LT not LT +τ . The proposition
has the interpretation that the distribution of the local time L∞ of the killed walk is the same as that of
the square of the supersymmetric Gaussian field associated to the walk.

Proof. The proof is analogous to that of (6.27). It again suffices to check the claim for g(t) = e−(b,t).
Then the left- and right-hand sides of (6.136) both become

(A+ b)−1
xy , (6.137)

now without further normalization (in contrast to the proof of (6.27)). For the left-hand side, this follows
from (6.115), and for the right-hand directly from the integrated Feynman-Kac formula.

The supersymmetric version of the |ϕ|4 model is the weakly self-avoiding walk (or random polymer).
Indeed, application of (6.136) with g(t) = e−

∑
x(gt2x+νtx) yields the following relation. Let

I(T ) =

∫ T

0

∫ T

0
1XS1

=XS2
dS1 dS2 =

∑
x

(LTx )2 (6.138)

be the self-intersection local time of the random walk X (up to time T ).
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Corollary 6.37 (Parisi–Sourlas [37], McKane [33], Brydges–Evans–Imbrie [9]).∫
φxφ̄ye

−Sg,ν =

∫ ∞
0

Ex
(

e−gI(T )1XT=y

)
e−νT dT, (6.139)

where

Sg,ν =
1

2

∑
x

(φx(−∆φ̄)x + ψx(−∆ψ̄)x) +
∑
x

(
1

4
g(φxφ̄x + ψxψ̄x)2 +

1

2
ν(φxφ̄x + ψxψ̄x)

)
. (6.140)

Analogous to the correspondence between |ϕ|4 and O(n) model, the right-hand side is up to constants
the |ϕ|4 version of the generating function for self-avoiding walks

∞∑
n=0

|{self-avoiding walks from x to y of length n}|zn. (6.141)

Indeed, the generating function for self-avoiding walks is a limit of that of weakly self-avoiding walks with
g →∞; see [13]. (This is also called the “point-to-point” partition function.)

There are other, perhaps more transparent, ways to understand that supersymmetry is intimately
connected to self-avoiding walks. To explain this, note that the Gaussian integration by parts formula
extends to the supersymmetric case.

Exercise 6.38. Let S = SA be as in (6.111). Then∫
φ̄xF e−S =

∑
y

Cxy

∫
∂F

∂φy
e−S . (6.142)

Example 6.39 (SUSY and self-avoiding walk). Write E(·) for the
∫

e−S(·). Then

E
(
φ̄xφyg(φ̄φ)

)
= CxyE

(
g(φ̄φ)

)
+
∑
x1

Cxx1E
(
φ̄x1φyg

(n)(φ̄φ)
)

(6.143)

where nx = 1 if x = x1 and nx = 0 otherwise and g(n) has nx derivatives in the tx variable. Iterating this
identity, one obtains

E
(
φ̄xφyg(φ̄φ)

)
=
∑
w:x→y

Cxx1 · · ·CxkyE
(
g(n)(φ̄φ)

)
, (6.144)

where nx is the number of times the walk w visits site x. Thus the right-hand side is sum over walks
with weight in terms of the vertices it visits. (Note that the weight involves C = A−1 rather than A, as
in (6.27); this has to do with the fact that it is now discrete rather than continuous.) The same can be
done with τx = φ̄xφx replaced by τx = φ̄xφx + ψ̄xψx inside g. Then, by (6.132),

E
(
g(n)(τx)

)
= g(n)(0). (6.145)

In particular, for g(t) =
∏
x(1 + tx) the right-hand side becomes the indicator function that the walk w

is self-avoiding:

E
(
φ̄xφyg(φ̄φ+ ψ̄ψ)

)
=
∑
w:x→y

Cw1w is self-avoiding, (6.146)

where Cw is the product Cxx1 · · ·Cxky over the steps of the walk.

More details concerning the connection between supersymmetry and self-avoiding walks can be found
in [16] and [9].
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Example 6.40 (SUSY and random matrix theory). Let H be a symmetric matrix and z = E+ iη ∈ C+.
Then the matrix i(H − z) = i(H − E) + η has positive definite real part. Let G = (H − z)−1 be the
Green’s function. It has the supersymmetric representation

Gij = i

∫
φ̄iφje

−i(φ,(H−z)φ̄)−i(ψ,(H−z)ψ̄). (6.147)

Let’s say that H has independent entries. Then the expectation of the Green’s function is

EGij = i

∫
φ̄iφj

∏
i<j

E
(

e−iHij(2φiφ̄j+ψiψ̄j+ψj ψ̄i)
)∏

i

E
(

e−iHii(φiφ̄i+ψiψ̄i)
)

e(iE−η)(φiφ̄i+ψiψ̄i) (6.148)

The expectations are particularly easy to calculate if the entries are centered Gaussians, say with Var(Hij) =
1/N and Var(Hii) = 2/N . Then

EGij = i

∫
φ̄iφje

− 1
2N ((φ,φ̄)2−(ψ,ψ̄)2−2(φ,ψ̄)(φ̄,ψ))e(iE−η)((φ,φ̄)+(ψ,ψ̄)). (6.149)

Formally dropping ψ (this is called the boson–boson contribution) and setting E = 0 for the moment,
the previous line resembles a correlation function of a spin model. For i = j, it is really the one-point
function of a mean-field spin model, where σ = |φ|2 is the spin field and the action is (recall (1.21)):

N

2
m2 +Nηm, m =

1

N
(φ, φ̄) =

1

N

∑
i

σi. (6.150)

The single spin measure induced on σ is the radial marginal of the two-dimensional Lebesgue measure:
µ(dσ) = δ(|φ|2 − σ) dφ̄ dφ ∝ 1σ>0 σ dσ, the imaginary part η has the interpretation of magnetic field, and
i times the average magnetization is the expected Stieltjes transform of the empirical measure. However,
differently from ordinary spin models, since the single spin measure is not symmetric about 0, there is
only one phase.

Still ignoring ψ, as a mean-field model, the asymptotic magnetization can be studied through a saddle
point approximation. To obtain a suitable form, one can either do a Hubbard–Stratonovich transform,
as in Section 1.4, or a direct change variables to m. Then there is a Jacobi factor proportional to mN−1.
Including mN in the action, it becomes

N

(
1

2
m2 − izm− logm

)
. (6.151)

Thus the stationary points obey
(im)2 + z(im) + 1 = 0, (6.152)

which is the self-consistent equation for the semicircle law. This only provides a glimpse of the connection
of random matrices and supersymmetry. Ultimately, the fermionic variables ψ cannot be ignored, and
provide crucial cancellations. For random matrix theory, the expected Green’s function EGij only provides
quite limited information. The analysis of E|Gij |2 becomes significantly more difficult as the state space
of the model becomes noncompact with hyperbolic symmetry. This is explained very well in [45] (see also
[46]).
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[29] B. Helffer. Remarks on decay of correlations and Witten Laplacians, Brascamp-Lieb inequalities and
semiclassical limit. J. Funct. Anal., 155(2):571–586, 1998.

[30] B. Helffer. Semiclassical analysis, Witten Laplacians, and statistical mechanics, volume 1 of Series
in Partial Differential Equations and Applications. World Scientific Publishing Co., Inc., River Edge,
NJ, 2002.

[31] T. Kennedy and C. King. Spontaneous symmetry breakdown in the abelian Higgs model. Comm.
Math. Phys., 104(2):327–347, 1986.

[32] O.A. McBryan and T. Spencer. On the decay of correlations in SO(n)-symmetric ferromagnets.
Comm. Math. Phys., 53(3):299–302, 1977.

[33] A.J. McKane. Reformulation of n → 0 models using anticommuting scalar fields. Phys. Lett. A,
76(1):22–24, 1980.

[34] C.M. Newman. Normal fluctuations and the FKG inequalities. Comm. Math. Phys., 74(2):119–128,
1980.

[35] C.M. Newman. A general central limit theorem for FKG systems. Comm. Math. Phys., 91(1):75–80,
1983.

[36] K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. Comm. Math. Phys.,
31:83–112, 1973.

74



[37] G. Parisi and N. Sourlas. Self avoiding walk and supersymmetry. Journal de Physique Lettres,
41(17):403–405, 1980.

[38] S. Poghosyan and D. Ueltschi. Abstract cluster expansion with applications to statistical mechanical
systems. J. Math. Phys., 50(5):053509, 17, 2009.

[39] M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis, self-
adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.

[40] M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Aca-
demic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.

[41] M. Reed and B. Simon. Methods of modern mathematical physics. I. Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], New York, second edition, 1980. Functional analysis.

[42] B. Simon. Correlation inequalities and the decay of correlations in ferromagnets. Comm. Math.
Phys., 77(2):111–126, 1980.

[43] B. Simon. The statistical mechanics of lattice gases. Vol. I. Princeton Series in Physics. Princeton
University Press, Princeton, NJ, 1993.

[44] A.D. Sokal. An alternate constructive approach to the ϕ4
3 quantum field theory, and a possible

destructive approach to ϕ4
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