1. Wick formula. Let $\langle\cdot\rangle$ be the expectation of a Gaussian field $\left(\varphi_{x}\right)_{x \in \Lambda}$. Show the Wick formula:

$$
\left\langle\varphi_{x_{1}} \cdots \varphi_{x_{2 k}}\right\rangle=\sum_{\pi} \prod_{i=1}^{k}\left\langle\varphi_{x_{\pi(2 i-1)}} \varphi_{\left.x_{\pi(2 i)}\right\rangle}\right\rangle
$$

where the sum runs over pairings π of $1, \ldots, 2 k$.
2. Newman inequality. For a 1 -component φ^{4} model and the Ising model (on a finite set Λ with $h=0$) show

$$
\left\langle\varphi_{x_{1}} \cdots \varphi_{x_{2 k}}\right\rangle \leqslant \sum_{\pi} \prod_{i=1}^{k}\left\langle\varphi_{x_{\pi(2 i-1)}} \varphi_{\left.x_{\pi(2 i)}\right\rangle}\right\rangle,
$$

where π is as in the previous question.
3. Intersections of simple random walks. Let X^{1} and X^{2} be independent simple random walks on \mathbb{Z}^{d} with initial condition $X_{0}^{1}=X_{0}^{2}=0$. Show that the expected time that the two walks intersect each other satisfies

$$
\mathbb{E}\left[\int_{0}^{\infty} \int_{0}^{\infty} 1_{X_{t_{1}}^{1}=X_{t_{2}}^{2}} d t_{1} d t_{2}\right] \begin{cases}=\infty & (d \leqslant 4) \\ <\infty & (d>4) .\end{cases}
$$

Show further that if $d>4$ and the two walks start at x and y, respectively, then the expected time the two walks intersect each other tends to 0 as $|x-y| \rightarrow \infty$.
4. Edwards-Sokal coupling. Complete the parts omitted in the proof of the Edwards-Sokal coupling in class and in the lecture notes.
5. Percolation, $d=1$. For percolation \mathbb{P}_{p} on \mathbb{Z} compute $\mathbb{P}_{p}(0 \leftrightarrow x)$. Compute the analogous probability for the random cluster model with $q>0$.
6. Percolation, high temperature. For percolation \mathbb{P}_{p} on $\mathbb{Z}^{d}, d \geqslant 1$, show that there is $p_{0}>0$ such that $\mathbb{P}_{p}(0 \leftrightarrow x) \leqslant C e^{-c|x|}$ for $p<p_{0}$.
7. Percolation, low temperature. For percolation \mathbb{P}_{p} on $\mathbb{Z}^{d}, d \geqslant 2$, use a Peierls' argument to show that there is $p_{1}<1$ such that $\mathbb{P}_{p}(0 \leftrightarrow x) \geqslant c>0$ for $p>p_{1}$.
8. Random current representation. Let $A \subset \Lambda$ and $n: E \rightarrow \mathbb{N}_{0}$. Show that

$$
2^{-|\Lambda|} \sum_{\sigma \in\{ \pm 1\}^{\Lambda}} \prod_{x \in A} \sigma_{x} \prod_{x y \in E}\left(\sigma_{x} \sigma_{y}\right)^{n_{x y}}=1_{\partial n=A}
$$

where $\left(d^{*} n\right)_{x}=\sum_{y: y \sim x} n_{x y}$ and $\partial n \subset \Lambda$ is the set of vertices such that $\left(d^{*} n\right)_{x}$ is odd. The $n: E \rightarrow \mathbb{N}_{0}$ are called currents and ∂n its sources. Show that the Ising partition function (with $h=0$) can be written as

$$
Z_{\beta}=2^{-|\Lambda|} \sum_{\sigma \in\{ \pm 1\}^{\Lambda}} e^{\beta \sum_{x y} \sigma_{x} \sigma_{y}}=\sum_{n: E \rightarrow \mathbb{N}_{0}: \partial n=\emptyset} W_{\beta}(n), \quad W_{\beta}(n)=\prod_{x y \in E} \frac{\beta^{n_{x y}}}{n_{x y}!} .
$$

9. Switching lemma. Let $x, y \in \Lambda$ and $A \subset \Lambda$. For any $F:\{ \pm 1\}^{E} \rightarrow \mathbb{R}$,

$$
\sum_{\partial n^{1}=\{x, y\}} \sum_{\partial n^{2}=A} F\left(n^{1}+n^{2}\right) W_{\beta}\left(n^{1}\right) W_{\beta}\left(n^{2}\right)=\sum_{\partial n^{1}=\emptyset} \sum_{\partial n^{2}=A \Delta\{x, y\}} F\left(n^{1}+n^{2}\right) W_{\beta}\left(n^{1}\right) W_{\beta}\left(n^{2}\right) 1_{x \mapsto y \text { in } n^{1}+n^{2}},
$$

where the sums run over currents n^{1} and n^{2}, Δ denotes the symmetric difference of sets, and $x \leftrightarrow y$ in $n^{1}+n^{2}$ means that there is a sequence of edges e connecting x and y with $n_{e}^{1}+n_{e}^{2}>0$.
10. Two-point function and random currents. By applying the switching lemma, show that the square of the two-point function of the Ising model can be expressed in terms of currents as

$$
\left\langle\sigma_{x} \sigma_{y}\right\rangle^{2}=\frac{\sum_{\partial n^{1}=\emptyset} \sum_{\partial n^{2}=\emptyset} W_{\beta}\left(n^{1}\right) W_{\beta}\left(n^{2}\right) 1_{x \leftrightarrow y \text { in } n^{1}+n^{2}}}{\sum_{\partial n^{1}=\emptyset} \sum_{\partial n^{2}=\emptyset} W_{\beta}\left(n^{1}\right) W_{\beta}\left(n^{2}\right)} .
$$

11. Simon-Lieb inequality from random currents. Prove the Simon-Lieb inequality for the Ising model by using the random current representation.
