LATTICE MODELS

Roland Bauerschmidt (rb812@cam.ac.uk)

Michaelmas 2022

1. Wick formula. Let $\langle \cdot \rangle$ be the expectation of a Gaussian field $(\varphi_x)_{x \in \Lambda}$. Show the Wick formula:

$$\langle \varphi_{x_1} \cdots \varphi_{x_{2k}} \rangle = \sum_{\pi} \prod_{i=1}^k \langle \varphi_{x_{\pi(2i-1)}} \varphi_{x_{\pi(2i)}} \rangle$$

where the sum runs over pairings π of $1, \ldots, 2k$.

2. Newman inequality. For a 1-component φ^4 model and the Ising model (on a finite set Λ with h = 0) show

$$\langle \varphi_{x_1} \cdots \varphi_{x_{2k}} \rangle \leqslant \sum_{\pi} \prod_{i=1}^k \langle \varphi_{x_{\pi(2i-1)}} \varphi_{x_{\pi(2i)}} \rangle,$$

where π is as in the previous question.

3. Intersections of simple random walks. Let X^1 and X^2 be independent simple random walks on \mathbb{Z}^d with initial condition $X_0^1 = X_0^2 = 0$. Show that the expected time that the two walks intersect each other satisfies

$$\mathbb{E}\left[\int_0^\infty \int_0^\infty \mathbf{1}_{X_{t_1}^1 = X_{t_2}^2} dt_1 dt_2\right] \begin{cases} = \infty & (d \le 4) \\ < \infty & (d > 4). \end{cases}$$

Show further that if d > 4 and the two walks start at x and y, respectively, then the expected time the two walks intersect each other tends to 0 as $|x - y| \rightarrow \infty$.

4. Edwards–Sokal coupling. Complete the parts omitted in the proof of the Edwards–Sokal coupling in class and in the lecture notes.

5. **Percolation**, d = 1. For percolation \mathbb{P}_p on \mathbb{Z} compute $\mathbb{P}_p(0 \leftrightarrow x)$. Compute the analogous probability for the random cluster model with q > 0.

6. Percolation, high temperature. For percolation \mathbb{P}_p on \mathbb{Z}^d , $d \ge 1$, show that there is $p_0 > 0$ such that $\mathbb{P}_p(0 \leftrightarrow x) \le Ce^{-c|x|}$ for $p < p_0$.

7. **Percolation, low temperature.** For percolation \mathbb{P}_p on \mathbb{Z}^d , $d \ge 2$, use a Peierls' argument to show that there is $p_1 < 1$ such that $\mathbb{P}_p(0 \leftrightarrow x) \ge c > 0$ for $p > p_1$.

8. **Random current representation.** Let $A \subset \Lambda$ and $n : E \to \mathbb{N}_0$. Show that

$$2^{-|\Lambda|} \sum_{\sigma \in \{\pm 1\}^{\Lambda}} \prod_{x \in A} \sigma_x \prod_{xy \in E} (\sigma_x \sigma_y)^{n_{xy}} = 1_{\partial n = A}$$

where $(d^*n)_x = \sum_{y:y \sim x} n_{xy}$ and $\partial n \subset \Lambda$ is the set of vertices such that $(d^*n)_x$ is odd. The $n : E \to \mathbb{N}_0$ are called *currents* and ∂n its sources. Show that the Ising partition function (with h = 0) can be written as

$$Z_{\beta} = 2^{-|\Lambda|} \sum_{\sigma \in \{\pm 1\}^{\Lambda}} e^{\beta \sum_{xy} \sigma_x \sigma_y} = \sum_{n: E \to \mathbb{N}_0: \partial n = \emptyset} W_{\beta}(n), \qquad W_{\beta}(n) = \prod_{xy \in E} \frac{\beta^{n_{xy}}}{n_{xy}!}$$

9. Switching lemma. Let $x, y \in \Lambda$ and $A \subset \Lambda$. For any $F : \{\pm 1\}^E \to \mathbb{R}$,

$$\sum_{\partial n^1 = \{x, y\}} \sum_{\partial n^2 = A} F(n^1 + n^2) W_\beta(n^1) W_\beta(n^2) = \sum_{\partial n^1 = \emptyset} \sum_{\partial n^2 = A\Delta\{x, y\}} F(n^1 + n^2) W_\beta(n^1) W_\beta(n^2) \mathbf{1}_{x \leftrightarrow y \text{ in } n^1 + n^2},$$

where the sums run over currents n^1 and n^2 , Δ denotes the symmetric difference of sets, and $x \leftrightarrow y$ in $n^1 + n^2$ means that there is a sequence of edges *e* connecting *x* and *y* with $n_e^1 + n_e^2 > 0$.

10. **Two-point function and random currents.** By applying the switching lemma, show that the square of the two-point function of the Ising model can be expressed in terms of currents as

$$\langle \sigma_x \sigma_y \rangle^2 = \frac{\sum_{\partial n^1 = \emptyset} \sum_{\partial n^2 = \emptyset} W_\beta(n^1) W_\beta(n^2) \mathbf{1}_{x \leftrightarrow y \text{ in } n^1 + n^2}}{\sum_{\partial n^1 = \emptyset} \sum_{\partial n^2 = \emptyset} W_\beta(n^1) W_\beta(n^2)}.$$

11. **Simon–Lieb inequality from random currents.** Prove the Simon–Lieb inequality for the Ising model by using the random current representation.