LATTICE MODELS

Roland Bauerschmidt (rb812@cam.ac.uk)

Michaelmas 2022

1. Continuous-time simple random walk. Given Λ finite and rates $J_{xy} = J_{yx} \ge 0$, define the continuous-time simple $X = (X_t)_{t\ge 0}$ random walk with initial condition $X_0 = x \in \Lambda$ as in class. Show that X has generator Δ_J , i.e., for any $f : \Lambda \to \mathbb{R}$,

$$\frac{\partial}{\partial t}f_t = \Delta_J f_t, \qquad f_t(x) = \mathbb{E}_x(f(X_t)). \tag{0.1}$$

2. Local time of simple random walk. Let $(L_x(t))_{x \in \Lambda}$ be the local time (or occupation time) of the continuous-time simple random walk X defined by $L_x(t) = \int_0^t 1_{X_s=x} ds$. Show that for any sufficiently nice function $f : \Lambda \times \mathbb{R}^{\Lambda} \to \mathbb{R}$,

$$\frac{\partial}{\partial t}f_t(x,\ell) = \mathcal{L}f_t(x,\ell), \qquad f_t(x,\ell) = \mathbb{E}_x(f(X_t,\ell+L_t))$$
(0.2)

where $\mathcal{L}f(x,\ell) = \Delta_J f(x,\ell) + \frac{\partial}{\partial \ell_x} f(x,\ell)$ and the discrete Laplacian Δ_J applies in the first argument of f.

3. No transversal magnetisation. Consider the O(n) model (with free or periodic boundary conditions) on $\Lambda \subset \mathbb{Z}^d$. Let e = (1, 0, ..., 0) denote the direction of the external field *h*. Show that

$$\langle e' \cdot \sigma \rangle_{\beta,h}^{\Lambda} = 0, \quad \text{for any } e' \in \mathbb{R}^n \text{ with } e \cdot e' = 0.$$
 (0.3)

4. Ward identity. For the O(n) model as in the previous question, show the Ward identity

$$\sum_{y \in \Lambda} \langle \sigma_x^2 \sigma_y^2 \rangle_{\beta,h} = \frac{\langle \sigma_x^1 \rangle_{\beta,h}}{h}.$$
 (0.4)

[Hint: Only consider n = 2. The general case is the same but notationally more cumbersome. It is helpful to integrate by parts.]

5. Rotationally invariant random vectors. Let M be an \mathbb{R}^n -valued random variable whose distribution is rotationally invariant, i.e., for any $R \in SO(n)$, the distribution of RM is the same as that of M. Show that the distributions of M/|M| and |M| are independent. Here |M| is the Euclidean norm of M.

6. Tetrahedral representation of the Potts model. The *q*-state Potts models is an analogue of the Ising model in which spins can take *q* values (with q = 2 corresponding to the Ising model). This definition amounts to the following definition of the measure of the Potts model: For $\theta \in \{1, ..., q\}^{\Lambda}$,

$$\mathbb{P}_{\beta}(\theta) \propto e^{\beta \sum_{xy} 1_{\theta_x = \theta_y}}.$$

Show that there are q vectors $v_1 \in \mathbb{R}^{q-1}, \ldots, v_q \in \mathbb{R}^{q-1}$ with the property that

$$v_i \cdot v_j = \begin{cases} q - 1 & (i = j) \\ -1 & (i \neq j). \end{cases}$$

The set of these q points forms a tretrahedron T_q . [Hint: Use induction in q.]

The configurations $\theta \in \{1, ..., q\}^{\Lambda}$ can thus be identified with spin configurations $\sigma \in (T_q)^{\Lambda} \subset (\mathbb{R}^n)^{\Lambda}$. Deduce that the *q*-state Potts model is reflection positive.

7. **Reflection positivity through sites.** Let Λ be a discrete torus with an odd number of vertices along every coordinate direction, and let $P \subset \Lambda$ be a plane of vertices (as opposed to edges considered in class) so that $\Lambda = \Lambda_+ \cup P \cup \Lambda_-$. The corresponding reflection $\theta : \Lambda_{\pm} \to \Lambda_{\mp}$ now leaves *P* invariant. Show that any product measure $\mu^{\otimes \Lambda}$ is reflection positive for this reflection.

As a consequence, show that the Ising model is reflection positive also with respect to planes of vertices.

8. **Reflection positivity of the hard-core model.** Let Λ be a discrete torus as in the previous question. Configurations of the hard-core model are $n = (n_x)_{x \in \Lambda}$ with $n_x \in \{0, 1\}$ for each $x \in \Lambda$ with the interpretation that there is a particle at $x \in \Lambda$ if $n_x = 1$ and $n_x = 0$ otherwise. In the hard-core model, two particles are not permitted to occupy neighbouring sites, i.e., the admissible configuration *n* obey the constraint $n_x n_y = 0$ if $xy \in E$. For z > 0 (called the activity), the probability of such a configuration *n* is

$$\mathbb{P}_{z}(n) = \frac{1}{Z_{z}^{\Lambda}} z^{N}, \qquad N = \sum_{x \in \Lambda} n_{x}.$$
(0.5)

Show that the hard-core model is reflection positive through planes of vertices (and analogously it is also reflection positive through planes of edges).

[*Hint:* one can approximate the hard-core model as the limit of an Ising model with inverse temperature going to $-\infty$ (antiferromagnetic).]

2