1. Continuous-time simple random walk. Given Λ finite and rates $J_{x y}=J_{y x} \geqslant 0$, define the continuous-time simple $X=\left(X_{t}\right)_{t \geqslant 0}$ random walk with initial condition $X_{0}=x \in \Lambda$ as in class. Show that X has generator Δ_{J}, i.e., for any $f: \Lambda \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{t}=\Delta_{J} f_{t}, \quad f_{t}(x)=\mathbb{E}_{x}\left(f\left(X_{t}\right)\right) . \tag{0.1}
\end{equation*}
$$

2. Local time of simple random walk. Let $\left(L_{x}(t)\right)_{x \in \Lambda}$ be the local time (or occupation time) of the continuous-time simple random walk X defined by $L_{x}(t)=\int_{0}^{t} 1_{X_{s}=x} d s$. Show that for any sufficiently nice function $f: \Lambda \times \mathbb{R}^{\Lambda} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{t}(x, \ell)=\mathcal{L} f_{t}(x, \ell), \quad f_{t}(x, \ell)=\mathbb{E}_{x}\left(f\left(X_{t}, \ell+L_{t}\right)\right) \tag{0.2}
\end{equation*}
$$

where $\mathcal{L} f(x, \ell)=\Delta_{J} f(x, \ell)+\frac{\partial}{\partial \ell_{x}} f(x, \ell)$ and the discrete Laplacian Δ_{J} applies in the first argument of f.
3. No transversal magnetisation. Consider the $O(n)$ model (with free or periodic boundary conditions) on $\Lambda \subset \mathbb{Z}^{d}$. Let $e=(1,0, \ldots, 0)$ denote the direction of the external field h. Show that

$$
\begin{equation*}
\left\langle e^{\prime} \cdot \sigma\right\rangle_{\beta, h}^{\Lambda}=0, \quad \text { for any } e^{\prime} \in \mathbb{R}^{n} \text { with } e \cdot e^{\prime}=0 \tag{0.3}
\end{equation*}
$$

4. Ward identity. For the $O(n)$ model as in the previous question, show the Ward identity

$$
\begin{equation*}
\sum_{y \in \Lambda}\left\langle\sigma_{x}^{2} \sigma_{y}^{2}\right\rangle_{\beta, h}=\frac{\left\langle\sigma_{x}^{1}\right\rangle_{\beta, h}}{h} \tag{0.4}
\end{equation*}
$$

[Hint: Only consider $n=2$. The general case is the same but notationally more cumbersome. It is helpful to integrate by parts.]
5. Rotationally invariant random vectors. Let M be an \mathbb{R}^{n}-valued random variable whose distribution is rotationally invariant, i.e., for any $R \in S O(n)$, the distribution of $R M$ is the same as that of M. Show that the distributions of $M /|M|$ and $|M|$ are independent. Here $|M|$ is the Euclidean norm of M.
6. Tetrahedral representation of the Potts model. The q-state Potts models is an analogue of the Ising model in which spins can take q values (with $q=2$ corresponding to the Ising model). This definition amounts to the following definition of the measure of the Potts model: For $\theta \in\{1, \ldots, q\}^{\Lambda}$,

$$
\mathbb{P}_{\beta}(\theta) \propto e^{\beta \sum_{x y} 1_{\theta_{x}=\theta_{y}}} .
$$

Show that there are q vectors $v_{1} \in \mathbb{R}^{q-1}, \ldots, v_{q} \in \mathbb{R}^{q-1}$ with the property that

$$
v_{i} \cdot v_{j}= \begin{cases}q-1 & (i=j) \\ -1 & (i \neq j) .\end{cases}
$$

The set of these q points forms a tretrahedron T_{q}. [Hint: Use induction in q.]
The configurations $\theta \in\{1 \ldots, q\}^{\Lambda}$ can thus be identified with spin configurations $\sigma \in\left(T_{q}\right)^{\Lambda} \subset\left(\mathbb{R}^{n}\right)^{\Lambda}$. Deduce that the q-state Potts model is reflection positive.
7. Reflection positivity through sites. Let Λ be a discrete torus with an odd number of vertices along every coordinate direction, and let $P \subset \Lambda$ be a plane of vertices (as opposed to edges considered in class) so that $\Lambda=\Lambda_{+} \cup P \cup \Lambda_{-}$. The corresponding reflection $\theta: \Lambda_{ \pm} \rightarrow \Lambda_{\mp}$ now leaves P invariant. Show that any product measure $\mu^{\otimes \Lambda}$ is reflection positive for this reflection.
As a consequence, show that the Ising model is reflection positive also with respect to planes of vertices.
8. Reflection positivity of the hard-core model. Let Λ be a discrete torus as in the previous question. Configurations of the hard-core model are $n=\left(n_{x}\right)_{x \in \Lambda}$ with $n_{x} \in\{0,1\}$ for each $x \in \Lambda$ with the interpretation that there is a particle at $x \in \Lambda$ if $n_{x}=1$ and $n_{x}=0$ otherwise. In the hard-core model, two particles are not permitted to occupy neighbouring sites, i.e., the admissible configuration n obey the constraint $n_{x} n_{y}=0$ if $x y \in E$. For $z>0$ (called the activity), the probability of such a configuration n is

$$
\begin{equation*}
\mathbb{P}_{z}(n)=\frac{1}{Z_{z}^{\Lambda}} z^{N}, \quad N=\sum_{x \in \Lambda} n_{x} \tag{0.5}
\end{equation*}
$$

Show that the hard-core model is reflection positive through planes of vertices (and analogously it is also reflection positive through planes of edges).
[Hint: one can approximate the hard-core model as the limit of an Ising model with inverse temperature going to $-\infty$ (antiferromagnetic).]

