1. Connected graphs. Given a finite connected graph G and a vertex x in G, show that there exists a path in G starting from x that crosses every edge exactly twice. [Hint: Induction on the number of vertices of the graph.] Deduce that the number of connected subgraphs of G with n edges that contain x is bounded by $D^{2 n}$ where D is the maximal degree of G.
2. 1d Ising model. Use the high temperature expansion to show that when $\Lambda=\{1, \ldots, L\} \subset \mathbb{Z}$ then $\left\langle\sigma_{x} \sigma_{y}\right\rangle_{\beta, 0}^{\Lambda}=(\tanh \beta)^{|x-y|}$ for $x, y \in \Lambda$. Thus the two-point function decays exponentially for all $\beta>0$.
3. Exponential lower bound. Show that the two-point function of the Ising model on $\Lambda \subset \mathbb{Z}^{d}$ cannot decay faster than exponentially.
4. Boundary conditions. For $\Lambda \subset \mathbb{Z}^{d}$, let $\bar{\Lambda} \subset \mathbb{Z}^{d}$ consist of all vertices in Λ or neighbouring a vertex in Λ. Spin configurations with boundary conditions ξ are $\sigma: \bar{\Lambda} \rightarrow\{ \pm 1\}$ with $\sigma_{x}=\xi_{x}$ for $x \in \bar{\Lambda} \backslash \Lambda$. Let \bar{E} consist of the neighest-neighbour edges of \mathbb{Z}^{d} with both vertices contained in $\bar{\Lambda}$. The Ising model on Λ with boundary condition ξ assigns the following probability to such configurations:

$$
\begin{equation*}
\mathbb{P}_{\beta, h}^{\Lambda, \xi}(\sigma)=\frac{1}{Z_{\beta, h}^{\Lambda, \xi}} e^{\beta \sum_{x y \in E} \sigma_{x} \sigma_{y}+h \sum_{x \in \Lambda} \sigma_{x}} . \tag{0.1}
\end{equation*}
$$

Plus boundary conditions are the choice $\xi_{x}=+1$ for all x and we then write + instead of ξ (and analogously for minus boundary conditions).
By adapting the high temperature expansion to + boundary conditions, show $\left\langle\sigma_{0}\right\rangle_{\beta, 0}^{\Lambda_{L},+} \rightarrow 0$ as $L \rightarrow \infty$ for β small enough.
By adapting the Peierls argument to + boundary conditions, show that $\lim \sup _{L \rightarrow \infty}\left\langle\sigma_{0}\right\rangle_{\beta, 0}^{\Lambda_{L,+}}>0$ for β large enough.
5. (*) Peierls argument for integer-valued height functions. Let $\Lambda=\Lambda_{L} \subset \mathbb{Z}^{d}$ be a hypercube of side length L centered at 0 , and consider integer-valued spin configurations $\sigma: \Lambda_{L} \rightarrow \mathbb{Z}$ with $\sigma_{0}=0$ and $\sigma_{x}-\sigma_{y} \in\{-1,0,1\}$ for all $x \sim y$. The probability of a spin configuration is given by

$$
\begin{equation*}
\mathbb{P}_{\beta}^{\Lambda}(\sigma)=\frac{1}{Z_{\beta}^{\Lambda}} e^{-\frac{\beta}{2} \sum_{x y \in E}\left|\sigma_{x}-\sigma_{y}\right|} . \tag{0.2}
\end{equation*}
$$

Show that there is $\beta_{1}>0$ such that if $\beta>\beta_{1}$, then for all $x \in \mathbb{Z}^{d}$ fixed and L sufficiently large, $\left\langle\sigma_{x}^{2}\right\rangle_{\beta}^{\Lambda_{L}} \leqslant C$.
6. Gaussian measure and Hubbard-Stratonovich transform. Let H be a real symmetric (strictly) positive definite $n \times n$ matrix. Show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2}(\varphi, H \varphi)} d \varphi=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} H}} \tag{G}
\end{equation*}
$$

where $\left(\varphi, \varphi^{\prime}\right)=\sum_{x=1}^{n} \varphi_{x} \varphi_{x}^{\prime}$ is the standard inner product on \mathbb{R}^{n}. Derive the Laplace transform of the corresponding normalised measure, also known as Hubbard-Stratonovich transform in statistical physics:

$$
\begin{equation*}
\sqrt{\frac{\operatorname{det} H}{(2 \pi)^{n}}} \int_{\mathbb{R}^{n}} e^{(f, \varphi)} e^{-\frac{1}{2}(\varphi, H \varphi)} d \varphi=e^{+\frac{1}{2}\left(f, H^{-1} f\right)} . \tag{0.3}
\end{equation*}
$$

7. Laplace's Principle. Let $S: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous and bounded below, assume that $\left\{\varphi \in \mathbb{R}^{n}\right.$: $S(\varphi) \leqslant \min S+1\}$ is compact, and that $\int_{\mathbb{R}^{n}} e^{-S(\varphi)} d \varphi<\infty$.
Let φ_{0} be a minimum of S, i.e., $S\left(\varphi_{0}\right)=\min S$. Show that for any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ bounded continuous with $f\left(\varphi_{0}\right) \neq 0$,

$$
\begin{equation*}
\int f(\varphi) e^{-t S(\varphi)} d \varphi=e^{-t \min S+o(t)} \quad(t \rightarrow \infty) \tag{0.4}
\end{equation*}
$$

Now assume S is twice continuously differenable and has a unique minimum φ_{0}. Show that then for any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ bounded continuous with $f\left(\varphi_{0}\right) \neq 0$,

$$
\begin{equation*}
\int f(\varphi) e^{-t S(\varphi)} d \varphi=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det}\left(\operatorname{Hess} t S\left(\varphi_{0}\right)\right)}} f\left(\varphi_{0}\right) e^{-t S\left(\varphi_{0}\right)}(1+o(1)) \quad(t \rightarrow \infty) \tag{0.5}
\end{equation*}
$$

where Hess $S=\left(\frac{\partial S}{\partial \varphi_{i} \partial \varphi_{j}}\right)_{i, j=1}^{n}$ is the Hessian matrix of S.
8. Curie-Weiss model. Consider the Ising model on the complete graph (also known as Curie-Weiss model). The complete graph has vertices $[N]=\{1, \ldots, N\}$ and edges between all pairs of distinct vertices. The coupling constants of the Ising model are given by $J_{x y}=\beta / N$ for all $x \neq y$, i.e., for $\sigma \in\{ \pm 1\}^{N}$,

$$
\begin{equation*}
\mathbb{P}_{\beta, h}^{N}(\sigma) \propto e^{-H_{N}(\sigma)}, \quad H_{N}(\sigma)=-\sum_{x y \in E} J_{x y} \sigma_{x} \sigma_{y}-h \sum_{x} \sigma_{x} \tag{0.6}
\end{equation*}
$$

Observe that H_{N} is a function of the mean spin (or mean field) $m=\frac{1}{N} \sum_{x} \sigma_{x}$:

$$
\begin{equation*}
H_{N}(\sigma)=-\frac{\beta}{2} N m^{2}-N h m \tag{0.7}
\end{equation*}
$$

Determine the set M_{N} of possible values that m can assume when $\sigma \in\{ \pm 1\}^{N}$ and their multiplicities. Using these determine an explicit function $f_{\beta, h}:[-1,1] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\sum_{\sigma \in\{ \pm 1\}^{N}} e^{-H_{N}(\sigma)}=\sum_{m \in M_{N}} e^{-N f_{\beta, h}(m)+o(N)} \tag{0.8}
\end{equation*}
$$

[Hint: Stiring's formula gives $\log n!=n(\log n-1)+o(n)$.] Show that the local minima m of $f_{\beta, h}$ satisfy

$$
\begin{equation*}
m=\tanh (\beta m+h) \tag{0.9}
\end{equation*}
$$

Find the largest $\beta_{c}>0$ such that $f_{\beta, h}$ has a unique minimum for all $\beta<\beta_{c}$ and all $h \in \mathbb{R}$. What happens for $\beta>\beta_{c}$?
9. First Griffiths inequality for $O(n)$ model. The $O(n)$ model is an analogue of the Ising model in which spins take values in the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$, i.e., its expectation is given by

$$
\begin{equation*}
\langle F(\sigma)\rangle_{\beta, h}^{\Lambda}=\int_{\left(\mathbb{S}^{n-1}\right)^{\Lambda}} F(\sigma) e^{\beta \sum_{x y \in E} \sigma_{x} \cdot \sigma_{y}+h \sum_{x \in \Lambda} \sigma_{x} \cdot e} \prod_{x \in \Lambda} d \sigma_{x} \tag{0.10}
\end{equation*}
$$

where is the uniform measure on \mathbb{S}^{n-1} and e is the unit vector in the last (or any fixed) coordinate direction. Show that if $\beta \geqslant 0$ and $h \geqslant 0$ then

$$
\begin{equation*}
\left\langle\prod_{k=1}^{K} \sigma_{x_{k}}^{a_{k}}\right\rangle \geqslant 0 \tag{0.11}
\end{equation*}
$$

for any $a_{1}, \ldots, a_{K} \in\{1, \ldots, n\}$ and any $x_{1}, \ldots, x_{K} \in \Lambda$, where σ_{x}^{a} is the a-th component, $a \in\{1, \ldots, n\}$, of the spin at $x \in \Lambda$.
10. Domination by Ising model. For μ an even Borel measure on \mathbb{R}, consider the generalised Ising model with single spin measure μ :

$$
\langle F\rangle_{\mu, J} \propto \int F(\sigma) e^{\sum_{x y} J_{x y} \sigma_{x} \sigma_{y}} \prod_{x \in \Lambda} \mu\left(d \sigma_{x}\right)
$$

Prove that if μ has support in $[-1,1]$ then

$$
\left\langle\sigma_{A}\right\rangle_{\mu, J} \leqslant\left\langle\sigma_{A}\right\rangle_{\text {Ising }, J}
$$

where $\sigma_{A}=\prod_{x \in A} \sigma_{x}$. [Hint: Use Griffith's inequalities.]
11. Exponential decay. Let Λ be a finite set, and let $J_{x y}=J_{y x} \geqslant 0$ for $x, y \in \Lambda$ be symmetric positive weights. Assume that $f: \Lambda \rightarrow \mathbb{R}_{+}$satisfies, for $x \neq o$ where o is a fixed point in Λ,

$$
f(x) \leqslant \sum_{y \in \Lambda} J_{x y} f(y)
$$

and that there is $\mu>0$ and a metric d on Λ such that

$$
\sup _{x \in \Lambda} \sum_{y \in \Lambda} J_{x y} e^{\mu d(x, y)} \leqslant 1 .
$$

Show that then $f(x) \leqslant f(o) e^{-\mu d(o, x)}$. [Hint: A probabilistic approach to this problem is to consider the discrete-time simple random walk with transition probabilities $p_{x y}=J_{x y} e^{\mu d(x, y)+\alpha_{x}}$ where the $\alpha_{x} \geqslant 0$ are defined to ensure $\sum_{y} p_{x y}=1$, and use that $f\left(X_{n}\right) e^{-\mu d\left(X_{0}, X_{n}\right)}$ is a submartingale.]
12. Mean-field bound on critical temperature. Show that the two-point function of the Ising model satisfies, for any $a \neq b$,

$$
\begin{equation*}
\left\langle\sigma_{a} \sigma_{b}\right\rangle_{\beta, 0}^{\Lambda} \leqslant \sum_{x \sim a} \beta\left\langle\sigma_{x} \sigma_{b}\right\rangle_{\beta, 0}^{\Lambda} \tag{0.12}
\end{equation*}
$$

Using the previous exercise deduce that $\left\langle\sigma_{a} \sigma_{b}\right\rangle_{\beta, 0}^{\Lambda}$ decays exponentially when $\beta<1 /(2 d)$ and $\Lambda \subset \mathbb{Z}^{d}$, and therefore that $\beta_{c}(d) \geqslant 1 /(2 d)$. Compare this with the bound from the high temperature expansion. [Hint: Consider the Ising model with temperature β replaced by an edge-dependent temperature $J_{x y}$ given by $J_{x y}=\beta$ for all edges $x y$ not containing a and $J_{x y}=\lambda \beta, \lambda \in[0,1]$, when xy contains a. What happens when $\lambda=0$?]

