LINEAR ANALYSIS

Michaelmas 2018

Roland Bauerschmidt (rb812@cam.ac.uk)

Throughout the following exercises, *H* is a complex Hilbert space.

1. For any closed subspace $L \subset H$, show that $(L^{\perp})^{\perp} = L$. For any set $S \subset H$, show that S has dense linear span in H iff $S^{\perp} = \{0\}$.

2. Given $v \in \ell^{\infty}$, define the multiplication operator $V : \ell^2 \to \ell^2$ by $(Vx)_n = v_n x_n$ for $x \in \ell^2$. Show that $V \in \mathcal{B}(\ell^2)$ with $||V|| = ||v||_{\infty}$. Find the eigenvalues, the approximate eigenvalues, and the spectrum of *V*. Show that *V* is compact iff $v \in c_0$, i.e., $v_n \to 0$.

3. Let *U* be a unitary operator on *H*, i.e., $U : H \to H$ is linear, invertible, and (Uv, Uw) = (v, w) for all $v, w \in H$. Prove the *mean ergodic theorem* of von Neumann: for every $v \in H$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} U^k v = P(v), \tag{+}$$

where *P* is the orthogonal projection from *H* onto the (closed) subspace of *U*-invariant vectors $I = \{v \in H : Uv = v\}$.

(Hint: Show that $W = \{Uv - v : v \in H\}$ is orthogonal to *I*. Show that (??) holds for any $v \in I \oplus \overline{W}$. Show that $H = I \oplus \overline{W}$.)

4. Let *U* be unitary operator on *H*. Show that $\sigma(U) \subset S^1$.

5. Let *V* be a Banach space and $T \in \mathcal{B}(V)$ with ||T|| < 1. Show that then 1 - T has a square root, i.e., there exists $S \in \mathcal{B}(V)$ with $S^2 = 1 - T$.

6. Let $\{e_n\}_{n \in \mathbb{N}} \subset H$ be a Hilbert basis for H. For $T \in \mathcal{B}(H)$, the Hilbert–Schmidt norm is defined by

$$||T||_{\mathrm{HS}} = \left(\sum_{n \in \mathbb{N}} ||Te_n||^2\right)^{\frac{1}{2}}.$$

Show that $||T||_{\text{HS}} < \infty$ implies that *T* is compact.

7. For $K \subset \mathbb{C}$ nonempty and compact, find a Hilbert space *H* and $T \in \mathcal{B}(H)$ such that $\sigma(T) = K$.

8. For $T \in \mathcal{B}(H)$ normal, i.e., $TT^* = T^*T$, show that $||Tv|| = ||T^*v||$ for all $v \in H$, and conclude that $\ker(T) = \ker(T^*) = \operatorname{im}(T)^{\perp} = \operatorname{im}(T^*)^{\perp}$.

9. For $T \in \mathcal{B}(H)$ normal, show that $\sigma(T) = \sigma_{ap}(T) = \sigma_p(T) \cup \sigma_c(T)$.

10. Let $(e_n)_{n \in \mathbb{N}} \subset H$ be a Hilbert basis for H. Define $T : H \to H$ by $T(e_n) = \frac{1}{n}e_{n+1}$. Show that T is compact and that T has no eigenvalues.

11. Let $T \in \mathcal{B}(H)$ be a compact self-adjoint linear operator. For any $\lambda \in \mathbb{R} \setminus \{0\}$, show that the *Fredholm alternative* holds:

(a) Either the only solution to $Tv = \lambda v$ is v = 0 and given any $v_0 \in H$ there is a unique solution $v \in H$ to $Tv = \lambda v + v_0$,

(b) or there is a finite-dimensional subspace $N_{\lambda} \neq \{0\}$ of solutions to $Tv = \lambda v$, and given any $v_0 \in H$ the equation $Tv = \lambda v + v_0$ has a solution $v \in H$ iff v_0 is orthogonal to N_{λ} . Moreover, the dimension of the space of solutions is equal to that of N_{λ} .

12. Let V be a Banach space, $U \subseteq \mathbb{C}$ be open, and $f : U \to V$ an analytic V-valued function, in the sense for any $z_0 \in U$ there exists an open neighbourhood $N \subset U$ of z_0 such that f can be represented on N as an absolutely convergent power series: there are $f_n \in V$ such that, for $z \in N$,

$$f(z) = \sum_{n=0}^{\infty} f_n (z - z_0)^n, \qquad \sum_{n=0}^{\infty} ||f_n|| |z - z_0|^n < \infty.$$

Prove *Liouville's Theorem*: if $U = \mathbb{C}$ and $\sup_{z \in \mathbb{C}} ||f(z)|| < \infty$, then f is constant.

13. Let *X*, *Y* be Banach spaces and $D \subset X$ a dense linear subspace. Show that a bounded linear operator $T : D \to Y$ can be extended uniquely to a bounded linear operator $T : X \to Y$ with the same operator norm (BLT Theorem). Show further that if $T : D \to Y$ is compact then so is its extension.