Roland Bauerschmidt (rb812@cam.ac.uk)

Michaelmas 2018

- 1. For $p \in [1, \infty)$, given $x \in \ell^p$, find explicitly a support functional for x, i.e., $f \in (\ell^p)^*$ with ||f|| = 1 and $f(x) = ||x||_p$.
 - 2. Let V be normed vector space and $f: V \to \mathbb{K}$ linear. Show that f is bounded iff ker(f) is closed.
- 3. Let X be a metric space and $A \subset Y \subset X$ be subsets. Show that if A is nowhere dense in Y then it is also nowhere dense in X.
 - 4. For $p, q \in [1, \infty)$, p < q, show that ℓ^p is meagre in ℓ^q .
- 5. Let $f_n : [0, 1] \to \mathbb{R}$ be continuous and assume $f(x) = \lim_{n \to \infty} f_n(x)$ for every $x \in [0, 1]$. Show that then f has a point of continuity (so that in fact that the set of points of continuity of f is dense in [0, 1]).

(Hint: Let $P_{n,m} = \{x : |f_n(x) - f(x)| \le 1/m\}$ and $R_m = \bigcup_n \operatorname{int}(P_{n,m})$. Show that $R = \bigcap_m R_m$ is the set of continuity points of f.)

- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that, for any x > 0, we have $f(nx) \to 0$ as $n \to \infty$ with n in the integers. Show that then $f(x) \to 0$ as $x \to \infty$.
- 7. Let *V* be a vector space with norms $\|\cdot\|$ and $|\cdot|$ such that $|v| \le C\|v\|$ for all $v \in V$. Show that if *V* is complete with respect to both norms then the norms are equivalent.
- 8. Let *V* be a Banach space and *W* a normed vector space. Let (T_n) be bounded linear maps $T_n: V \to W$ and $T: V \to W$ a map such that $T_n v \to T v$ as $n \to \infty$ for every $v \in V$. Show that *T* is linear and bounded.
 - 9. Let $V = \{v : [0, 1] \to \mathbb{R} \text{ continuous}\}$ with norm $||v|| = \int_{[0, 1]} |v(x)| dx$. Define $T_n, T : V \to \mathbb{R}$ by

$$T_n v = n \int_{[1-1/n,1]} v(x) dx, \qquad Tv = v(1).$$

Show that the T_n are bounded and that $T_n v \to T v$ for every $v \in V$. Is T bounded?

10. (challenging) Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely often differentiable function such that for every $x \in \mathbb{R}$ there exists n such that $f^{(m)}(x) = 0$ for all $m \ge n$. Prove that f is then a polynomial.

Given a 2π -periodic function $f: \mathbb{R} \to \mathbb{R}$, the Fourier coefficients of f are defined by

$$\hat{f}_k = \frac{1}{2\pi} \int_{[-\pi,\pi]} f(x) e^{-ikx} dx.$$

The *n*-th partial sum of the Fourier series of *f* is defined by

$$S_n f(x) = \sum_{k=-n}^n \hat{f}_k e^{ikx}$$

Denote the space of (real-valued) continuous 2π -periodic functions by $C(\mathbb{T})$.

- 12. For any $f \in C(\mathbb{T})$, show that $\hat{f}_k \to 0$ as $|k| \to \infty$.
- 13. Show that

$$S_n f(x) = \frac{1}{2\pi} \int_{[-\pi, \pi]} D_n(x - y) f(y) dy,$$

where $D_n(x)$ is the Dirichlet kernel

$$D_n(x) = \sum_{k=-n}^{n} e^{ikx} = \frac{\sin((n+\frac{1}{2})x)}{\sin(\frac{1}{2}x)}.$$

- 14. Define $T_n: C(\mathbb{T}) \to \mathbb{R}$ by $T_n f = [S_n(f)](0)$. Show that T_n is linear and that $||T_n|| < \infty$ for every n but that $\sup_n ||T_n|| = \infty$. Deduce that there is $f \in C(\mathbb{T})$ such that $[S_n(f)](0)$ does not have a finite limit.
 - 15. Assume that $\sum_{k} |\hat{f}_{k}| < \infty$. Does $[S_{n}(f)](0)$ have a limit as $n \to \infty$ then?