Michaelmas 2018

Roland Bauerschmidt (rb812@cam.ac.uk)

For a sequence $x = (x_n) \subset \mathbb{K}$, where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, recall the definitions of the *p*-norms,

$$||x||_p = \left(\sum_n |x_n|^p\right)^{1/p}$$
 for $p \in [1, \infty)$, $||x||_{\infty} = \sup_n |x_n|$,

and the sequence spaces

$$\ell^p = \{ x = (x_n) \subset \mathbb{K} : ||x||_p < \infty \}, \quad \text{with } \|\cdot\|_p \text{-norm, for } p \in [1, \infty], \\ c_0 = \{ x = (x_n) \subset \mathbb{K} : x_n \to 0 \text{ as } n \to \infty \}, \quad \text{with } \|\cdot\|_{\infty} \text{-norm.}$$

For $p \in [1, \infty]$, we use the convention that $1/0 = \infty$ and $1/\infty = 0$.

1. For $p,q,r \in (1,\infty)$ with 1/p + 1/q + 1/r = 1 and $x \in \ell^p$, $y \in \ell^q$, $z \in \ell^r$, prove that

$$||xyz||_1 \le ||x||_p ||y||_q ||z||_r$$

2. For $p, q \in (1, \infty)$, q > p, show that the following inequalities hold on \mathbb{K}^n and cannot be improved:

$$||x||_q \le ||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} ||x||_q.$$

In particular, the norms $\|\cdot\|_p$ and $\|\cdot\|_q$ are equivalent on \mathbb{K}^n , but the constants depend on *n*.

3. Show that the space ℓ^p is complete for every $p \in [1, \infty]$.

4. For $p, q \in [1, \infty]$, show that $\ell^p \subset \ell^q$ if and only if $p \leq q$.

5. For $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$, show that $(\ell^p)^* = \ell^q$ in the sense that the spaces are isometrically isomorphic in a natural way.

6. Show that $c_0^* = \ell^1$ and that $(\ell^1)^* = \ell^\infty$ in the sense that the spaces are isometrically isomorphic.

7. Show that ℓ^p is separable if $p \in [1, \infty)$. Show that c_0 is separable. Show that ℓ^{∞} is not separable.

8. Show that a normed vector space X is complete if and only if every absolutely convergent series is convergent. The latter means that $\sup_N \sum_{n=1}^N ||x_n|| < \infty$ implies that $\sum_{n=1}^N x_n$ converges as $N \to \infty$.

(Hint: to show that a Cauchy sequence (x_n) converges if every absolutely convergent series is convergent, first show that one may assume that $||x_n - x_m|| \le 2^{-\min\{n,m\}}$.)

9. For a normed vector space X and bounded linear maps $T : X \to X$ and $S : X \to X$, show that *TS* is bounded and that $||TS|| \le ||T|| ||S||$. (Here *TS* is the composition of *T* and *S*.)

10. Let X be a normed vector space and define $\pi(x) = x/||x||$ for $x \in X \setminus \{0\}$. Either prove that then $||\pi(x) - \pi(y)|| \le ||x - y||$ whenever $||x||, ||y|| \ge 1$, or give an example in which this inequality is violated.

11. Let $x \in c_0$ and define $X = \{y \in c_0 : |y_n| \le |x_n|\}$. Show that X is compact in c_0 .

12. Show that that space $C^{1}[0,1]$ of continuously differentiable functions on [0,1] is complete in the norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ but incomplete in the norm $||f||_{\infty}$.

In applications, it is often useful to consider spaces with weights. Let $(\mu_n) \subset [0, \infty)$ be a nonnegative sequence of weights. Then define

$$||x||_{p,\mu} = \left(\sum_{n} |x_n|^p \mu_n\right)^{1/p} \quad \text{for } p \in [1,\infty),$$

and $\ell^{p}(\mu) = \{x = (x_n) \subset \mathbb{K} : ||x||_{p,\mu} < \infty\}.$

13. For any sequence of weights μ , prove the Hölder inequality $||xy||_{1,\mu} \le ||x||_{p,\mu} ||y||_{q,\mu}$ if $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1.

14. If $\sum_{n} \mu_n < \infty$, show that $\ell^p(\mu) \supset \ell^q(\mu)$ if $p \le q$. Compare this with the case $\mu_n = 1$ in Exercise 5.