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Exercise 1. Suppose 𝑓 ∈ 𝐿 𝑝
𝑙𝑜𝑐.

(R𝑛) is a periodic function and let:

𝑞 =

{
𝑥 ∈ R𝑛 :

��𝑥 𝑗 �� < 1
2
, 𝑗 = 1, . . . , 𝑛

}
.

Show that for any 𝜖 > 0 there exists a smooth, periodic, function 𝑓𝜖 such that

‖ 𝑓 − 𝑓𝜖 ‖𝐿𝑝 (𝑞) < 𝜖.

Exercise 2. Let 𝑢 ∈ 𝒮
′(R) be the periodic distribution 𝑢 =

∑∞
𝑛=−∞ 𝛿𝑛, and suppose 𝛼 is irrational. Let

𝑤𝑁 = 1
𝑁

∑𝑁
𝑛=1 𝜏𝑛𝛼𝑢. By considering �̂�𝑁 , or otherwise, show that 𝑤𝑁 converges in 𝒮

′(R) to a constant
distribution.
This is Weyl’s equidistribution theorem.

Exercise 3. Suppose that Ω ⊂ R𝑛 is open and bounded, let 𝑓 ∈ 𝐶∞
𝑐 (Ω), and suppose 0 < 𝜖 < 1.

a) Show that
∫
Ω
( | 𝑓 |2 + 𝜖)

𝑝

2 𝑑𝑥 → ‖ 𝑓 ‖ 𝑝
𝐿𝑝 as 𝜖 → 0.

b) By considering
∫
Ω
( | 𝑓 |2 + 𝜖)

𝑝

2 𝑑𝑥 =
∫
R𝑛

(
1
𝑛
div 𝑥

)
( | 𝑓 |2 + 𝜖)

𝑝

2 𝑑𝑥, or otherwise, show that there exists a
constant 𝐶, depending on Ω, 𝑝 but not on 𝑓 , such that

‖ 𝑓 ‖𝐿𝑝 ≤ 𝐶 ‖𝐷 𝑓 ‖𝐿𝑝 .

Exercise 4. Let 𝑠 ∈ R.

a) Show that 𝒮 is a dense subset of 𝐻𝑠 (R𝑛).

b) Find a condition on 𝑠 such that 𝛿𝑥 ∈ 𝐻𝑠 (R𝑛).

c) Show that 𝐻𝑡 (R𝑛) is continuously embedded in 𝐻𝑠 (R𝑛) for 𝑠 < 𝑡.

d) Show that the derivative 𝐷𝛼 is a bounded linear map from 𝐻𝑠+𝑘 (R𝑛) into 𝐻𝑠 (R𝑛), where 𝑘 = |𝛼 |.

e) (*) Show that the pairing 〈, 〉 : 𝐻−𝑠 (R𝑛) × 𝐻𝑠 (R𝑛) → C, which acts on 𝑓 ∈ 𝐻−𝑠 (R𝑛), 𝑔 ∈ 𝐻𝑠 (R𝑛) by

〈 𝑓 , 𝑔〉 = 1
(2𝜋)𝑛

∫
R𝑛
𝑓 (b)�̂�(b)𝑑b

is well defined, and show that the map 𝑔 ↦→ 〈 𝑓 , 𝑔〉 is a bounded linear operator on 𝐻𝑠 (R𝑛). Deduce
that 𝐻𝑠 (R𝑛) ′ may be identified with 𝐻−𝑠 (R𝑛). How does this relate to your answer to part b)?

Exercise 5. a) Suppose 𝑠 = 𝑛
2 + 𝛾 for some 0 < 𝛾 < 1. Show that there exists a constant 𝐶𝑛,𝛾 > 0 such

that for all 𝑥, 𝑦 ∈ R𝑛: ∫
R𝑛

��𝑒𝑖𝑥 ·b − 𝑒𝑖𝑦 ·b ��2
|b |2𝑠

𝑑b 6 𝐶𝑛,𝛾 |𝑥 − 𝑦 |2𝛾

b) Show that if 𝑠 = 𝑛
2 + 𝑘 + 𝛾 for some 𝑘 ∈ Z>0, 0 < 𝛾 < 1, then

𝐻𝑠 (R𝑛) ⊂ 𝐶𝑘,𝛾 (R𝑛).

Exercise 6. Fix 𝑠 ∈ R, and suppose that 𝑓 ∈ 𝐻𝑠 (R𝑛).
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a) Show that there exists a unique 𝑢 ∈ 𝐻𝑠+4(R𝑛) which solves:

Δ2𝑢 + 𝑢 = 𝑓 .

b) Show further that there exists 𝐶 > 0 such that ‖𝑢‖𝐻 𝑠+4 6 𝐶 ‖ 𝑓 ‖𝐻 𝑠 .

c) For what values of 𝑠 does the equation hold in the sense of classical derivatives (possibly after redefining
𝑢, 𝑓 on a set of measure zero)?

Exercise 7. Assume 𝑠 > 1
2 and suppose 𝑢 ∈ 𝒮(R𝑛). Define 𝑇𝑢 ∈ 𝒮(R𝑛−1) by:

𝑇𝑢(𝑥 ′) = 𝑢(𝑥 ′, 0), 𝑥 ′ ∈ R𝑛−1.

a) Show that if b ′ ∈ R𝑛−1:
𝑇𝑢(b ′) = 1

2𝜋

∫
R
�̂�(b ′, b𝑛)𝑑b𝑛.

b) Deduce that:

���𝑇𝑢(b ′)���2 6 1
(2𝜋)2

(∫
R
(1 + |b |2)𝑠 |�̂�(b ′, b𝑛) |2 𝑑b𝑛

) ©«
∫
R

𝑑b𝑛(
1 + |b |2

)𝑠 ª®®¬ ,
where b = (b ′, b𝑛).

c) By changing variables in the second integral above to b𝑛 = 𝑡
√︃

1 + |b ′ |2, show that there exists a constant
𝐶 (𝑠) such that:

‖𝑇𝑢‖
𝐻

𝑠− 1
2 (R𝑛−1)

6 𝐶 (𝑠) ‖𝑢‖𝐻 𝑠 (R𝑛) .

d) Conclude that 𝑇 extends to a bounded linear operator 𝑇 : 𝐻𝑠 (R𝑛) → 𝐻𝑠−
1
2 (R𝑛−1).

e) (*) Suppose 𝑣 ∈ 𝒮(R𝑛−1) and let 𝜙 ∈ 𝐶∞
𝑐 (R) satisfy

∫
R
𝜙(𝑡)𝑑𝑡 =

√
2𝜋. Define 𝑢 through its Fourier

transform by:

�̂�(b ′, b𝑛) =
�̂�(b ′)√︃
1 + |b ′ |2

𝜙
©«

b𝑛√︃
1 + |b ′ |2

ª®®¬ .
Show that there exists a constant 𝐶 > 0 such that:

‖𝑢‖𝐻 𝑠 (R𝑛) 6 𝐶 ‖𝑣‖
𝐻

𝑠− 1
2 (R𝑛−1)

and that 𝑇𝑢 = 𝑣. Conclude that 𝑇 : 𝐻𝑠 (R𝑛) → 𝐻𝑠−
1
2 (R𝑛−1) is surjective.

The following are longer-form questions designed to show how some of the concepts of the course can
be applied to solve interesting problems. They are optional, but you may wish to attempt one or two that
you find interesting.

Exercise 8. Suppose that _ = {_1, . . . _𝑛} is a basis for R𝑛. We define the lattice generated by _ to
be Λ =

{∑𝑛
𝑗=1 𝑧 𝑗_ 𝑗 : 𝑧 𝑗 ∈ Z

}
, and the the fundamental cell 𝑞Λ =

{∑𝑛
𝑗=1 𝑥 𝑗_ 𝑗 :

��𝑥 𝑗 �� < 1
2

}
. We say that

𝑢 ∈ 𝒟
′(R𝑛) is Λ−periodic if: 𝜏𝑔𝑢 = 𝑢 for all 𝑔 ∈ Λ.

a) Show that there exists 𝜓 ∈ 𝐶∞
𝑐 (2𝑞Λ) such that 𝜓 > 0 and

∑
𝑔∈Λ 𝜏𝑔𝜓 = 1. If 𝜓, 𝜓 ′ are two such functions

and 𝑢 ∈ 𝒟
′(R𝑛) is Λ−periodic, deduce

1
|𝑞Λ |

𝑢[𝜓] = 1
|𝑞Λ |

𝑢[𝜓 ′] =: 𝑀 (𝑢).
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b) Define the dual lattice by Λ∗ := {𝑥 ∈ R𝑛 : 𝑔 · 𝑥 ∈ 2𝜋Z, ∀𝑔 ∈ Λ}. Show that there exists a basis
_∗ = {_∗1, . . . _

∗
𝑛} such that _∗

𝑗
· _𝑘 = 2𝜋𝛿 𝑗𝑘 , and Λ∗ is the lattice generated by _∗. Show that if 𝑔 ∈ Λ∗

then 𝑒𝑔 is Λ−periodic.

c) Show that if 𝑢 ∈ 𝒟
′(R𝑛) is Λ−periodic, then �̂� =

∑
𝑔∈Λ∗ 𝑐𝑔𝛿𝑔 for some 𝑐𝑔 ∈ C satisfying

��𝑐𝑔�� 6
𝐾 (1 + |𝑔 |)𝑁 for some 𝐾 > 0, 𝑁 ∈ Z. Deduce that

𝑢 =
∑︁
𝑔∈Λ∗

𝑑𝑔𝑇𝑒𝑔

where
��𝑑𝑔�� 6 𝐾 (1 + |𝑔 |)𝑁 for some 𝐾 > 0, 𝑁 ∈ Z are given by:

𝑑𝑔 = 𝑀 (𝑒−𝑔𝑢)

Exercise 9. Suppose that Ω ⊂ R𝑛 is open and bounded. For 𝑢 ∈ 𝐻1
0 (Ω), define the Dirichlet energy:

𝐸 [𝑢] =
∫
Ω

|𝐷𝑢 |2 𝑑𝑥.

a) Suppose that (𝑢𝑖)∞𝑖=1 is a sequence with 𝑢𝑖 ∈ 𝐻1
0 (Ω) such that 𝑢𝑖 ⇀ 𝑢. Show that 𝐸 [𝑢] 6 lim inf𝑖 𝐸 [𝑢𝑖].

b) Consider the set
E1 = {𝐸 [𝑢] : 𝑢 ∈ 𝐻1

0 (Ω), ‖𝑢‖𝐿2 = 1}
Let _1 := inf E. Show that there exists 𝑤1 ∈ 𝐻1

0 (Ω) with ‖𝑤1‖𝐿2 = 1 and 𝐸 [𝑤1] = _1, and deduce
_1 > 0.

c) Deduce that:
_1 ‖𝑢‖2

𝐿2 6

∫
Ω

|𝐷𝑢 |2 𝑑𝑥

holds for all 𝑢 ∈ 𝐻1
0 (Ω), with equality for 𝑢 = 𝑤1. This is Poincaré’s inequality.

d) By considering 𝑢 = 𝑤1 + 𝑡𝜙 for 𝑡 ∈ R, 𝜙 ∈ 𝒟(Ω), or otherwise, show that 𝑤1 satisfies

−Δ𝑤1 = _1𝑤1,

where we understand this equation as holding in 𝒟
′(Ω).

e) (*) Suppose 𝜒 ∈ 𝐶∞
𝑐 (Ω), and let 𝑣 = 𝜒𝑤1. Show that 𝑣 satisfies −Δ𝑣 + 𝑣 = 𝑓 , where we understand

the equation as holding in 𝒮
′(R𝑛), where 𝑓 ∈ 𝐿2(R𝑛). Deduce that 𝑣 ∈ 𝐻2(R𝑛). By iterating this

argument, deduce that 𝑤1 ∈ 𝐻1
0 (Ω) ∩ 𝐶

∞(Ω).

f) (*) By considering
E2 = {𝐸 [𝑢] : 𝑢 ∈ 𝐻1

0 (Ω), ‖𝑢‖𝐿2 = 1, (𝑢, 𝑤1)𝐿2 = 0},
or otherwise, show that there exists _2 > _1 and 𝑤2 ∈ 𝐻1

0 (Ω) ∩ 𝐶
∞(Ω) with 𝑤2 ≠ 𝑤1, ‖𝑤2‖𝐿2 = 1

solving
−Δ𝑤2 = _2𝑤2.

Exercise 10. Let 𝐻 be the completion of 𝒮(R𝑛) with respect to the norm

‖𝑢‖𝐻 :=
(∫
R𝑛

(
|𝐷𝑢 |2 + |𝑥 |2 |𝑢 |2

)
𝑑𝑥

) 1
2

a) Show that 𝐻 is a Hilbert space with the inner product:

(𝑢, 𝑣)𝐻 :=
∫
R𝑛

(
𝐷𝑢 · 𝐷𝑣 + |𝑥 |2𝑢𝑣

)
𝑑𝑥,

and show that if 𝑢 ∈ 𝐻, 𝜒 ∈ 𝐶∞
𝑐 (𝐵𝑅 (0)), then 𝜒𝑢 ∈ 𝐻1

0 (𝐵𝑅 (0)), with ‖𝜒𝑢‖𝐻 1 6 𝐶𝑅,𝜒 ‖𝑢‖𝐻 for some
constant 𝐶𝑅,𝜒 > 0.
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b) Show that 𝐻 embeds compactly into 𝐿2(R𝑛), that is 𝐻 ⊂ 𝐿2(R𝑛) and if (𝑢𝑛)∞𝑛=1 is a bounded sequence
in 𝐻 then it admits a subsequence which converges in 𝐿2(R𝑛).
[Hint: take a subsequence converging weakly in both𝐻 and 𝐿2(R𝑛), and write 𝑢𝑛 = 𝑢𝑛𝜒𝑅+𝑢𝑛 (1−𝜒𝑅),
where 𝜒𝑅 ∈ 𝐶∞

𝑐 (𝐵𝑅 (0)) satisfies 𝜒𝑅 (𝑥) = 1 for |𝑥 | < 𝑅 − 1, where 𝑅 is to be chosen.]

c) If 𝑓 ∈ 𝐿2(R𝑛), we say that 𝑢 ∈ 𝐻 is a weak solution of:

−Δ𝑢 + |𝑥 |2𝑢 = 𝑓 (†)

if
(𝑢, 𝑣)𝐻 = ( 𝑓 , 𝑣)𝐿2 for all 𝑣 ∈ 𝐻. (�)

Show that if 𝑢, 𝑓 ∈ 𝒮(R𝑛) solve (†), then 𝑢 satisfies (�). Show that for any 𝑓 ∈ 𝐿2(R𝑛), there exists a
unique solution 𝑢 ∈ 𝐻 to (�).

d) Denote by 𝐿 𝑓 the unique solution 𝑢 ∈ 𝐻 to (�) for 𝑓 ∈ 𝐿2(R𝑛). Show that the map 𝑓 ↦→ 𝐿 𝑓 is a
compact, symmetric, linear operator 𝐿 : 𝐿2(R𝑛) → 𝐿2(R𝑛). Deduce that there exists an orthonormal
basis (𝑤𝑘)∞𝑘=1 for 𝐿2(R𝑛) consisting of 𝑤𝑘 ∈ 𝐻 satisfying:

(𝑤𝑘 , 𝑣)𝐻 = _𝑘 (𝑤𝑘 , 𝑣)𝐿2 for all 𝑣 ∈ 𝐻, (♭)

where 0 < _1 6 _2 6 _3 6 · · · , and _𝑘 → ∞.

e) Show that if 𝑤𝑘 ∈ 𝐻 satisfies (♭), then in fact 𝑤𝑘 ∈ 𝐶∞(R𝑛). Show further that �̂�𝑘 will also solve
(♭) with the same _𝑘 . Deduce that there exists an orthonormal basis for 𝐿2(R𝑛), consisting of smooth
functions, which diagonalises the Fourier–Plancherel transform.

f) (**) Show that 𝑤 ∈ 𝐻 ∩ 𝐶∞(R𝑛) satisfies:

−Δ𝑤 + |𝑥 |2𝑤 = _𝑤

for some _ ∈ R if and only if:

𝑤(𝑥) = 𝑐𝐻𝑘1 (𝑥1) · · ·𝐻𝑘𝑛 (𝑥𝑛)𝑒−
1
2 |𝑥 |

2
,

where 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑐 ∈ C, 𝐻𝑘 (𝑡) are the Hermite polynomials, and _ = 𝑛 + 2𝑘1 + . . . 2𝑘𝑛.
[Hint: treat the case 𝑛 = 1 first. You may wish to look up the simple harmonic oscillator in a textbook
on quantum mechanics.]

Exercise 11. Suppose that 𝑢0 ∈ 𝐿1(R𝑛) ∩ 𝐿2(R𝑛) and that 𝑢(𝑡, 𝑥) is the solution of the heat equation with
initial data 𝑢0. Explicitly, 𝑢 is given by:

𝑢(𝑡, 𝑥) = 1
(2𝜋)𝑛

∫
R𝑛
�̂�0(b)𝑒−𝑡 |b |

2
𝑒𝑖 b ·𝑥𝑑b,

for 𝑡 > 0.

a) Show that:
‖𝑢(𝑡, ·)‖𝐿2 6 ‖𝑢0‖𝐿2 ,

b) Show that:
𝑢(𝑡, 𝑥) = 𝑢0 ★𝐾𝑡 (𝑥)

where the heat kernel is given by:
𝐾𝑡 (𝑥) =

1
(4𝜋𝑡) 𝑛

2
𝑒−

|𝑥 |2
4𝑡 .

c) Suppose that 𝑢0 > 0. Show that 𝑢 > 0, and:

‖𝑢(𝑡, ·)‖𝐿1 = ‖𝑢0‖𝐿1 .
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Exercise 12. Consider the free Schrödinger equation:{
𝑢𝑡 = 𝑖Δ𝑢 in (0, 𝑇) × R𝑛,
𝑢 = 𝑢0 on {0} × R𝑛 (∗)

Suppose 𝑢0 ∈ 𝐻2(R𝑛).

a) Show that (∗) admits a unique solution 𝑢 such that

𝑢 ∈ 𝐶0( [0, 𝑇);𝐻2(R𝑛)) ∩ 𝐶1((0, 𝑇); 𝐿2(R𝑛)),

whose spatial Fourier-Plancherel transform is given by:

�̂�(𝑡, b) = �̂�0(b)𝑒−𝑖𝑡 |b |
2
.

b) Show that:
‖𝑢(𝑡, ·)‖𝐻 2 (R𝑛) = ‖𝑢0‖𝐻 2 (R𝑛)

*c) For 𝑡 > 0, let 𝐾𝑡 ∈ 𝐿1
𝑙𝑜𝑐.

(R𝑛) be given by:

𝐾𝑡 (𝑥) =
1

(4𝜋𝑖𝑡) 𝑛
2
𝑒

𝑖 |𝑥 |2
4𝑡 ,

where for 𝑛 odd we take the usual branch cut so that 𝑖 1
2 = 𝑒𝑖

𝜋
4 . For 𝜖 > 0 set 𝐾 𝜖𝑡 (𝑥) = 𝑒−𝜖 |𝑥 |

2
𝐾𝑡 (𝑥).

i) Show that 𝑇𝐾 𝜖
𝑡
→ 𝑇𝐾𝑡

in 𝒮
′ as 𝜖 → 0.

ii) Show that if <(𝜎) > 0, then: ∫
R
𝑒−𝜎𝑥

2−𝑖𝑥 b 𝑑𝑥 =

√︂
𝜋

𝜎
𝑒−

b2
4𝜎 .

iii) Deduce that

𝐾 𝜖𝑡 (b) =
(

1
1 + 4𝑖𝑡𝜖

) 𝑛
2

𝑒
−𝑖𝑡 |b |2
1+4𝑖𝑡 𝜖

iv) Conclude that:
𝑇𝐾𝑡

= 𝑇�̃�𝑡
,

where �̃�𝑡 = 𝑒−𝑖𝑡 |b |
2
.

*d) Suppose that 𝑢 ∈ 𝒮(R𝑛). Show that for 𝑡 > 0:

𝑢(𝑡, 𝑥) =
∫
R𝑛
𝑢0(𝑦)𝐾𝑡 (𝑥 − 𝑦)𝑑𝑦,

and deduce that for 𝑡 > 0:
sup
𝑥∈R𝑛

|𝑢(𝑡, 𝑥) | 6 1
(4𝜋𝑡) 𝑛

2
‖𝑢0‖𝐿1 .

This type of estimate which shows us that (locally) solutions to the Schrödinger equation decay in time
is known as a dispersive estimate.
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