Roland Bauerschmidt (rb812@cam.ac.uk) (exercises due to Claude Warnick)

Lent 2023

Exercise 1. a) Show that \mathcal{S} is a vector subspace of $\mathcal{E}(\mathbb{R}^n)$. Show that if $\{\phi_j\}_{j=1}^{\infty}$ is a sequence of rapidly decreasing functions which tends to zero in \mathcal{S} , then $\phi_j \to 0$ in $\mathcal{E}(\mathbb{R}^n)$.

- b) Show that $\mathscr{D}(\mathbb{R}^n)$ is a vector subspace of \mathscr{S} . Show that if $\{\phi_j\}_{j=1}^{\infty}$ is a sequence of compactly supported functions which tends to zero in $\mathscr{D}(\mathbb{R}^n)$ then $\phi_j \to 0$ in \mathscr{S} .
- c) Give an example of a sequence $\{\phi_j\}_{j=1}^\infty\subset C_c^\infty(\mathbb{R}^n)$ such that
 - i) $\phi_i \to 0$ in \mathcal{S} , but ϕ_i has no limit in $\mathcal{D}(\mathbb{R}^n)$.
 - ii) $\phi_i \to 0$ in $\mathcal{E}(\mathbb{R}^n)$, but ϕ_i has no limit in \mathcal{S} .

Exercise 2. For each $X \in \{\mathcal{D}(\mathbb{R}^n), \mathcal{S}, \mathcal{E}(\mathbb{R}^n)\}$, suppose $\phi \in X$ and establish:

a) If $x_l \in \mathbb{R}^n$, $x_l \to 0$, then

$$\tau_{x_l}\phi \to \phi$$
, in X as $l \to \infty$,

where τ_x is the translation operator defined by $\tau_x \phi(y) := \phi(y - x)$.

b) If $h_l \in \mathbb{R}$, $h_l \to 0$, then

$$\Delta_i^{h_l} \phi \to D_i \phi, \quad \text{in } X \text{ as } l \to \infty,$$

in X, where $\Delta_i^h \phi := h^{-1} \left[\tau_{-he_i} \phi - \phi \right]$ is the difference quotient.

Exercise 3. Suppose $u \in \mathcal{D}'(\mathbb{R})$ satisfies Du = 0. Show that u is a constant distribution, i.e. there exists $\lambda \in \mathbb{C}$ such that:

$$u[\phi] = \lambda \int_{\mathbb{R}} \phi(x) dx$$
, for all $\phi \in \mathcal{D}(\mathbb{R})$.

(*) Extend the result to \mathbb{R}^n for n > 1.

[Hint: Fix $\phi_0 \in \mathcal{D}(\mathbb{R})$ and show that any $\phi \in \mathcal{D}(\mathbb{R})$ may be written as $\phi(x) = \psi'(x) + c_{\phi}\phi_0(x)$ for some $\psi \in \mathcal{D}(\mathbb{R})$, $c_{\phi} \in \mathbb{C}$.]

Exercise 4. Let $X \in \{\mathcal{D}(\mathbb{R}^n), \mathcal{S}, \mathcal{E}(\mathbb{R}^n)\}$. For $u \in X'$, $x \in \mathbb{R}^n$, define $\tau_x u$ by $\tau_x u[\phi] = u[\tau_{-x}\phi]$ for all $\phi \in X$, and let $\Delta_i^h u = h^{-1}[\tau_{-he_i}u - u]$. Show that $\Delta_i^h u \to D_i u$ as $h \to 0$ in the weak-* topology of X'.

Exercise 5. Suppose $u \in \mathcal{D}'(\mathbb{R})$ satisfies xu = 0. Show that $u = c\delta_0$ for some $c \in \mathbb{C}$. Find the most general $u \in \mathcal{D}'(\mathbb{R})$ which satisfies $x^k u = 0$ for some $k \in \mathbb{N}$.

Exercise 6. Suppose $u: \mathcal{S} \to \mathbb{C}$ is a linear map. Show that u is continuous if and only if there exist $N, k \in \mathbb{N}$ and C > 0 such that:

$$|u[\phi]| \le C \sup_{x \in \mathbb{R}^n; |\alpha| \le k} |(1+|x|)^N D^{\alpha} \phi(x)|, \quad \text{ for all } \phi \in \mathcal{S}.$$

Exercise 7. Suppose $u \in \mathcal{D}'(\mathbb{R}^n)$ is *positive*, i.e. $u[\phi] \ge 0$ for all $\phi \in \mathcal{D}(\mathbb{R}^n)$ with $\phi \ge 0$. Show that u has order 0, i.e., for each $K \subset \mathbb{R}^n$ compact, there is a constant C such that

$$|u[\phi]| \le C \sup_{x \in K} |\phi(x)|, \quad \text{for all } \phi \in C_c^{\infty}(\mathbb{R}^n).$$

(*) Deduce that $u[\phi] = \int_{\mathbb{R}^n} \phi d\mu$ for some regular measure μ .

Exercise 8. Suppose $f \in L^1(\mathbb{R}^n)$, with supp $f \subset B_R(0)$ for some R > 0.

a) Show that $\hat{f} \in C^{\infty}(\mathbb{R}^n)$ and for any multi-index:

$$\sup_{\xi \in \mathbb{R}^n} \left| D^{\alpha} \hat{f}(\xi) \right| \le R^{|\alpha|} \|f\|_{L^1}$$

b) (*) Show that \hat{f} is real analytic, with an infinite radius of convergence, i.e.:

$$\hat{f}(\xi) = \sum_{\alpha} D^{\alpha} \hat{f}(0) \frac{\xi^{\alpha}}{\alpha!}$$

holds for all $\xi \in \mathbb{R}^n$. Deduce that if $\hat{f}(\xi)$ vanishes on an open set, it must vanish everywhere.

You may assume the following form of Taylor's theorem. Suppose $g \in C^{k+1}(\overline{B_r(0)})$. Then for $x \in B_r(0)$:

$$g(x) = \sum_{|\alpha| \le k} D^{\alpha} g(0) \frac{x^{\alpha}}{\alpha!} + \sum_{|\beta| = k+1} R_{\beta}(x) x^{\beta}$$

where the remainder $R_{\beta}(x)$ satisfies the following estimate in $B_r(0)$:

$$|R_{\beta}(x)| \leq \frac{1}{\beta!} \max_{|\alpha|=|\beta|} \max_{y \in \overline{B_r(0)}} |D^{\alpha}g(y)|.$$

Exercise 9. Recall that $L^{\infty}(\mathbb{R}) = L^{1}(\mathbb{R})'$. Consider the sequence $(f_{n})_{n=1}^{\infty}$, where $f_{n} \in L^{\infty}(\mathbb{R})$ is given by $f_{n}(x) = \sin(nx)$. Show that $f_{n} \stackrel{*}{\rightharpoonup} 0$. Show that $f_{n}^{2} \stackrel{*}{\rightharpoonup} g$ for some $g \in L^{\infty}(\mathbb{R})$ which you should find.

Exercise 10. Suppose $f \in \mathcal{S}(\mathbb{R}^n)$. By observing that

$$||f||_{L^2}^2 = \int_{\mathbb{R}^n} \frac{1}{n} (\operatorname{div} x) |f(x)|^2 dx,$$

or otherwise, show that:

$$(2\pi)^{\frac{n}{2}} \|f\|_{L^{2}}^{2} \leq \frac{2}{n} \||x| f(x)||_{L^{2}} \||\xi| \hat{f}(\xi)||_{L^{2}}$$

with equality if and only if $f(x) = ae^{-\lambda |x|^2}$ for some $a \in \mathbb{C}, \lambda > 0$. Deduce that if $x_0, \xi_0 \in \mathbb{R}^n$:

$$(2\pi)^{\frac{n}{2}} \|f\|_{L^{2}}^{2} \leq \frac{2}{n} \||x - x_{0}| f(x)\|_{L^{2}} \||\xi - \xi_{0}| \hat{f}(\xi)\|_{L^{2}}.$$

Explain how this shows that a function $f \in L^2(\mathbb{R}^n)$ cannot be sharply localised in both physical and Fourier space simultaneously. This is the *uncertainty principle*.

Exercise 11. Let $f: \mathbb{R} \to \mathbb{R}$ be the sign function

$$f(x) = \begin{cases} -1 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

and define $f_R(x) = f(x) \mathbb{1}_{[-R,R]}(x)$.

- a) Sketch $f_R(x)$, and show that $T_{f_R} \to T_f$ in $\mathcal{S}'(\mathbb{R})$ as $R \to \infty$.
- b) Compute $\hat{f}_R(\xi)$, and show that for $\phi \in \mathcal{S}(\mathbb{R})$:

$$T_{\hat{f}_R}[\phi] = -2i \int_0^\infty \frac{\phi(x) - \phi(-x)}{x} dx + 2i \int_0^\infty \left(\frac{\phi(x) - \phi(-x)}{x}\right) \cos Rx dx.$$

Deduce $\widehat{T_f} = -2iP.V.\left(\frac{1}{x}\right)$, where we define the distribution $P.V.\left(\frac{1}{x}\right)$ by:

$$P.V.\left(\frac{1}{x}\right)[\phi] = \lim_{\epsilon \to 0} \int_{\mathbb{R} \setminus (-\epsilon, \epsilon)} \frac{\phi(x)}{x} dx, \qquad \phi \in \mathcal{S}(\mathbb{R}).$$

c) Write down \widehat{T}_H , where H is the Heaviside function:

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

By considering $e^{-\epsilon x}H(x)$, or otherwise, find an expression for the distribution u which acts on $\phi \in \mathcal{S}(\mathbb{R})$ by:

$$u[\phi] := \lim_{\epsilon \to 0^+} \int_{\mathbb{R}} \frac{\phi(x)}{x + i\epsilon} dx.$$

Exercise 12. Suppose $\phi \in C_c^{\infty}(\mathbb{R}^n \times \mathbb{R}^m)$. For each $y \in \mathbb{R}^m$ let $\phi_y : \mathbb{R}^n \to \mathbb{C}$ be given by $\phi_y(x) = \phi(x, y)$. Let $u \in \mathcal{D}'(\mathbb{R}^n)$.

a) Show that $\psi: y \mapsto u[\phi_y]$ is smooth and find an expression for $D^{\alpha}\psi$. Deduce that

$$\int_{\mathbb{R}^m} \psi(y) dy = u[\Psi], \quad \text{where} \quad \Psi(x) = \int_{\mathbb{R}^m} \phi(x, y) dy.$$

b) Show that there exists a sequence of smooth functions $f_n \in C_c^{\infty}(\mathbb{R}^n)$ such that $T_{f_n} \to u$ in the weak-* topology of $\mathcal{D}'(\mathbb{R}^n)$.