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Outline
Lecture 1: Introduction and review
Lecture 2: Estimation
Lecture 3: Sufficiency
Lecture 4: Maximum likelihood estimator
Lecture 5: Confidence intervals
Lecture 6: Bayesian inference
Lecture 7: Simple hypotheses
Lecture 8: Composite hypotheses
Lecture 9: P-value, testing goodness-of-fit
Lecture 10: χ2-tests: composite null, independence, homogeneity
Lecture 11: Student’s t-test
Lecture 12: Analysis of variance and the F -test
Lecture 13: Least squares
Lecture 14: Normal linear model: MLE
Lecture 15: Normal linear model: Hypothesis tests
Lecture 16: Further examples
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What is Statistics?

▶ Inverse probability?
▶ Data analysis?
▶ Machine learning/AI?

Focus of this course: statistical inference
▶ Deductive inference: necessary (e.g. Euclidean geometry)
▶ Inductive inference: non-necessary (e.g. smoking causes cancer)

The point is we would like to use deduction to justify and guide induction.
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Where is Statistics applied?

Statistical inference is needed to answer questions such as:
▶ What are the voting intentions before an election? (Market research, surveys)
▶ What is the effect of obesity on life expectancy? (Epidemiology)
▶ What is the average benefit of a new cancer therapy? (Clinical trials)
▶ What proportion of temperature change is due to man? (Environmental statistics)
▶ What is the benefit of speed cameras? (Traffic studies)
▶ What portfolio maximises expected return? (Financial and actuarial applications)
▶ How confident are we the Higgs Boson exists? (Physics)
▶ What are possible benefits and harms of genetically-modified plants? (Agriculture)
▶ What proportion of the UK economy involves illegal drugs? (Official statistics)
▶ What is the chance Liverpool will best Arsenal next week? (Sport)
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Typical setting: Parametric inference
▶ Let X1, . . . ,Xn be independent and identically distributed (IID) random variables

taking values in some space X . Let X = (X1, . . . ,Xn)
T .

▶ We assume the distribution of X1 belongs to some statistical model
{p(x ; θ); θ ∈ Θ} but θ is unknown.
▶ Example 1: X1 ∼ Poisson(λ), θ = λ ∈ Θ = (0,∞).
▶ Example 2: X1 ∼ N(µ, σ2), θ = (µ, σ2) ∈ Θ = R× (0,∞).

Common questions
▶ Give an estimator θ̂ : X n → Θ of the true value of θ.
▶ Give an interval estimator (θ̂(X ), θ̂2(X )) of θ.
▶ Testing some hypothesis about θ, e.g. H0 : θ = 0: is there evidence against H0?

Big assumption
In general, we need to know the family of distributions involved.
▶ This can be relaxed for some results (e.g. bias-variance tradeoff).
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Review: Probability and random variable

Let (Ω,F ,P) be a probability space.
▶ Ω is the sample space of outcomes of an experiment.
▶ F collects subsets of Ω called events and needs to be a σ-algebra (containing Ω,

closed under complementation and countable unions).
▶ P : F → [0, 1] is the probability measure that satisfies P(Ω) = 1,

P(Ac) = 1 − P(A), and P(∪∞
i=1Ai) =

∑∞
i=1 P(Ai) for all sequences (Ai)

∞
i=1 of

disjoint events.
A random variable (RV) is a function X : Ω → R. [Example: tossing 2 coins.]
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Review: Probability distribution of a random variable

The cumulative distribution function (CDF) of X is P(x) = P(X ≤ x).1

▶ Right-continuous and monotone increasing.
▶ "Uniquely identifies" a RV.

Often, we characterize X via its probability density function (PDF) p(x).
▶ When X is discrete (takes values in a countable set X ⊂ R), this is usually called

the probability mass function p(x) = P(X = x).
▶ When X is continuous, the density function satisfies

P(X ∈ A) := P({ω ∈ Ω : X (ω) ∈ A}) =
∫

A
p(x)dx , for all A ⊆ R .

These definitions naturally extend to random vectors X = (X1, . . . ,Xn) : Ω → Rn.

1The intentional abuse of notation here highlights that we treat RV as an equivalence class of
functions that have the same probability distribution. In most other texts, CDF is denoted as F and
PDF is denoted as f .
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Review: Moments

The expectation of X is2

E(X ) =

{∑
x∈X x p(x), if X is discrete,∫∞

−∞ x p(x)dx , if X is continuous.

The variance of X is Var(X ) = E{(X − E(X ))2} = E(X 2)− {E(X )}2. The covariance
between X and Y is Cov(X ,Y ) = E{(X − E(X ))(Y − E(Y ))}.

Moment generating function (MGF)
The MGF of X is M(t) = E(etX ), provided that the expectation exists for t in a
neighbourhood of 0.
▶ Relationship with moments: E(Xn) = dn

dtn M(t)|t=0.
▶ Under mild conditions, MX = MY =⇒ PX = PY .

2This is only well-defined if E(|X |) < ∞.
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Review: Independence

We say RVs X1,X2, . . . ,Xn are independent if

P(X1 ≤ x1, . . . ,Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn), for all x1, . . . , xn ∈ R .

If X1, . . . ,Xn have probability density/mass functions pX1 , . . . , pXn , then the joint
density function of X = (X1, . . . ,Xn) is given by

pX (x) =
n∏

i=1
pXi (xi).

▶ [Example: Maximum of independent RVs.]
▶ [Example: Distribution of the sum of independent Poisson RVs.]
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Review: Linear transformations
For any RVs X1, . . . ,Xn and a1, . . . , an ∈ R,

E(a1X1 + . . . anXn) = a1 E(X1) + . . . an E(Xn),

Var(a1X1 + . . . anXn) =
n∑

i ,j=1
aiaj Cov(Xi ,Xj).

If X1, . . . ,Xn are independent, then E(X1 · · ·Xn) = E(X1) · · ·E(Xn), which implies

Var(a1X1 + . . . anXn) =
n∑

i=1
a2

i Var(Xi).

Vector notation
Let X = (X1, . . . ,Xn)

T be a random vector and a = (a1, . . . , an)
T be fixed, then

E(aT X ) = aT E(X ) and Var(aT X ) = aT Var(X )a.
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Review: Change of variables (in 2D)

Consider a differentiable bijection f : R2 → R2. Then the PDF of (U,V ) = f (X ,Y ) is
given by

pU,V (u, v) = pX ,Y (x , y)| det J(u, v)| = pX ,Y (f −1(u, v), f −1(u, v))| det J(u, v)|,

where J(u, v) is the Jacobian matrix:

J(u, v) =
(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)
.
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Review: Limit theorems
Let X1, . . . ,Xn be IID RVs with E(X1) = µ and Var(X1) = σ2.
▶ Write the sum as Sn =

∑n
i=1 Xi and sample mean as X̄n = Sn/n .

Law of large numbers
▶ Weak law: X̄n

p→ µ, which means P(|X̄n − µ| > ϵ) → 0 as n → ∞ for all ϵ > 0.
▶ Strong law: X̄n

a.s.→ µ , which means P(limn→∞ X̄n = µ) = 1. [What’s the event
here?]

Central limit theorem

Zn =
(Sn − nµ)

σ
√

n
=

√
n(X̄n − µ)

σ

d→ N(0, 1),

where d→ means convergence in distribution, P(Zn ≤ z) → Φ(z) for all z ∈ R and Φ(·)
is the CDF of N(0, 1).
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Review: Marginalization and conditioning

Let p(x , y) denote the probability density/mass function of (X ,Y ).
The marginal PDF of X is given by

pX (x) =
{∑

y∈Y fX ,Y (x , y), if Y is discrete,∫∞
−∞ fX ,Y (x , y)dy , if Y is continuous.

The conditional PDF of Y given X = x is given by3

pY |X (y | x) =
pX ,Y (x , y)

pX (x)
.

These definitions naturally extend to random vectors.

3The conditional PDF p(y | x) is not well-defined when pX (x) = 0, but this does not matter as this
"event" has probability 0.
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Review: Conditional expectation

The conditional expectation of Y given X is [Why is this a RV?]

E(Y | X ) =

{∑
y∈Y yf (y | X ), if Y is discrete,∫∞

−∞ yf (y | X )dy , if Y is continuous.

Law of total expectation: E{E(Y | X )} = E(Y ).
Law of total variance: Var(Y ) = E{Var(Y | X )}+ Var{E(Y | X )}.
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*Interlude: Hans Rosling

Hans Rosling’s 200 Countries, 200 Years, 4 Minutes - The Joy of Stats - BBC

https://www.youtube.com/watch?v=jbkSRLYSojo
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Important discrete distributions: Binomial

X has the binomial distribution with parameters n ∈ N and 0 ≤ p ≤ 1, X ∼ Bin(n, p),
if

P(X = x) =
(

n
x

)
px (1 − p)n−x , x = 0, 1, . . . , n.

▶ This is the distribution of the number of successes out of n independent Bernoulli
trials, each of which has success probability p.

▶ E(X ) = np, Var(X ) = np(1 − p).
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Example: Throwing dice
Let X = number of sixes when throw 10 fair dice, so X ∼ Bin(10, 1/6).
[R code]
barplot(dbinom(0:10, 10, 1/6), names.arg=0:10,

xlab="Number of sixes in 10 throws" )
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Important discrete distributions: Poisson

X has the Poisson distribution with parameter λ > 0, X ∼ Poisson(λ), if

P(X = x) = e−λλx/x !, x = 0, 1, 2, . . . .

▶ E(X ) = λ and Var(X ) = λ.
▶ The Poisson(λ) is the limit of Bin(n, p) when n → ∞ and np → λ. [ES1]
▶ *In a Poisson process, the number of events X (t) in an interval of length t is

Poisson(λt), where λ is the intensity of the process (rate per unit time).
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Example: Plane crashes
Assume scheduled plane crashes occur as a Poisson process with a rate of 1 every 2
months. How many (X ) will occur in a year?
Number in two months is Poisson(1), and so X ∼ Poisson(6).
barplot(dpois(0:15, 6), names.arg=0:15,

xlab="Number of scheduled plane crashes in a year" )
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Important discrete distributions: Negative Binomial

X has the negative binomial distribution with parameters k ∈ N and 0 < p < 1,
X ∼ NegBin(k, p), if

P(X = x) =
(

x − 1
k − 1

)
(1 − p)x−kpk , x = k, k + 1, . . . .

▶ This is the distribution of the number of trials up to the k-th success, in a
sequence of independent Bernoulli trials each with success probability p.

▶ E(X ) = k/p, Var(X ) = k(1 − p)/p2.
▶ When k = 1, this is called the geometric distribution with parameter p.
▶ Some texts use negative binomial to refer to the distribution of Y = X − k

(number of failures before the k-th success). Be careful!
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Example: Coin flip
How many times do I have to flip a coin before I get 10 heads?
This is the first (X ) definition of Negative Binomial since it includes all the flips.
R uses second definition (Y ) of Negative Binomial, so need to add in the 10 heads:
barplot(dnbinom(0:30, 10, 1/2), names.arg=0:30 + 10,

xlab="Number of flips before 10 heads")
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Important discrete distributions: Multinomial
Suppose we have a sequence of n independent trials where at each trial there are
k ∈ N possible outcomes, and that at each trial the probability of outcome i is pi . Let
Ni be the number of times outcome i occurs.
We say (N1, . . . ,Nk) follows the multinomial distribution with parameters n and
p = (p1, . . . , pk), with joint PMF

P(N1 = n1, . . . ,Nk = nk) =

{
n!

n1!···nk !
pn1

1 · · · pnk
k , if

∑k
i=1 ni = n,

0, otherwise.

▶ n ∈ N and p in the standard simplex in Rk : pi ≥ 0 for all i and
∑k

i=1 pi = 1.
▶ The RVs N1, . . . ,Nk are not independent. [Why?]
▶ The marginal distribution of Ni is Bin(n, pi).
▶ Example: I throw 6 dice. The probability I get one of each face is 6!/66 ≈ 0.015.

(R code is dmultinom(x=rep(1,6), size=6, prob=rep(1/6,6)).)
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Important continuous distributions: Uniform

X has the uniform distribution on [a, b], X ∼ Unif[a, b] (−∞ < a < b < ∞), if it has
PDF

p(x) = 1
b − a , x ∈ [a, b].

▶ E(X ) = (a + b)/2 and Var(X ) = (b − a)2/12.
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Important continuous distributions: Gamma

X has the Gamma distribution with shape α > 0 and rate λ > 0, X ∼ Gamma(α, λ), if
it has PDF

p(x) = λαxα−1e−λx

Γ(α)
, x > 0,

where Γ(α) is the gamma function defined by Γ(α) =
∫∞

0 xα−1e−xdx .
▶ E(X ) = α/λ and Var(X ) = α/λ2.
▶ If α = 1, this is the exponential distribution: Exponential(λ) = Gamma(1, λ).
▶ If Xi∼Gamma(αi , λ), i = 1, . . . , n are independent, then∑n

i=1 Xi ∼ Gamma(
∑n

i=1 αi , λ). [Prove this via MGF.]
▶ If X ∼ Gamma(α, λ), then cX ∼ Gamma(α, λ/c) for any c > 0.
▶ Note the following results for the gamma function:

1. Γ(α) = (α− 1)Γ(α− 1);
2. if n ∈ N then Γ(n) = (n − 1)!.
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Density plot of some Gamma distributions
par(mfrow = c(1, 3))
alpha<-c(1, 3, 10); lambda<-c(1, 3, 0.5); x<-seq(0, 5, 0.1)
for(i in 1:3) {

y= dgamma(x, alpha[i], lambda[i])
plot(x, y, type = "l", ylab = "Density",

main = bquote(alpha~"="~.(alpha[i])~","~lambda~"="~.(lambda[i])))
}
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Important continuous distributions: Beta

Suppose X ∼ Γ(α, λ) and Y ∼ Γ(β, λ) are independent.
The RV Z = X/(X + Y ) follows the Beta distribution with parameters α, β > 0 and
has the PDF [ES1]

p(z) = zα−1(1 − z)β−1

B(α, β)
, 0 < x < 1,

where B(α, β) is the Beta function defined by B(α, β) = Γ(α)Γ(β)/Γ(α+ β).
▶ E(Z ) = α/(α+ β) and Var(Z ) = αβ

(α+β)2(α+β+1) .
▶ The mode is (α− 1)/(α+ β − 2).
▶ Note that Beta(1, 1) = Unif[0, 1].
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Density plot of some Beta distributions
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Important continuous distributions: Normal

X has the normal (or Gaussian) distribution with mean µ ∈ R and variance σ2 > 0,
X ∼ N(µ, σ2), if it has PDF

p(x) = 1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
, x ∈ R .

▶ E(X ) = µ, Var(X ) = σ2.
▶ If µ = 0 and σ2 = 1, this is the standard normal distribution. We use ϕ to denote

its PDF and Φ for its CDF. [Write down ϕ(x) and Φ(x).]
▶ The (1 − α) quantile (upper 100α% percentile) of N(0, 1) is denoted as zα, so

P(Z > zα) = α, where Z ∼ N(0, 1).
> qnorm(c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99))
[1] -2.3263479 -1.6448536 -0.6744898 0.0000000 0.6744898 1.6448536 2.3263479
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Important continuous distributions: Chi-squared
If Z1, . . . ,Zk

IID∼ N(0, 1), then X =
∑k

i=1 Z 2
i has the chi-squared distribution with k

degrees of freedom, X ∼ χ2
k .

▶ Since E(Z 2
i ) = 1 and E(Z 4

i ) = 3, we find that E(X ) = k and Var(X ) = 2k.
▶ χ2

k = Gamma(k/2, 1/2). [Prove this via MGF.]
▶ We denote its (1 − α) quantile by χ2

k(α), so if X ∼ χ2
k then P(X > χ2

k(α)) = α.
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Point estimation
Suppose we observe data X that follows a probability distribution with PDF p(x ; θ)
and θ ∈ Θ is unknown.
▶ Often, X = (X1, . . . ,Xn) and X1, . . . ,Xn are IID.

Definition
An estimator is a statistic (meaning a function of the data) θ̂ := T (X ) which we use
to approximate the true parameter θ.
▶ If we observe X = x = (x1, . . . , xn), then our estimate is T (x).
▶ The distribution of T (X ) is called its sampling distribution.

Example
Suppose X1, . . . ,Xn

IID∼ N(µ, 1).
▶ A possible estimator for µ is the sample mean µ̂ = T (X ) =

∑n
i=1 Xi/n.

▶ The sampling distribution is µ̂ ∼ N(µ, 1/n).
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Bias

Definition
The bias of θ̂ = T (X ) for θ is defined as

bias(θ̂) = Eθ(θ̂)− θ.

We say θ̂ is unbiased if bias(θ̂) = 0 for all θ ∈ Θ.
▶ Bias is generally a function of θ, which is not explicit in our notation.
▶ This definition naturally extends to estimators of a given transformation of θ.

Example (cont’d)
▶ The sample mean µ̂ =

∑n
i=1 Xi/n is unbiased for µ. [Why?]

▶ The sample median X( n+1
2 ) (assuming n is odd) is also unbiased for µ. [Why?

What about even n?]
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Mean squared error

Definition
The mean squared error (MSE) of an estimator θ̂ is defined as

MSE(θ̂) = Eθ{(θ̂ − θ)2}.

▶ Like the bias, MSE is a function of θ.

Proposition: Bias-variance decomposition

MSE(θ̂) = Varθ(θ̂) + bias(θ̂)2.

▶ [Prove this.]
▶ There is often a tradeoff between bias and variance. Increasing bias slightly may

lead to greater reduction in variance and overall smaller MSE.
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*Interlude: Child bed fever mortality

▶ The surprising history of hand-washing (BBC REEL).
▶ Analysis of child bed fever mortality by Ignaz Semmelweis.

https://www.youtube.com/watch?v=w04gTXu1mHM
https://en.wikipedia.org/wiki/Ignaz_Semmelweis#Work_on_cause_of_child_bed_fever_mortality
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Example: Estimators for Binomial mean

Suppose X ∼ Bin(n, θ), n is known.
1. The standard estimator of θ is θ̂U = X/n.

▶ bias(θ̂U) = 0 and MSE(θ̂U) = θ(1 − θ)/n. [Why?]
2. An alternative estimator is

θ̂B =
X + 1
n + 2 = w θ̂U + (1 − w)

1
2 , where w =

n
n + 2 .

▶ When X = 8 and n = 10, we have θ̂U = 0.8 and θ̂B = 0.75.
▶ bias(θ̂B) = (nθ + 1)/(n + 2) = (1 − w)(1/2 − θ).
▶ MSE(θ̂B) = w2θ(1 − θ)/n + (1 − w)2(1/2 − θ)2.

Which estimator is better?
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Example: Estimators for Binomial mean (cont’d)
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▶ So the biased estimator has smaller MSE in much of the range of θ.
▶ Whether θ̂B is preferable depends on our prior judgement about θ.
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Why unbiasedness is often too strong

Suppose X ∼ Poisson(λ) and we’d like to estimate θ = {P(X = 0)}2 = e−2λ.
▶ The only unbiased estimator of θ is θ̂ = T (X ) = (−1)X . [Prove this.]
▶ But θ̂ is not a sensible estimator.
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*Decision theory

To guess is cheap, to guess wrongly is expensive. (Old Chinese proverb)

▶ A decision rule d : X → D maps data to decision. [What’s D in point estimation?]
▶ A basic notion in statistical decision theory is the risk function:

R(θ, d) = E{L(θ, d(X ))},

where L : Θ×D → R is called the loss function (economists call −L the utility).
▶ Further reading: expected utility hypothesis.

Natural question: optimality in a class of decision rules
▶ Example: uniform minimum variance unbiased estimator (UMVUE). [ES1]
▶ Example: θ̂ is called minimax optimal if it solves minθ̂ maxθ∈Θ R(θ, θ̂).

▶ Often, it is challenging to even "ask the right question".

https://en.wikipedia.org/wiki/Expected_utility_hypothesis
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Sufficient statistics

Question: Is there a statistic that contains all the useful information in the data?

Example: Bernoulli trials
X1, . . . ,Xn

IID∼ Bernoulli(θ), so

p(x ; θ) =
n∏

i=1
θxi (1 − θ)1−xi = θ

∑
xi (1 − θ)n−

∑
xi = (1 − θ)n

(
θ

1 − θ

)∑
xi

.

This depends on x only through T (x) =
∑n

i=1 xi .

Definition
A statistics T = T (X ) is sufficient for θ if the conditional distribution of X given
T (X ) does not depend on θ.
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Factorization criterion

Suppose the PDF of X is p(x ; θ).

Theorem
T is sufficient (for θ) iff p(x ; θ) = g(T (x), θ)h(x) for some suitable functions g and h.
▶ [Prove this (in discrete case).]

Example: Bernoulli trials (cont’d)
T (X ) =

∑n
i=1 Xi is sufficient because p(x ; θ) = (1 − θ)n

(
θ

1−θ

)∑
xi

. [Why?]

Example: Uniform RVs
Suppose X1, . . . ,Xn

IID∼ Unif[0, θ], then T (X ) = maxi Xi is sufficient. [Prove this.]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimal sufficiency
Sufficient statistics are not unique.
▶ The order statistics X(1) ≤ · · · ≤ X(n) (X(k) is the kth smallest value in

X1, . . . ,Xn) are always sufficient. [Why?]

Definition
A sufficient statistic T (X ) is minimal sufficient if it is a function of every other
sufficient statistic: if S(X ) is also sufficient, S(x) = S(y) ⇒ T (x) = T (y) for all x , y .

Theorem
Suppose T (x) = T (y) if and only if p(x ; θ)/ p(y ; θ) does not depend on θ (if the
range of X depends on θ, this means p(x ; θ) = c(x , y) p(y ; θ) for some function
c(x , y)). Then T is minimal sufficient.
▶ [*Proof sketch.]
▶ [Example: If X1, . . . ,Xn

IID∼ N(µ, σ2), show that (X̄ , S2 :=
∑

(Xi − X̄ )2/(n − 1)) is
minimal sufficient.]
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*Interlude: John Snow and cholera
Continuing interlude 1: Semmelweis’s views were much more favorably received in the
UK than on the continent, but he was more often cited than understood (Wikipedia).
▶ Semmelweis "made out very conclusively" that "miasms derived from the

dissecting room will excite puerperal disease." (W. Tyler Smith, 1856)
Now watch John Snow and the 1854 Broad Street cholera outbreak (Harvard Online).

Snow’s statistical analysis (most striking table, full report over 200 pages)

No. of Houses Cholera Deaths Rate per 10,000
Southwark & Vauxhall 40,046 1,263 315
Lambeth 26,107 98 37
Rest of London 256,423 1,422 59

▶ S&V took water from a heavily contaminated stretch of the Thames
▶ Lambeth moved its intake pipe upstream in 1852 to get purer water.

https://en.wikipedia.org/wiki/Ignaz_Semmelweis#Response_by_the_medical_community
https://www.youtube.com/watch?v=lNjrAXGRda4
https://kora.matrix.msu.edu/files/21/120/15-78-52-22-1855-MCC2.pdf


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Why is sufficiency useful?

The sufficiency principle says that if T (X ) is a sufficient statistic, and if in two
experiments with data x and y we have T (x) = T (y), then the "evidence" about θ
given by the two experiments is the same.
▶ This is not a mathematical theorem but a "principle".

Theorem (Rao-Blackwell)
Suppose Θ ∈ R and T is a sufficient statistic. For any estimator θ̃ of θ, we have

MSE(θ̃) ≥ MSE(θ̂),

where θ̂ = Eθ(θ̃ | T ). The equality holds if and only if θ̃ is a function of T .
▶ [Prove this. Why is θ̂ an estimator (doesn’t depend on θ)?]
▶ This gives us a strong reason to only consider estimators that are functions of

sufficient statistics.
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Examples of Rao-Blackwellization

1. Suppose X1, . . . ,Xn
IID∼ Poisson(λ) and let θ = e−λ.

▶ The minimal sufficient statistic is T =
∑n

i=1 Xi . [Why?]
▶ An easy unbiased estimator of θ is θ̃ = 1{X1=0}, but a much better estimator is

θ̂ = Eθ(θ̃ | T ) =

(
1 − 1

n

)T
. [Derive this.]

2. Suppose X1, . . . ,Xn
IID∼ Unif[0, θ].

▶ We have shown that T = max1≤i≤n Xi is sufficient.
▶ [What is an unbiased estimator of θ using just X1?]
▶ [Derive the corresponding Rao-Blackwell estimator.]
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Likelihood

Definition
Suppose X has joint PDF p(x ; θ), θ ∈ Θ ⊆ Rd .
▶ The likelihood of θ is the density at the observed data, viewed as a function of θ,

i.e. L : θ 7→ p(X ; θ).
▶ The maximum likelihood estimator (MLE) of θ is the value of θ that maximizes θ,

i.e. θ̂MLE = argmaxθ L(θ).

IID setting
▶ If X = (X1, . . . ,Xn) and X1, . . . ,Xn are IID, each with PDF p(x ; θ), then

L(θ) =
n∏

i=1
p(Xi ; θ).

▶ It is often easier to maximize the log-likelihood: l(θ) =
∑n

i=1 log p(Xi ; θ).
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Examples

1. Suppose X1, . . . ,Xn
IID∼ Bernoulli(p). The MLE of p is p̂ =

∑n
i=1 Xi/n.

2. Suppose X1, . . . ,Xn
IID∼ N(µ, σ2). The MLE is

(µ̂, σ̂2) = (X̄ , SXX/n), where SXX =
n∑

i=1
(Xi − X̄ )2.

3. Suppose X1, . . . ,Xn
IID∼ Unif[0, θ]. The likelihood function is given by

L(θ) = 1
θn 1{maxi Xi≤θ}.

So the MLE is θ̂ = maxi Xi . [Sketch the likelihood function.]
[Derive the MLEs. Which are (asymptotically) unbiased?]
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Properties of MLEs

1. The MLE is a function of any sufficient statistic. [Why?]
2. If η = h(θ) and h is a bijection, then the MLE of η is η̂ = h(θ̂).
3. *In "regular" IID settings, the MLE is asymptotically normal:

√
n(θ̂ − θ)

d→ N(0, I(θ)−1), as n → ∞,

where I(θ) is known as the Fisher information matrix and I(θ)−1 is the "smallest
possible" variance. [Part II PoS.]

4. Often the MLE has no closed form and needs to be found numerically.
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Further example
Suppose a basket contains k balls of different colours, and k is unknown. We are
allowed to sample with replacement, the first four balls are Red, Purple, Red, Yellow.
The likelihood for k is L(k) = (k−1)(k−2)

k3 . [Derive this.]

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 different colours in 4 draws

Number of balls

Li
ke

lih
oo

d

0.
00

0.
02

0.
04

0.
06

0.
08

▶ MLE is k̂ = 5, but likelihood is fairly flat.
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*Interlude: How many words did Shakespeare know?
Shakespeare’s known works comprise n = 884, 647 words. He wrote 31,534 different
words, of which 14,376 appear only once, 4,343 twice, etc. Suppose he knew s words.
▶ Suppose Xi(t) = no. times word i in a sample of nt words ∼ Poisson(λi t).
▶ Let Nj be the number of words which occur j times in a sample of n words.
▶ Let M(t) be the number of distinct words in a sample of n(1 + t) words that does

not appear among the first n words.
▶ It is can be shown that

E(Nj) =
s∑

i=1
e−λi λ

j
i

j! , E(M(t)) =
s∑

i=1
e−λi (1 − e−λi t) =

∞∑
j=1

(−1)j−1t j E(Nj).

▶ By replacing E(Nj) with Nj , we obtain an unbiased estimator of E(M(t)). For
Shakespeare’s data and t = 1, ̂E(M(1)) = 11, 430.

▶ ̂E(M(∞)) does not converge, but a more complicated method suggests that
Shakepeare knew at least 35,000 more words (Efron and Thisted, 1976).

https://doi.org/10.1093/biomet/63.3.435
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*A bit of history
Method of moment (MoM) estimator
Idea: Match sample moments with theoretical moments.
▶ First introduced by Chebyshev (1887) in probability to prove CLT.
▶ Use in statistics dates back at least to Karl Pearson (early 1900s).
▶ Simple but usually less efficient than MLE.

R A Fisher (1921). "On the Mathematical Foundations of Theoretical Statistics"
▶ First appearance of many fundamental concepts: consistency, efficiency,

estimation, likelihood, sufficiency, parameter. (Further reading: Fisher in 1921 by
Stigler).

▶ The likelihood principle says that all the information about θ obtainable from an
experiment is contained in the likelihood function for θ given X . This is stronger
than the sufficiency principle.

https://doi.org/10.1214/088342305000000025
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Outline
Lecture 1: Introduction and review
Lecture 2: Estimation
Lecture 3: Sufficiency
Lecture 4: Maximum likelihood estimator
Lecture 5: Confidence intervals
Lecture 6: Bayesian inference
Lecture 7: Simple hypotheses
Lecture 8: Composite hypotheses
Lecture 9: P-value, testing goodness-of-fit
Lecture 10: χ2-tests: composite null, independence, homogeneity
Lecture 11: Student’s t-test
Lecture 12: Analysis of variance and the F -test
Lecture 13: Least squares
Lecture 14: Normal linear model: MLE
Lecture 15: Normal linear model: Hypothesis tests
Lecture 16: Further examples
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Confidence intervals
A distinguishing feature of statistical inference (compared to ML/AI) is its emphasis on
uncertainty quantification. Let α ∈ [0, 1] be given and suppose θ ∈ Θ ⊆ R.

Definition
A (1 − α)-confidence interval (CI) for θ is an interval [L(X ),U(X )] ⊆ Θ such that

Pθ(L(X ) ≤ θ ≤ U(X )) = 1 − α, for all θ ∈ Θ.

▶ In this statement, the CI is random and θ is fixed.
▶ Correct frequentist interpretation: if we repeat the experiment many times, on

average 100(1 − α)% of the time, the interval [L(X ),U(X )] covers θ.
▶ Wrong interpretation: having observed X = x , the interval [L(x),U(x)] contains θ

with probability 1 − α. [What is this probability?]
▶ This definition can be naturally extended to vector-valued θ. [How?]
▶ Often difficult to find exact CIs. May be enough to have P(cover) ≥ or ≈ 1 − α.
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Example: Normal location problem

Suppose X1, . . . ,Xn
IID∼ N(θ, 1). The following is a (1 − α)-CI for θ:

[X̄ − zα1/
√

n, X̄ + zα2/
√

n], whenever α1, α2 ≥ 0, α1 + α2 = α.

▶ [Derive this.] (Recall that zα means the upper-α quantile of N(0, 1).)
▶ Typically, we try to centre the CI around the point estimator and minimize the

length. So it is sensible to choose α1 = α2 = α/2.
▶ When α = 0.05, zα/2 ≈ 1.96.
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General recipe to construct CIs

1. Find a pivotal quantity R(X , θ) such that the distribution of R(X , θ) under Pθ

does not depend on θ.
2. By using appropriate quantiles of R(X , θ), find c1, c2 such that

P(c1 ≤ R(X , θ) ≤ c2) = 1 − α

3. Rearrange the inequalities to leave θ in the middle.

Proposition
If [L(X ),U(X )] is a (1 − α)-CI of θ and h : Θ → R is monotone increasing, then
[h(L(X )), h(U(X ))] is a (1 − α)-CI of h(θ).
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*Interlude: bias in polling

▶ What polls can actually tell us (Vox).
▶ Interesting statistical concepts: "margin of error", "weighting", "population".

▶ Further readings:
1. The model exactly predicted the most likely election map (Nate Silver).
2. Disentangling Bias and Variance in Election Polls (Shirani-Mehr et al.).

We find that average survey error as measured by root mean square error is
approximately 3.5 percentage points, about twice as large as that implied by
most reported margins of error. We decompose survey error into election-level
bias and variance terms. We find that average absolute election-level bias is
about 2 percentage points, indicating that polls for a given election often share
a common component of error.

https://www.youtube.com/watch?v=In9Pqm9YlIo
https://substack.com/@natesilver/p-151345713
https://doi.org/10.1080/01621459.2018.1448823
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Example: Binomial proportion

Suppose X1, . . . ,Xn
IID∼ Bernoulli(p).

▶ An approximate (1 − α)-CI for p is
[
p̂ ± zα

2

√
p̂(1−p̂)

n

]
where p̂ =

∑
i Xi/n.

▶ Wilson: use the pivot (p̂ − p)/
√

p(1 − p)/n instead.
▶ Clopper-Pearson ("exact"): use the binomial distribution directly.

Coverage probability for n = 50 (Brown, Cai, DasGupta, 2001).

https://doi.org/10.1214/ss/1009213286
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*Example: Binomial proportion (numerical)
Output of R code:
> t(sapply(c("wald", "wilson", "clopper-pearson"),
+ function (method) {DescTools::BinomCI(200, 1000, method = method)}))

[,1] [,2] [,3]
wald 0.2 0.1752082 0.2247918
wilson 0.2 0.1763771 0.2259190
clopper-pearson 0.2 0.1756206 0.2261594
> t(sapply(c("wald", "wilson", "clopper-pearson"),
+ function (method) {DescTools::BinomCI(50, 1000, method = method)}))

[,1] [,2] [,3]
wald 0.05 0.03649188 0.06350812
wilson 0.05 0.03813026 0.06531382
clopper-pearson 0.05 0.03733540 0.06539049
> t(sapply(c("wald", "wilson", "clopper-pearson"),
+ function (method) {DescTools::BinomCI(5, 100, method = method)}))

[,1] [,2] [,3]
wald 0.05 0.007283575 0.09271642
wilson 0.05 0.021543679 0.11175047
clopper-pearson 0.05 0.016431879 0.11283491
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Frequentist vs. Bayesian

In Probability and Philosophy
▶ Frequentists interpret probability as long-term frequency ("physical").
▶ Bayesians interpret probability as subjective plausibility ("evidential").

In Statistics
▶ Frequentists treat θ as fixed quantities describing a natural law.
▶ Bayesians treat θ as random variables and view statistical inference as updating

one’s belief about θ.
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The Bayesian paradigm
▶ Let π(θ) be the PDF of prior distribution on Θ (of the investigator).
▶ As before, X | θ ∼ p(x | θ). (We use | to emphasize θ is conditioned on.)
▶ By Bayes’ theorem, the posterior distribution of θ given X = x has PDF/PMF

π(θ | x) = π(θ) p(x | θ)
p(x) ,

where p(x) =
∫

p(x | θ)π(θ)dθ is the marginal density of X .
▶ Often we ignore the normalizing constant and write π(θ | x) ∝ p(x | θ)π(θ), i.e.

posterior ∝ prior · likelihood,

so we use information in the likelihood to update our belief about θ.
▶ Thus, Bayesian inference obeys the likelihood principle and hence the sufficiency

principle: π(θ | x) depends on x only through sufficient statistics. [Show this.]
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Example: COVID testing

A patient walked into a COVID testing centre in central Cambridge and had a positive
test result. What is the probability that they were actually infected?
▶ Let θ = 1{patient is infected} and X = 1{test is positive}. We know the test has

sensitivity P(X = 1 | θ = 1) = 98% and specificity P(X = 0 | θ = 0) = 99%.
▶ To choose a prior, we could set π(θ = 1) to the proportion of people infected with

COVID-19 in the country at the time.
▶ Say π(θ = 1) = 2% using ONS survey, then π(θ = 1 | X = 1) = 2/3. [Why?]
▶ [But is this the "right" prior?]
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Example: Beta-Binomial

▶ Prior: θ ∼ Beta(α, β).
▶ Likelihood model: X | θ ∼ Binom(n, θ).
▶ Posterior is θ | X ∼ Beta(α+ X , β + (n − X )). [Show this.]
▶ When α = β = 1 ("flat prior"), the posterior mean is (X + 1)/(n + 2) ("Laplace

estimator" from Lecture 2).
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Example: Beta-Binomial (numerical)
θ = mortality rate of a new surgery in Addenbrookes Hospital. No deaths in the first
10 surgeries. Elsewhere, the mortality rate is between 3% and 20% (average 10%).
▶ Choose α = 3 and β = 27, so π(θ) has mean 0.1 and π(0.03 ≤ θ ≤ 0.2) ≈ 0.9.
▶ The posterior is Beta(3, 37).
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*Interlude: Ellsberg Paradox

A bag contains 300 balls, of which 100 are red and 200 are either blue and green. One
is drawn at random.

Question 1
Which of the following gambles do you find most attractive?
▶ You get £1000 if the ball is red (A).
▶ You get £1000 if the ball is blue (B).

Question 2
Which of the following gambles do you find most attractive?
▶ You get £1000 if the ball is not red (C).
▶ You get £1000 if the ball is not blue (D).
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Bayesian approach to point estimation
Idea: Use the "centre" of π(θ | X ) (e.g. mean, median, mode) as an estimator of θ.

Definition
▶ Let L : Θ×Θ → R be a loss function.
▶ The Bayes risk of an estimator θ̃ = θ̃(X ) is defined as

R(θ̃) = Eπ(L(θ, θ̃) | X ) =

∫
Θ

L(θ, θ̃(X ))π(θ | X )dθ.

▶ The Bayes estimator is θ̂ = argminθ̃ R(θ̃).

Examples
1. The Bayes estimator is the posterior mean with quadratic loss: L(θ, θ̃) = (θ − θ̃)2.
2. The Bayes estimator is the posterior median with absolute loss: L(θ, θ̃) = |θ − θ̃|.

[Show these.]
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Bayesian approach to interval estimation

Definition
We say [L(X ),U(X )] is a (1 − α)-credible interval for θ if

π(L(X ) ≤ θ ≤ U(X ) | X ) = 1 − α.

So [L(X ),U(X )] has (1 − α) posterior probability and can be easily found using
quantiles of the posterior distribution. [Compare to confidence intervals.]

Example: Beta-Binomial (Prior=Beta(3, 27), Posterior=Beta(3, 37))

Mean Median Mode Q2.5% Q97.5%
Prior 0.1 0.091 0.071 0.029 0.20
Posterior 0.075 0.068 0.053 0.021 0.15

▶ MLE = 0.
▶ Wald CI: [0, 0]; Wilson CI: [0, 0.28]; Clopper-Pearson CI: [0, 0.31] (1−α = 95%).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example: Normal location problem

▶ Prior: µ ∼ N(µ0, n−1
0 ), µ0 ∈ R, n0 > 0.

▶ Likelihood model: X1, . . . ,Xn | µ IID∼ N(µ, 1).
▶ Posterior:

µ | X ∼ N
(

n0µ0 + nX̄
n0 + n ,

1
n0 + n

)
. [Show this.]

▶ Interpretation: prior is like n0 "observations" with sample mean µ0.
[Compare Bayesian point estimator with the MLE.]

Conjugacy
▶ We say a family of prior distributions is conjugate to a likelihood model if the

posterior distribution is in the same family.
▶ Examples: Beta-Binomial, Normal-Normal (many more on Wikipedia).

https://en.wikipedia.org/wiki/Conjugate_prior
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*History and remarks
▶ Bayesian statistics goes back to Bayes and Laplace in late 18th century.
▶ Frequentist thinking dominated 20th century after Fisher, Neyman, E Pearson.
▶ Bayesians have made a come-back with more powerful computers and MCMC.

Remarks
▶ The practical difference is often not big: Berstein-von Mises theorem. [Part II PoS]
▶ The debate has generated better understanding and methodology for both parties.

Score sheet
▶ Bayesian: 1. Belief (prior); 2. Principled; 3. One distribution; 4. Dynamic; 5.

Individual (subjective); 6. Aggressive.
▶ Frequentist: 1. Behaviour (method); 2. Opportunistic; 3. Many distributions

(bootstrap?); 4. Static; 5. Community (objective); 6. Defensive.
From "A 250-Year Argument: Belief, Behavior, and the Bootstrap" by Efron (2012).

https://www.ams.org/journals/bull/2013-50-01/S0273-0979-2012-01374-5/S0273-0979-2012-01374-5.pdf
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Motivation

▶ A hypothesis is an assumption about the distribution of the data X .

Examples
1. Is this coin fair?
2. Is the phenotypic ratio exactly 9:3:3:1 for a dihybrid cross?
3. Do students in different Colleges come from the same socioeconomic background?

[How can we formulate these mathematically?]

Two different formulations
1. Fisher: Do the data provide evidence against a null hypothesis?
2. Neyman-Pearson: Having seen the data, shall we choose the null hypothesis or

the alternative hypothesis?
My take: N-P is mathematically superior but is prone to mis-interpretation.
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Hypothesis testing

Let a statistical model X ∼ p(x ; θ), θ ∈ Θ be given.

Definition
▶ The null hypothesis is H0 : θ ∈ Θ0 and the alternative hypothesis is H1 : θ ∈ Θ1

for some disjoint Θ0,Θ1 ⊂ Θ.
▶ We say H0 is simple if Θ0 is a singleton; otherwise H0 is composite. Same for H1.
▶ A test is a binary-valued statistic T (X ) ∈ {0, 1}.

▶ T (X ) = 1 means "the data contains enough evidence against H0";
▶ T (X ) = 0 means "the data contains not enough evidence against H0".

▶ Avoid saying "H0 is true/false".
In statistical inference, as distinct from mathematical inference, there is a world
of difference between the two statements "A is true" and "A is known to be
true". —R A Fisher (Barnard, 1992)

https://doi.org/10.1214/ss/1177011440
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The decision-theoretic approach (Neyman-Pearson)

Definition
▶ The power function of the test is β(T ; θ) = Pθ(T (X ) = 1).
▶ Type I error rate: β(T ; θ) for θ ∈ Θ0 (false "rejection"). [What is the loss?]
▶ Type II error rate: 1 − β(T ; θ) for θ ∈ Θ1 (false "acceptance").
▶ The size of the test is defined as supθ∈Θ0 β(T ; θ).

What is the "optimal" test?
▶ Not an easy question: there is a tradeoff between type I and II errors.
▶ The Neyman-Pearson theory treats these risks in an asymmetrical way and asks:

How small can the type II error be if the type I error is no large than a given value?
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Likelihood ratio tests: simple vs. simple
Suppose H0 and H1 are simple, so Θ0 = {θ0} and Θ1 = {θ1}.
▶ The likelihood ratio statistic is defined as

Λ(X ) =
L(θ1)

L(θ0)
=

p(X ; θ1)

p(X ; θ0)
.

▶ A likelihood ratio test is defined as T (X ) = 1{Λ>c} (reject H0 if Λ(X ) > c).

Neyman-Pearson Lemma
Suppose p(x ; θ0) and p(x ; θ1) are nonzero on the same set. Consider any α ∈ (0, 1).
Suppose there exists c > 0 such that T ∗(X ) = 1{Λ(X)>c} has exactly size α. Then
T ∗(X ) solves

maximize β(T ; θ1) subject to β(T ; θ0) ≤ α.

▶ [Proof.]
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Remarks on Neyman-Pearson

1. The N-P Lemma says the likelihood ratio test is the most powerful for simple vs.
simple. Another tangible form of the likelihood principle.

2. Nice mathematical result: closed-form solution to a linear program over functions.
3. Continuous density ensures a test of exactly size α exists.
4. Why is this not a Theorem? Composite hypotheses in next lecture.
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*Interlude: A love story
"You haven’t told me yet," said Lady Nuttal, "what your fiancé does for a living?"
"He’s a statistician," replied Lamia, with an annoying sense of being on the defensive.
Lady Nuttal was obviously taken aback. It had not occurred to her that statisticians
entered into normal social relationships. The species, she would have surmised, was
perpetuated in some collateral manner, like mules.
"But Aunt Sara, it’s a very interesting profession," said Lamia warmly.
"I don’t doubt it," said her aunt, who obviously doubted it very much. "To express
anything important in mere figures is so plainly impossible that there must be endless
scope for well-paid advice on how to do it. But don’t you think that life with a
statistician would be rather, shall we say, humdrum?"
Lamia was silent. She felt reluctant to discuss the surprising depth of emotional
possibility which she had discovered below Edward’s numerical veneer.
"It’s not the figures themselves," she said finally. "it’s what you do with them that
matters."
(K.A.C. Manderville, The Undoing of Lamia Gurdleneck)
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Example: z-test for the normal location problem

X1, . . . ,Xn
IID∼ N(µ, σ2

0), where σ2
0 is known. Let µ0, µ1 be given and µ1 > µ0.

The optimal size α test for H0 : µ = µ0 vs. H1 : µ = µ1 rejects H0 when

Z =

√
n(X̄ − µ0)

σ0
> zα.

▶ [Show this using the Neyman-Pearson Lemma.]

Numerical example
▶ µ0 = 5, µ1 = 6, σ0 = 1, α = 0.05, n = 9.
▶ Observed data: X = (5.1, 5.5, 4.9, 5.3, 5.2, 5.3, 5.7, 5.0, 4.8), so X̄ = 5.2.
▶ Z = 0.6 < z0.05 ≈ 1.645.
▶ Not enough evidence against H0 (at significance level 0.05).
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P-values and significance tests (skip and see Lecture 9)
When Θ0 = {θ0}, the result of a LR test can be summarized by the P-value:

P = Pθ0(Λ(X̃ ) ≥ Λ(X ) | X ),

where X̃ is an IID copy of X (so X̃ ∼ p(x ; θ0) and X̃ is independent of X ).
▶ This is a statistic—the probability of observing a more extreme test statistic under

the null hypothesis.
▶ The test rejects H0 at significance level α iff P ≤ α. [Why?]
▶ [What’s the p-value for the z-test?]

Proposition (probability integral transform)
Suppose Λ(X) has a continuous distribution under θ = θ0. Then P ∼ Unif[0, 1].
▶ [Proof.]
▶ [What happens if the distribution of Λ has jumps?]
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Power function for the normal location problem
Recall that the power function of a test T (X ) ∈ {0, 1} is β(T ; θ) = Pθ(T (X ) = 1).
▶ The z-test rejects H0 : µ = µ0 if Z =

√
n(X̄ − µ0)/σ0 > zα.

▶ The power function is β(µ) = 1 − Φ
(

zα +
√

n(µ0−µ)
σ0

)
. [Derive this.]

n <- 4; sigma0 = 1; mu0 <- 5; alpha <- 0.05
power <- 1 - pnorm(qnorm(1 - alpha) + sqrt(n) * (mu0 - x) / sigma0)
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Optimality of hypothesis tests

Consider any disjoint Θ0,Θ1 ⊂ Θ.

Definition
T : X → {0, 1} is the uniformly most powerful (UMP) size α test for testing
H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, if

1. supθ∈Θ0 β(T ; θ) = α;
2. for any other test T̃ with size ≤ α, we have β(T ; θ) ≥ β(T̃ ; θ) for all θ ∈ Θ1.

Examples
1. The z-test is UMP for testing H0 : µ ≤ µ0 versus H1 : µ > µ0 in the normal

location problem. [Why?]
2. [*Monotone likelihood ratio and one-parameter exponential family.]
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Generalized likelihood ratio test
Let Θ0,Θ1 be disjoint subsets of Θ.

Definition
The (generalized) likelihood ratio statistic for testing H0 : θ ∈ Θ0 versus H0 : θ ∈ Θ1 is

Λ(X ) =
supθ∈Θ0∪Θ1 L(θ)
supθ∈Θ0 L(θ) =

supθ∈Θ0∪Θ1 p(X ; θ)

supθ∈Θ0 p(X ; θ)
.

The size α (generalized) likelihood ratio test rejects H0 if Λ > cα, where cα satisfies

sup
θ∈Θ0

Pθ(Λ(X ) > cα) = α.

▶ N-P lemma: optimality when Θ0 = {θ0} and Θ1 = {θ1}.
▶ To find Λ(X ), need to compute two (restricted) MLEs.
▶ cα is easier to find if there is a "worst-case null distribution" for all α.
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*Interlude: Pareto efficiency

▶ Many real-life problems involve trading off different objectives.
▶ A decision rule is Pareto efficient or admissible if there is no other rule that

improves all objectives.

Example: portfolio optimization
Let X1, . . . ,Xn be the return of n stocks. The optimal portfolio solves

minimize wT Cov(X )w
subject to wT E(X ) = µ,

n∑
i=1

wi = 1.

▶ This is a quadratic program and can be easily solved using Langrange multiplier.
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*Interlude: efficient frontier for portfolio

▶ CAL = Capital Allocation Line.
▶ Seminal work by Harry Markowitz (1952), which won him a Nobel Prize in 1990.

Later discovered that the idea can be found in work by Bruno de Finetti in 1940.
▶ Part II Stochastic Financial Models.
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Two-sided normal location problem: two-sided z-test
X1, . . . ,Xn

IID∼ N(µ, σ2
0), σ2

0 is known. Test H0 : µ = µ0 vs. H1 : µ 6= µ0 for given µ0.
▶ The generalized LRT rejects H0 if |Z | > zα/2 where Z =

√
n(X̄ − µ0)/σ0. [Why?]

▶ *This is the UMP unbiased test. The UMP test does not exist. [Why?]
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Asymptotic distribution of generalized likelihood ratio tests

▶ Loosely speaking, the degrees of freedom of a statistical model is its number of
"free parameters". [Examples.]

Wilks’ theorem
Suppose Θ ⊆ Rd is open and Θ0 is a d0-dimensional linear subspace of Θ. Under
regularity conditions, we have

2 log Λ(X )
d→ χ2

d−d0 as n → ∞ under H0.

▶ This gives a universal rejection threshold: cα ≈ χ2
d−d0

(α) for large n.
▶ The χ2-distribution is exact for the two-sided normal location problem.
▶ Proof in Part II Principles of Statistics.
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P-values and significance tests
▶ Often, a test (e.g. LRT) rejects H0 if Λ(X ) > cα for some Λ(X ) ∈ R, and cα is

chosen so that supθ∈Θ0 Pθ(Λ(X ) > cα) = α.
▶ We can then summarize the test using a statistic called the "p-value":

P = sup
θ∈Θ0

Pθ(Λ(X̃ ) ≥ Λ(X ) | X ),

where X̃ is an IID copy of X (so X̃ ∼ p(x ; θ0) and X̃ is independent of X ).
▶ This is the probability of observing a more extreme test statistic under H0.
▶ The test rejects H0 at level α iff P ≤ α. [Why?]
▶ [What’s the p-value for the one-sided and two-sided z-tests?]

Proposition (probability integral transform)
Suppose Θ0 = {θ0} and Λ(X) is continuous under θ = θ0. Then P ∼ Unif[0, 1].
▶ [Proof.]
▶ [What happens if the distribution of Λ has jumps?]
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*P-value wars

▶ P-value is the single most used number in scientific studies to quantify strength of
evidence.

▶ But p-values are often misused: hunting for significance ("p-hacking").
▶ There have been "p-value wars" in the last decade:

▶ The ASA Statement on p-Values: Context, Process, and Purpose (Wasserstein and
Lazar, 2016).

▶ The ASA presidents task force statement on statistical significance and replicability
(Benjamini et al., 2021).

▶ "It’s not the figures themselves, it’s what you do with them that matters".

https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1214/21-AOAS1501
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Duality between simple tests and confidence intervals

Suppose X ∼ p(x ; θ), θ ∈ Θ, θ is unknown.

Theorem
Consider T : Θ×X → {0, 1} and I : X → 2Θ that satisfies

I(X ) = {θ : T (θ,X ) = 0} or equivalently T (θ,X ) = 1{θ ̸∈I(X)}.

Then the following statements are equivalent:
1. T (θ0,X ) is a size α test of H0 : θ = θ0 for all θ0 ∈ Θ;
2. I(X ) is a (1 − α)-confidence set for θ.
▶ [Proof.]
▶ [Alternative version with p-value.]
▶ [Example: two-sided normal location problem.]
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Motivating example for goodness-of-fit: Gregor Mendel’s pea experiments

▶ From 1856 to 1863, Mendel produced around 29,000 garden pea plants from
controlled crosses and registered their phenotypes.

▶ In one experiment, he crossed n = 566 round yellow peas with green wrinkled
peas.

Round Yellow Round Green Wrinkled Yellow Wrinkled Green
Count 315 108 101 32
Proportion 0.557 0.191 0.178 0.057
Theory 0.563 0.188 0.188 0.063

▶ According to what we now call Mendel’s laws of inheritance, the ratio is 9:3:3:1 in
theory. Is this a good fit to the data?
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Goodness-of-fit testing
Suppose (N1, . . . ,Nk) ∼ Multinomial(n; p1, . . . , pk).
▶ Interested in testing H0 : pi = p0i , i = 1, . . . , k for a given vector p0.
▶ The generalized log-likelihood ratio statistic is given by

2 log Λ = 2
k∑

i=1
Ni log

(
Ni

np0i

)
= 2

k∑
i=1

Oi · log
(

Oi
Ei

)
,

where Oi = Ni is the "observed count" and Ei = np0i is the "expected count".
▶ When Oi/Ei ≈ 1, this can be approximated by Pearson’s statistic

2 log Λ ≈
k∑

i=1

(Oi − Ei)
2

Ei
.

▶ [Derive these and the associated χ2-test.]
▶ [Rule of thumb. *Demonstration in R using Mendel’s data.]
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*Interlude: The Mendel-Fisher controversy
▶ Fisher (1936) concluded that "the data of most, if not all, of the experiments

have been falsified so as to agree closely with Mendel’s expectations."

▶ Table 5 from Pires and Branco (2010), who also offered an explanation using
statistical models in which Mendel only stopped the experiments when the data
are "close enough" to his theory.

https://doi.org/10.1214/10-STS342
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Composite null

E B Ford (1971) recorded wing patterns of scarlet tiger moth:

Phenotype White-spotted (AA) Intermediate (Aa) Little spotting (aa) Total
Number 1469 138 5 1612

▶ Hardy-Weinberg equilibrium: P(AA) = θ2, P(Aa) = 2θ(1 − θ), P(aa) = (1 − θ)2

under random mating and no evolutionary influences.
▶ [Develop the generalized likelihood ratio test for H-W equilibrium.]
▶ [*Demonstration in R using Ford’s data.]
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Testing independence in 2-way contingency tables

Suppose (X1,Y1), . . . (Xn,Yn)
IID∼ P, X1 ∈ {1, . . . , r}, Y1 ∈ {1, . . . , c}. Wish to test

H0: X1 and Y1 are independent: P(X1 = x ,Y1 = y) = P(X1 = x)P(Y1 = y).
▶ Data can be summarized by a contingency table Nxy =

∑n
i=1 1{Xi=x ,Yi=y}.

Example
500 people with recent car changes were asked about their previous and new cars.

New car
Large Medium Small

Old Large 56 52 42
car Medium 50 83 67

Small 18 51 81
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χ2-test for independence

▶ We can model the contingency table by

(N11, . . . ,N1c , . . . ,Nr1, . . . ,Nrc) ∼ Multinomial(n; p11, . . . , p1c , . . . , pr1, . . . , prc).

▶ H0 : pxy = px+p+y (with
∑

x px+ = 1 =
∑

y p+y , px+, py+ ≥ 0).
▶ H1: pxy is unrestricted other than

∑
x ,y pxy = 1, pxy ≥ 0.

▶ [Derive the χ2-test for independence. What’s its degrees of freedom?]
▶ [*Demonstration in R (including Pearson’s residuals).]
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Tests of homogeneity
▶ Consider the car change dataset again. Will my test be different if I know the row

totals are fixed in sampling?

New car
Large Medium Small Total

Old Large 56 52 42 150
car Medium 50 83 67 200

Small 18 51 81 150
Total 124 186 190 500

▶ Model: (Nx1, . . . ,Nxc)
ind .∼ Multinomial(nx ; p1|x , . . . , pc|x ), x = 1, . . . , r .

▶ [How is this different and related to the IID model?]
▶ Interested in testing H0: py |x does not depend on x .
▶ The corresponding generalized LRT is exactly the same as that for independence

testing. [ES2]
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*Permutation tests

▶ A drawback of the χ2-test is that the χ2 null distribution is only approximate.
▶ For independence testing in 2-way tables, we can use the permutation null instead.

Suppose (X1,Y1), . . . (Xn,Yn) are IID. If X1 and Y1 are independent, then

(X1,Y1, . . . ,Xn,Yn)
d
= (X1,Yπ(1), . . . ,Xn,Yπ(n))

for any permutation π of {1, . . . , n}.
▶ Alternatively, this amounts to generating random tables with given marginal totals.
▶ [What is the p-value of the permutation test?]
▶ When applying chisq.test in R, this can be obtained by setting

simulate.p.value=TRUE.
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*Interlude: Lady tasting tea
A lady declares that by tasting a cup of tea made with milk she can discrim-
inate whether the milk or the tea infusion was first added to the cup. . . Our
experiment consists in mixing eight cups of tea, four in one way and four in
the other, and presenting them to the subject for judgment in a random order.
The subject has been told in advance of what the test will consist. . . Her task
is to divide the 8 cups into two sets of 4.
(R A Fisher. The Design of Experiments. 1935)

▶ Fisher uses this experiment to articulate why randomization provides a "reasoned
basis" for causal inference. This marks a key moment in the 20th-century
scientific revolution from determinism (clockwork universe/Laplace’s demon) to a
statistical view.

▶ Further reading:
▶ I. Hacking. (1988). Telepathy: Origins of Randomization in Experimental Design.
▶ My blog post: The origin of randomization.

https://doi.org/10.1086/354775
https://www.statslab.cam.ac.uk/~qz280/post/randomization-origin/
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*Fisher’s exact test
The outcome of Fisher’s experiment can be summarized in a 2 × 2 table:

Nij = Number of cups made by i with guess j , i , j ∈ {milk first, tea first}

▶ By design, N++ = 8 and N1+ = N2+ = N+1 = N+2 = 4. So only one "degree of
freedom". [Why?]

▶ H0: observe a random table (the lady guessed randomly). Reject if N11 is large.
▶ The p-value P(N11) is the probability of observing the same or more extreme N11.

P(4) = 1/
(

8
4

)
= 1/70 = 1.4%, P(3) = (1+

(
4
3

)(
4
1

)
)/

(
8
4

)
= 17/70 = 24.3%.

This is called the hypergeometric distribution.
▶ [Why is this a permutation test?]
▶ [*Demonstration of fisher.test in R.]
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Multivariate normal
Let X = (X1, . . . ,Xn)

T ∈ Rn be a random vector and denote µ = E(X ) and
Σ = Cov(X ). Let A × Rm×n and b ∈ Rm be fixed.
▶ We know E(AX + b) = Aµ+ b and Cov(AX + b) = AΣAT . [Why?]

Definition
We say X has a multivariate normal distribution and if aT X has a (univariate) normal
distribution for all fixed a ∈ Rn.
▶ The MGF is MX (a) = E(eaT X ) = eaTµ+aTΣa/2. [Why?]
▶ By uniqueness of MGF, the distribution of X is determined by its mean and

covariance matrix, so we write X ∼ N(µ,Σ).
▶ The density function of X is given by

p(x) = (2π)−n/2|Σ|−1/2e(x−µ)TΣ−1(x−µ)/2. [Why?]

▶ If X ∼ N(µ,Σ), then AX + b ∼ N(Aµ+ b,AΣAT ). [ES3]
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Normal location problem with unknown variance
Suppose X1, . . . ,Xn ∼ N(µ, σ2), µ ∈ R and σ2 > 0 are unknown.
▶ Recall X̄ =

∑
i Xi/n and SXX =

∑
i(Xi − X̄ )2.

Theorem
X̄ and SXX are independent, X̄ ∼ N(µ, σ2/n), and SXX/σ

2 ∼ χ2
n−1. [Proof.]

Student’s t-test
▶ Suppose Z and Y are independent, Z ∼ N(0, 1) and Y ∼ χ2

k . We say T = Z√
Y /k

follows the t-distribution with k degrees of freedom and write T ∼ tk .
▶ Student’s t-statistic is given by

T =

√
n(X̄ − µ0)√

SXX/(n − 1)
=

X̄ − µ0√
σ̂2/n

, where σ̂2 = SXX/(n − 1).

▶ [Show that T ∼ tn−1 when µ = µ0. "Standard error".]
▶ [State the one-sided and two-sided t-tests, *which are the UMP unbiased tests.]
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*Some facts about the t-distribution
▶ PDF of tk is given by p(x) = Γ( k+1

2 )√
πkΓ( k

2 )
(1 + x2/k)−(k+1)/2.

▶ t1 = Cauchy distribution; tk
d→ N(0, 1) when k → ∞. (ν = k in figure above.)

▶ Tail behaves like x−(k+1), an instance of power law. E(|X |m) < ∞ for 0 < m < k.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

*Interlude: History of the t-test

▶ At the turn of the 20th century, brewers at the Guinness factory in Dublin were
interested in testing the amount of soft resins in different batches of hop flowers,
which impart a bitter flavour and act as a natural preservative.

▶ W S Gosset was the head experimental brewer at Guinness and developed the
t-test. In 1908, he published his result under the pen name Student. (For
confidentiality reasons, Guinness allowed its scientists to publish research on
condition that they do not mention beer, Guinness, or their own surname.)
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Orthogonal projections (skip; see Lecture 13)
▶ X ∼ N(0, In) is isotropic: UX ∼ N(0, In) for all orthogonal matrix U.

Definition/Proposition
Consider P ∈ Rn×n. The following are equivalent:

1. P is an (orthogonal) projection matrix.
2. P is symmetric (PT = P) and idempotent (P2 = P).
3. P = UUT , where columns of U ∈ Rn×rank(P) form an orthonormal basis for the

column space of P.
[Proof. Why is (I − P) also a projection? Why is it true that rank(P) = tr(P)?]

Theorem
Suppose ϵ ∼ N(0, σ2In) and P is a projection matrix. Then

1. Pϵ ∼ N(0, σ2P) and (I − P)ϵ ∼ N(0, σ2(I − P)) are independent.
2. ‖Pϵ‖2/σ2 ∼ χ2

rank(P).
[Proof. Specialization to t-test for normal location problem.]
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Motivating example

Groups of 25 males kept with Mean life (days) σ̂ =
√

SXX/(n − 1)
no companions 63.56 16.4522
1 uninterested female 64.80 15.6525
1 interested female 56.76 14.9284
8 uninterested females 63.36 14.5398
8 interested females 38.72 12.1021

Partridge and Farquhar (1981) "Sexual activity reduces lifespan of male fruitflies".
▶ [Construct 95% confidence intervals for each row. *Demonstration in R.]
▶ Motivation for ANOVA: testing the equality of means of two or more rows.

https://doi.org/10.1038/294580a0
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One-way analysis of variance (ANOVA)
Given Yij = µi + ϵij , j = 1, . . . , ni , i = 1, . . . , k, we wish to test H0 : µ1 = · · · = µk .
▶ k ≥ 2 number of groups. ni ≥ 1 observations in group i . Let

∑k
i=1 ni = n.

▶ We assume ϵij
IID∼ N(0, σ2). [What is the distribution of Y ?]

F -test
▶ The generalized LR statistic is an increasing function of SSA/SSE, where

SSA =
k∑

i=1
ni(Ȳi+ − Ȳ++)

2, SSE =
k∑

i=1

ni∑
j=1

(Yij − Ȳi+)
2. [Why?]

▶ [Show that SSA and SSE and independent.]
▶ If S1 ∼ χ2

d1
and S2 ∼ χ2

d2
are independent, then we say R = (S1/d1)/(S2/d2)

follows the F -distribution with degrees of freedom d1 and d2 and write R ∼ Fd1,d2 .
▶ The F -test rejects H0 if (SSA/(k − 1))/(SSE/(n − k)) > Fk−1,n−k(α).
▶ [Why is this a size-α test?]
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ANOVA table

Source of variation Sum of squares DF Mean squares F stat.
Between groups SSA k − 1 MSA = SSA/(k − 1) MSA/MSE
Within groups SSE n − k MSE = SSE/(n − k)
Total SST n − 1

SST = SSA + SSE =
k∑

i=1

ni∑
j=1

(Yij − Ȳ++)
2.

Numerical example
▶ H0: equal mean in three control groups in Partridge and Farquhar (rows 1, 2, 4).
▶ X̄ = 63.91. SSE = 17449.92. SSA = 30.427.
▶ F statistic is 0.0628, p-value is 0.939.
▶ [*Calculations in R.]
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*Interlude: Discovery of Higgs boson
▶ The Higgs Discovery Explained | CERN.

▶ A simplified model: N ∼ Poisson(β + κµ). H0 : µ = 0 vs. H1 : µ = 1.
▶ β and κ are expected background and Higgs boson counts, respectively.

▶ The physicists essentially used a (generalized) LRT.
▶ Many statistical issues such as model misspecification and estimation of HB mass

(van Dyk, 2014: The Role of Statistics in the Discovery of a Higgs Boson).

https://www.youtube.com/watch?v=so2nCu2Jkbc
https://doi.org/10.1146/annurev-statistics-062713-085841
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Normal linear model
We have data (X1,Y1), . . . , (Xn,Yn) ∈ Rp ×R.
Definition
The normal linear model assumes

Yi = β1Xi1 + β2Xi2 + · · ·+ βpXip + ϵi , i = 1, . . . , n,

where ϵ1, . . . , ϵn
IID∼ N(0, σ2) and are independent of (X1, . . . ,Xn).

▶ [Matrix form. What is the distribution of Y = (Y1, . . . ,Yn)?]

Example 1: ANOVA as a normal linear model
▶ [One-way ANOVA as nested linear models. What are the design matrices?]
▶ [SSA and SSE as orthogonal projections.]

Example 2: Simple linear regression
▶ Yi = α+ βXi + ϵi , i = 1, . . . , n. [What is the design matrix?]
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Linear models

"Design matrix" X ∈ Rn×p and "response" Y ∈ Rn. Each row is a single observation.
▶ Some columns of X can be fixed. For example, a column of 1 models "intercept".
▶ "Linear model" can mean many different things. We will only discuss two variants.

Definition
Consider unknown parameters β ∈ Rp and σ2 > 0.

1. The (homoscedastic) normal linear model:

Y | X ∼ N(Xβ, σ2In).

2. The (homoscedastic) linear conditional expectation model:

E(Y | X ) = Xβ, Var(Y | X ) = σ2In.

[Express these models using ϵ = Y − Xβ and for each observation (Xi ,Yi).]
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Least squares estimator
▶ For the normal linear model, the log-likelihood function is given by

l(β, σ2) = −n
2 log σ2 − 1

2σ2 ‖Y − Xβ‖2 + const. [Derive this.]

▶ The MLE of β is given by the (ordinary) least squares estimator

β̂ = arg min
β∈Rp

n∑
i=1

(Yi − XT
i β)2.

▶ Will always assume X has full column rank. Then β̂ = (XT X )−1XT Y . [Why?]
▶ [What is the least squares estimator for simple linear regression?]

Gauss-Markov Theorem ("Best Linear Unbiased Estimator/BLUE")
Let β̃ be another unbiased estimator of β in the linear conditional expectation model
that is linear in Y . Then Var(aT β̂) ≤ Var(aT β̃) for all a ∈ Rp.
▶ [Proof. Why is β̂ unbiased?]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

*Interlude: Regression towards mean/mediocrity
▶ Least squares/linear models date back to Newton/Legendre/Gauss/Quetelet, but

now often known as "linear regression" due to influential work by Francis Galton.

▶ "vertical tangential": OLS children on parents; "major axes": total least squares.
▶ Galton coined the term "eugenics". It originated as a progressive social movement

in 19th century, but now basically means scientific racism.
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Orthogonal projections
The least squares problem can be equivalently written as

µ̂ = arg min
µ∈colspan(X)

‖Y − µ‖2.

▶ The solution is given by the fitted values: µ̂ = X β̂ = PY for P = X (XT X )−1XT .
▶ The vector of residuals is given by R = Y − µ̂ = (I − P)Y .

Definition
We say P ∈ Rn×n is an orthogonal projection matrix if it is symmetric (PT = P) and
idempotent (P2 = P).

Proposition
P ∈ Rn×n is an orthogonal projection matrix if and only if P = UUT , where columns
of U ∈ Rn×rank(P) form an orthonormal basis for the column space of P.
[Proof.]
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More on orthogonal projections

Proposition
Suppose P ∈ Rn×n is an orthogonal projection matrix. Then

1. The eigenvalues of P is either 0 or 1.
2. rank(P) = tr(P).
3. I − P is also an orthogonal projection matrix.
4. ‖Y ‖2 = ‖PY ‖2 + ‖(I − P)Y ‖2 for any Y ∈ Rn.

Application to linear model
▶ The projection matrix P = X (XT X )−1XT is invariant to scaling and translating

the columns of X (the latter requires an intercept term in the model).
▶ [Sample mean and variance as projections.]
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Review: Normal linear model

▶ Recall that the normal linear model assumes Y | X ∼ N(Xβ, σ2In).
▶ We will usually treat X as fixed and drop the conditioning.

▶ The log-likelihood function is given by

l(β, σ2) = −n
2 log σ2 − 1

2σ2 ‖Y − Xβ‖2 + const.

▶ The MLE is given by (assuming X has full column rank):

β̂ = (XT X )−1XT Y .

σ̂2
MLE =

1
n‖Y−X β̂‖2 =

1
n

n∑
i=1

(Yi−µ̂i)
2 =

1
n

n∑
i=1

R2
i = "Residual Sum of Squares"/n.

▶ β̂ is BLUE even if noise is not normal.
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*Interlude: Latin square
▶ A Latin square is an n × n array with n letters so that no letter appears more than

once in any row or column. (Variations: Sudoku, eight queens puzzle.)

A B C D A A B B A A B B
B A D C A A B B A A B B
C D A B A A B B C C D D
D C B A C C D C D C D D

▶ No. of LS: 1 (n = 2, 3), 4 (n = 4), 56 (n = 5), 9408 (n = 6), 16942080 (n = 7).

Experimental design
▶ Think about a plot of apple trees and four different fertilizers (A, B, C, D).
▶ Yield in (i , j) is Yij = µi + λj + θFij + ϵij , Fij ∈ {A,B,C ,D}, ϵij

IID∼ N(0, σ2).
▶ Let θ̂F be the average yield of all plots with F . Then θ̂A − θ̂B is the BLUE for

θA − θB, and Latin squares minimize the max variance of θ̂A − θ̂B, θ̂B − θ̂C , etc.
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Distribution of the MLE

Lemma
Suppose ϵ ∼ N(0, σ2In) and P is an orthogonal projection matrix. Then

1. Pϵ ∼ N(0, σ2P) and (I − P)ϵ ∼ N(0, σ2(I − P)) are independent.
2. ‖Pϵ‖2/σ2 ∼ χ2

rank(P).

Theorem
Under the normal linear model (with fixed X of full column rank),

1. β̂ and σ̂2
MLE are independent.

2. β̂ ∼ N(β, σ2(XT X )−1).

3. nσ̂2
MLE/σ

2 ∼ χ2
n−p.

[Prove the above results.]
[Application to Student’s t-test for the normal location problem.]
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Some implications
1. σ̂2

MLE is a biased estimator. It is more common to use the unbiased

σ̂2 =
n

n − p σ̂
2
MLE =

1
n − p

n∑
i=1

(Yi − XT
i β̂)2.

2. The (two-sided) t-test rejects H0 : βj = β0j (vs. H1 : βj 6= β0j) if

|β̂j − β0j |√
σ̂2(XT X )−1

jj

> tn−p(α/2).

[Why is this a level-α test? What is the corresponding confidence interval]
3. The F -test rejects H0 : β = β0 (vs. H1 : β 6= β0) if

‖X (β̂ − β0)‖2/p
σ̂2 > Fp,n−p(α).

[Why is this level-α? What is the shape of the corresponding confidence set?]
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Example: Two-sample t-test

Suppose A1, . . . ,An
IID∼ N(µ1, σ

2) and B1, . . . ,Bm
IID∼ N(µ2, σ

2) are independent. The
parameters µ1, µ2 ∈ R and σ2 > 0 are unknown.
▶ [Express this as a normal linear model.]
▶ [What is the two-sided t-test for H0 : µ1 = µ2?]
▶ [What is the ANOVA F-test for H0 : µ1 = µ2?]
▶ [Show that these two tests are equivalent.]



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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Nested projections

▶ Recall P ∈ Rn×n is an orthogonal projection if it is symmetric and idempotent.
▶ In least squares problems, P = X (XT X )−1XT projects onto colspan(X ) and can

be written as P = UUT where U ∈ Rn×p is an orthonormal basis of X .
Consider the partition X = (X0 X1), X0 ∈ Rn×p0 and X1 ∈ Rn×(p−p0) (0 < p0 < p).
▶ Define P = X (XT X )−1X and P0 = X0(XT

0 X0)
−1X0.

▶ Key geometric result: PP0 = P0P = P0. [Proof.]

Theorem
Assume X ∈ Rn×p has full column rank. For ϵ ∼ N(0, σ2In), we have

1. P0ϵ, (P − P0)ϵ, (I − P)ϵ are independent.
2. ‖P0ϵ‖2 ∼ χ2

p0 , ‖(P − P0)ϵ‖2 ∼ χ2
p−p0 , ‖(I − P)ϵ‖2 ∼ χ2

n−p.
[Proof.]
[Remark: These results only require colspan(X0) to be a linear subspace of colspan(X ).]
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Testing nested models
For simplicity of exposition, we will treat X as fixed. Let µ = E(Y ).

Model Hypothesis Design Fitted values
Saturated µ ∈ Rn In µ̂ = Y
Full µ ∈ colspan(X ) X µ̂ = PY
Sub/Null µ ∈ colspan(X0) X0 µ̂ = P0Y

Theorem (general linear hypothesis tests)
Consider the testing problem H0 : sub-model vs. H1 : full model (minus sub-model).
Then the size α generalized LRT rejects H0 if

‖(P − P0)Y ‖2/(p − p0)

‖(I − P)Y ‖2/(n − p) > Fp−p0,n−p(α).

▶ [Prove this. How can H0 be expressed as a constraint on β?]
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Analysis of variance

The F -test for nested models generalizes many tests before:
1. Student’s two-sided t-test for normal location problem.
2. The one-way analysis of variance.
3. The two-sided t-test for H0 : βj = β0j in normal linear models.

*Sequential ANOVA
Let M0 ⊂ M1 ⊂ · · · ⊂ Mk = Rn be a nested sequence of linear spaces. Let pj be the
dimension of Mj and Pj be the projection matrix onto colspan(Mj).
▶ Let µ = E(Y ). The F -test for Hj−1 : µ ∈ Mj−1 vs. Hj : µ ∈ Mj rejects Hj−1 if

‖(Pj − Pj−1)Y ‖2/(pj − pj−1)

‖(Pj+1 − Pj)Y ‖2/(pj+1 − pj)
> Fpj−pj−1,pj+1−pj (α).
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*Example in R

▶ Load the penguins dataset in palmerpenguins package.
▶ ?penguins.
▶ summary, subset, boxplot, table.
▶ lm, summary.lm, anova.
▶ plot, abline.
▶ Yule-Simpson paradox.
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Two-sample testing problems

Suppose A1, . . . ,An
IID∼ F and B1, . . . ,Bm

IID∼ G . Let A = (A1, . . . ,An) and
B = (B1, . . . ,Bm).
Are F and G similar?

Different formulations
1. A and B are independent, F = N(µ1, σ

2), G = N(µ2, σ
2), H0 : µ1 = µ2.

▶ We can use the two-sample t-test or equivalently the ANOVA F -test.
2. *A and B are independent, F = N(µ1, σ

2
1), G = N(µ2, σ

2
2), H0 : µ1 = µ2

▶ *Behrens-Fisher problem. A popular, approximate solution is Welch’s t-test.
3. *A and B are independent, no assumption on the form of F or G , H0 : F = G .

▶ Can use permutation t-test, which is asymptotically equivalent to the t-test in 1.
[*Demonstration in R.]

https://en.wikipedia.org/wiki/Welch%27s_t-test
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Paired t-test
Sometimes the observations were paired.

Example
Should supervisors ask students to turn in their work 1 or 2 days before the
supervision? A good experimental design randomizes the requirement within each pair
of supervisees.

Model and solution
Let (Ai ,Bi) be the exam results in pair i .

Ai ∼ N(µ1 + αi , σ
2), Bi ∼ N(µ2 + αi , σ

2), i = 1, . . . , n,

and are all independent.
▶ Di = Ai − Bi

IID∼ N(µ1 − µ2, 2σ2).
▶ Thus can apply Student’s t-test for D1, . . . ,Dn.
▶ [How can this be set up as a normal linear model? *Demonstration in R.]
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*Sample size planning

When designing experiments, it is often useful to estimate the sample size required to
achieve certain power (under a given alternative hypothesis).

Example
A clinical trial randomly assigns n patients to placebo and n to a new therapy. We are
interested in testing whether the new therapy lowers blood pressure.
▶ What is the minimum n required so that the null hypothesis is rejected at level α

with probability β when the treatment effect is δ?

Power calculation
▶ Suppose Z ∼ N(0, 1) and Y ∼ χ2

k are independent. We say Z+µ√
Y /k

follows the
noncentral t-distribution with k d.o.f. and noncentrality parameter µ ∈ R.

▶ [Derive the power function of two-sample t-test.]
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"Stats Lab courses" in Part II
Michaelmas
▶ Statistical Modelling: various extensions to the normal linear model; statistical

computing with R.
▶ Principles of Statistics: likelihood principle; basic asymptotic statistics; Bayesian

inference and decision theory; basic nonparametric statistics and MCMC.
▶ Stochastic Financial Models: utility and mean-variance analysis; dynamic

programming; introduction to martingales and Brownian motions; Black-Scholes
model for option pricing.

▶ Probability and Measure: rigorous treatment of the foundation.

Lent
▶ Mathematics of Machine Learning: statistical learning theory; empirical risk

minimization; popular machine learning methods.
▶ Applied Probability: continuous-time Markov chains; Poisson processes and

renewal processes; applications to queueing theory.
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