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Difference-in-Differences
DID extensions
Time-varying treatments

Marginal structural model

Key references for this lecture

» Difference-in-differences: Wing et al. (2018) and Roth et al. (2022) for

» Time-varying treatments: Hernan and Robins book “What if" chapters 19, 20 and
21
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Review: casual inference in observational studies

» Methods under the no unmeasured confounders assumption

1. Matching and entropy balancing weight (Lecture 2)
2. G-computation, IPW, AIPW (Lecture 4)

» Methods to address unmeasured confounding
1. Sensitivity analysis (Lecture 3)

2. Natural experiment: instrumental variable (Lecture 5), regression discontinuity

design?
3. Causal exclusion: negative control exposure/outcome (Proximal inference),
difference-in-differences (this lecture)

1See https://en.wikipedia.org/wiki/Regression_discontinuity_design. Biggs et al. (2017) applied the

References

regression discontinuity design to compare those who received abortions and those were denied abortion in the

near-limit group.
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Motivations

> We can draw causal inference if controlling for all confounders

» If important confounders are unobserved, we might try to get at causal effects
using instrumental variables (IVs) or other methods

» Good IVs are hard to find, however, so we'd like to have other tools to deal with
unobserved confounders.

» DID is another strategy that uses data with a time dimension to control for
unmeasured but fixed confounding

4/39



Difference-in-Differences DID extensions
0@000000000

Example in labor economics: do minimum wage laws affect employment

(Card and Krueger, 1993)

>
>

On April 1, 1992, New Jersey raised the state minimum from $4.25 to $5.05.

Card and Krueger collected data on employment at fast food restaurants (Burger
King, Wendy's, and so on) in New Jersey in February 1992 and again in
November 1992.

Card and Krueger collected data from the same type of restaurants in eastern
Pennsylvania, just across the Delaware river. The minimum wage in Pennsylvania
stayed at $4.25 throughout this period.

They compared the change in employment in New Jersey to the change in

employment in Pennsylvania around the time New Jersey raised its minimum (a
DID estimate).

Marginal structural model References
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Example in labor economics: do minimum wage laws affect employment
(Card and Krueger, 1993)

Table 5.2.1: Average employment per store before and after the New Jersey minimum wage increase
PA NJ Difference, NJ-PA

Variable (i) (ii) (iii)
1. FTE employment before, 23.33  20.44 -2.89
all available observations  (1.35) (0.51) (1.44)
2. FTE employment after, 21.17  21.03 -0.14
all available observations ~ (0.94)  (0.52) (1.07)
3. Change in mean FTE -2.16 0.59 2.76
employment (1.25)  (0.54) (1.36)

Notes: Adapted from Card and Krueger (1994), Table 3. The
table reports average full-time equivalent (FTE) employment at
restaurants in Pennsylvania and New Jersey before and after a
minimum wage increase in New Jersey. The sample consists of
all stores with data on employment. Employment at six closed
stores is set to zero. Employment at four temporarily closed stores

is treated as missing. Standard errors are reported in parentheses 6/39
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Example: do earned income tax credits (EITC) reduce deaths of despair?

State Earned Income Tax Credit (EITC) Laws @

W Refundable state EITC No state EITC, but has a law addressing

B Non-refundable state EITC the federel Elc

M Both refundable and non-refundable No state EITC

state EITC

(National Conference of State Legislatures)
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Difference-in-Differences (DID) for causal effect

» Challenges from unmeasured confounding: states with EITC laws differ from
states without them in other ways that may be related to deaths of despair

> A before-after comparison of the same units can also be biased due to time trends
in the outcome even without the treatment

» DID uses both comparison, and is commonly used for estimating causal effects
with panel data
» Prototypical DID application: how do changes in state policies affect individual

- Did Missouri's handgun purchaser licensing law affects firearm homicide rates?
- Did minimum wage laws change employment levels?
- Motivating application: do EITC reduce deaths of despair?
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Canonical DID

Parallel Trends: Absent treatment, treated and control would evolve over time in the
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same way. (functional-form dependent)
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Canonical DID

Parallel Trends: Absent treatment, treated and control would evolve over time in the
same way. (functional-form dependent)

Y: 4
After treatment
ATT
Counterfactual
Before tTeatment
} t >
1 2 t
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Canonical DID

Parallel Trends: Absent treatment, treated and control would evolve over time in the
same way. (functional-form dependent)

Yt A~

After treatment

ATT
E(Y2— Y1 | G=trt)

Counterfactual

Before tTeatment

} } >
1 2 t
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Canonical DID

Parallel Trends: Absent treatment, treated and control would evolve over time in the
same way. (functional-form dependent)

Yt A~

After treatment

ATT
E(Y2— Y1 | G=trt)

Counterfactual

Before tfeatment
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} } >
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Canonical DID

Parallel Trends: Absent treatment, treated and control would evolve over time in the
same way. (functional-form dependent)

Yt A~
After treatment
ATT
= DID

E(Y2— Y1 | G=trt)

Counterfactual

Before tfeatment

E(Y2 -Y I G = Cf/)
} } >
1 2 t
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Potential outcomes and causal effect
Observed data
> A; =1 is the treated group and A; = 0 is the control group
» For every unit i, we measure Y1, Yj» before and after the treated group adopts
the treatment

Potential outcomes
> Y,-(tl) potential outcome for unit i at time t if being treated, t = 1,2

> YI.EO) potential outcome for unit / at time t if being untreated, t =1, 2
> Consistency (SUTVA): Y1 = Y” and Yi» = A, YY) + (1 — 4) YY)
» Parallel trends assumption (subscript i omitted):

EVO - YO 1a=1)= (Y - v9 | a=0)

> Causal effect: ATT = E(Y\V — V{9 | A=1)

10/39



Difference-in-Differences IJIL) extensions
0000OOO®00O0 000

!\I wgm al structural model References

Causal identification

Theorem
Under the consistency and parallel trends assumptions,
ECV) =Y | A=1) = E(Ya— Vi |A=1)— E(Yoa— Y1 | A=0)
Proof.
E(YD — v a=1)
E[(vy) =) = (" = v{?) [ a=1]
1 0 0 0
EYS — v 1 a=1)— ElYf) — v | 4= 1]
—E[Y YO a1 - EY —vO | A=0]  (parallel trends)
=E[Yo- Y1 |A=1]-E[Y2— Y1 |A=0] (consistency)
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Example in R
> Let's apply the DID to study the effect of the minimum wage on log teen
employment.
P The dataset includes county-level data during 2003-2004.
P> Treated group: states that increased their minimum wage in 2004
» Control group: states that did not increase their minimum wage during 2003-2004

100~
| 62- -
\-_1__\_-
75-
N first.treat 60- first.treat
a
E 1] £ - 0
5 = £
5.0- - 2004 58~ - 2004
—
552 56+ T e
M 2003 2004
. year
) '
2003 2004
year

Marginal structural model References
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Example in R

mpdta.sub<-mpdta.sub %>% mutate(after.treat=1*(year>=first.treat))

# hand-coded DID

mean(with(mpdta.sub, lemp[first.treat==2004 & year==2004]))-
mean(with(mpdta.sub,lemp[first.treat==2004 & year==20037))-
mean(with(mpdta.sub,lemp[first. treat==0 & year==2004]))+
mean(with(mpdta.sub,lemp[first.treat==0 & year==2003]))

[1] -0.91050325

> # TWFE version

> twfe_sub<-1m(lemp~year+first.treat+after.treat,data=mpdta.sub)

> # cluster-robust variance estimator with CR2 small-sample correction

> coeftest.twfe <- coef_test(twfe_sub,

+

+

>

+ + + Vv vV Vv

vcov = "CR2",
cluster = mpdta.sub$countyreal)
coeftest.twfel[4,]
Coef. Estimate SE t-stat d.f. (Satt) p-val (Satt) Sig.
after.treat -0.0105 0.0238 -0.442 21.5 @.663
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Remarks

» Parallel trends is a strong assumption
- Testing for pre-trends is a common practice but with caveats (Roth, 2022)
- Methods to relax parallel trends is an active research area (Rambachan and Roth,
2023; Ye et al., 2023)
- It is functional form dependent (log or not?)

» All assumptions are on the Y,-(to)'s, no restrictions on the treatment effect
» DID works under two different settings:
- Panel data: same units followed over time
- Repeated cross-sectional: a random (possibly overlap) sample of units at each time
» Estimation:
- Canonical DID estimator: (Yit2 — Yire1) — (Yer2 — Yer1)
- Static two-way fixed effects (TWFE) model:
- Panel data: Yy = a+ 6t +vyAi + BAil(t =2) +€ie
- Repeated cross-sectional data: Y7, = a + d1, +YAi + SAI(T; = 2) +¢;
» Use cluster-robust variance estimator (robust to heteroscedasticity and correlation
within county), available from the clubSandwich R package.

- “CR2" is a type of small sample adjustment (analogous to HC adjustments) 14 /39
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More general set up

Research on DID has been evolving rapidly during the past few years (Roth et al.,
2022). But we will cover the main setting and present the key takeaways.
We will cover:

» Observed (time-varying) covariates

» More than two time periods

» Staggered adoption: adopting treatment at different times
We won’t cover:

» Non-binary treatments (Callaway et al., 2024)
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No staggered adoption
If all treated groups adopt the treatment at the same time:
» Static TWFE model,

Ygit = BDgt + WTXgit + ag + fr + egit

where Dg; is the indicator of being treated, Xg;; are the observed time-varying
covariates, a is the group indicator, f; is the time indicator.

» Dynamic TWFE model (event study),
Yeit = Z BEI(t — Eg = 0)+ Z @agl t — Eg = 0)+7" Xgit+ag+fiteg
—k<l<-2 0<e<k

where Eg is when group g initiates the treatment (Eg = oo if group g is never
treated), and for ¢ ¢ [—k, k] , usually bin them at —k and k.
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Staggered adoption
However, estimators from TWFE models can be difficult to interpret under treatment
heterogeneity and staggered adoption (Goodman-Bacon, 2021; Sun and Abraham,
2021; Roth et al., 2022).

» TWEFE estimator is a weighted average of group-year treatment effects and the
weights (especially the treatment effect for early adopters at a late period) can be

negative!
Recommendations:
- Use the static TWFE model only if confident in treatment effect homogeneity
- Use the dynamic TWFE model only if confident that there is heterogeneity only in
time since treatment
- Otherwise, consider using a “heterogeneity-robust” estimator, e.g., Callaway and
Sant'Anna (2021)
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Time-varying treatments
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Two treatments, randomized

1. Time 0: randomly assign Ag (1: treated; 0: control)
2. Time 1: randomly assign A; (1: treated; 0: control) depending on Ap.

3. Time 2: measure outcome Y

(AP ~(A)—)

References
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Two treatments, randomized

1. Time 0: randomly assign Ag (1: treated; 0: control)
2. Time 1: randomly assign A; (1: treated; 0: control) depending on Ap.

3. Time 2: measure outcome Y

(AoF—~(A)—=)
(Ao, A1) as a whole is randomized (why?), so

E[Y(ao, 31)] = E[Y ’ Ao = ao,Al = 31].

References
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Two treatments, randomized (more complicated)

Study of the effect of antiretroviral therapy on a health score (Robins and Hernan,
2008): 32,000 HIV infected subjects followed for one year.

20/39
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Two treatments, randomized (more complicated)

Study of the effect of antiretroviral therapy on a health score (Robins and Hernan,
2008): 32,000 HIV infected subjects followed for one year.
1. Month 0: Assign therapy (Ao = 1: treated; Ap = 0: control) at the start of the
follow-up. = Suppose Ag is randomly assigned.

20/39
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Two treatments, randomized (more complicated)
Study of the effect of antiretroviral therapy on a health score (Robins and Hernan,
2008): 32,000 HIV infected subjects followed for one year.
1. Month 0: Assign therapy (Ao = 1: treated; Ap = 0: control) at the start of the
follow-up. = Suppose Ag is randomly assigned.
2. Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated;
A1 = 0: control). = Suppose A;'s assignment depends only on Ag but not L

20/39
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Two treatments, randomized (more complicated)
Study of the effect of antiretroviral therapy on a health score (Robins and Hernan,
2008): 32,000 HIV infected subjects followed for one year.
1. Month 0: Assign therapy (Ao = 1: treated; Ap = 0: control) at the start of the
follow-up. = Suppose Ag is randomly assigned.
2. Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated;
A1 = 0: control). = Suppose A;'s assignment depends only on Ag but not L
3. Month 12: Measure the final health score Y.

Bo~L) W)=Y
U

U represents unobserved health status that affects both L; and Y.
i Can we identify E[Y(ap, a1)]7 Yes, non-causal path is blocked and thus
E[Y(ao, a1)] = E[Y | Ao = ao,A1 = 31]. 20/39
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Two treatments, with time-varying confounder
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Two treatments, with time-varying confounder

1. Month 0: Assign therapy (Ao = 1: treated; Ap = 0: control) at the start of the
follow-up. = Suppose Ag is randomly assigned.
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Two treatments, with time-varying confounder

1. Month 0: Assign therapy (Ao = 1: treated; Ap = 0: control) at the start of the
follow-up. = Suppose Ag is randomly assigned.

2. Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated;
A1 = 0: control). = Suppose A;'s assignment depends on both Ay and L

21/39
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Two treatments, with time-varying confounder

1. Month 0: Assign therapy (Ao = 1: treated; Ap = 0: control) at the start of the
follow-up. = Suppose Ag is randomly assigned.

2. Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated;
A1 = 0: control). = Suppose A;'s assignment depends on both Ay and L

3. Month 12: Measure the final health score Y.

D= D=
U

i Can we identify E[Y(ag, a1)]?

21/39
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Dilemma
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1. Not adjusting for L1, then A; will be confounded

A=)
U

References
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Dilemma

1. Not adjusting for L1, then A; will be confounded

D=~ D=
U

2. Adjusting for L1, opens a non-causal path from Ag to Y (collider bias)

B E3Y)
U

References
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Dilemma

1. Not adjusting for L1, then A; will be confounded

D=~ D=
U

2. Adjusting for L1, opens a non-causal path from Ag to Y (collider bias)

B E3Y)
U

» Need something more sophisticated.

References
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IPW: Removing A;'s dependency on L;

@‘@‘v ) (o —(ts) (=Y
Ui Ui

IPW: weight = 1/p(A1 | Ao, L1)

23/39
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IPW: Removing A;'s dependency on L;

@‘@‘v ) (o —(ts) (=Y
Ui Ui

IPW: weight = 1/p(A1 | Ao, L1)

23/39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References
00000000000 000 000008000000 000000 0000

IPW: Removing A;'s dependency on L;

@‘@‘v ) (o —(ts) (=Y
Ui Ui

IPW: weight = 1/p(A1 | Ao, L1)
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IPW: Removing A;'s dependency on L,

IPW: weight = 1/p A1 | Ao, L1)

> After reweighting, E Y'(ag, a1) = E[Y | Ao = a0, A1 = a1].

23/39
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IPW: Removing A;'s dependency on L;

GO
W
IPW: weight = 1/p (A1 | Ao, L1)

> After reweighting, E Y'(ag, a1) = E[Y | Ao = a0, A1 = a1].
IPW identification:

YHA =ap,A1=a } { HA =ap,A1=a }
EY a ,a :E 0 0,11 1 IE 0 0,11 1 )
( 0 1) {P(A1:a1|A0:ao,L1) / P(A1231|A0230,L1)

23/39
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row n Ao |_1 A1 E(Y | Ao, L1, Al)
1 2000 0 1 O 200

2 6000 0 1 1 220

3 6000 0 0 O 50

4 2000 0 O 1 70

5 3000 1 1 O 130

6 9000 1 1 1 110

7 3000 1 0 O 230

8 1000 1 0 1 250

References
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Exercise 1: data table

row n Ao L1 A E(Y | Ao, L1, Al) weight (1/p(A1 ‘ Ao, Ll)) n-pseudo
1 2000 O 1 0 200 4 8000
2 6000 O 1 1 220 4/3 8000
3 6000 O 0 0 50 4/3 8000
4 2000 O 0 1 70 4 8000
5 3000 1 1 0 130 4 12000
6 9000 1 1 1 110 4/3 12000
7 3000 1 0 0 230 4/3 4000
8 1000 1 0 1 250 4 4000

Crude means in pseudo-study E,, [Y | Ao = a9, A1 = a1] = E Y(ao, a1)
> EY(0,0) = E,[Y | Ao = 0, A; = 0] = (200 8000 + 50 * 8000) /(8000 -+ 8000) = 125
» Finish calculating E Y(0,1),E Y(1,0),E Y(1,1). Calculate and interpret their contrast.

» How is the above results compared to crude means in the actual study
E(Y | Ao = ap, AL = a1)? 25/39
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Rationale of the IPW procedure: summary

» We can pretend that the pseudo study is formed by two copies ( “clones”) of each
person, one clone receives A; = 0 and the other receives A; = 1. So we can
pretend that to assign A; we have flipped one same coin for everyone.

» Since we have also flipped one same coin for everyone to assign Ag (might be
different from the imaginary coin for assigning A;)

» Then, in the pseudo study, the subjects assigned to each of the four treatment
arms (Ao, A1) = {(0,0),(0,1),(1,0),(1,1)} are exchangeable, so we can estimate
the counterfactual means E Y(ap, a1) with the crude means in the pseudo study
EW[Y | Ao = ao,A1 = 31].

26/39
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Bonus: stabilized IPW

» The IPW procedure we have just seen creates a pseudo-study in which
- has size equal to the double of the actual study size
- the crude mean in the pseudo-study E,,[Y | Ag = ag, Ay = a1] is the counterfactual
mean E Y(ag, a1)
» There is a modification to IPW (called stablized IPW)

- has size equal to the actual study size
- the crude mean in the pseudo-study Eg,[Y | Ao = a0, A1 = a1] is the counterfactual

mean E Y(a, a1)
=Ly W=
W

stabilized weight = p(A1 | Ao)/p(A1 | Ao, L1)

27 /39
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IPW: Ildentification

Y Tag=a0,A1= Tag=a9, A=
EY(ay, a1) =E 0=30,/A1=41 } E{ 0=ap,A1=a; }
(0 1) {P(A1231|A0:ao,L1) / P(Alzal |A0230,L1)

i |t makes no difference to use the stabilized weight

P(Al = ai ’ Ao = ao)/P(Al = ai | Ao = 40, [_1).

1= For some other estimands (like parameters of marginal structural models), there will
be differences.

28/39
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Standardization / g-formula
» With a bit more algebra, the IPW formula can be rewritten as

Y]IA —ap. Aj=a } { ]IA =ap,A1=a }
EY(a,a)=E E
(0 1) {P(A1—31|A0—30,L1) / P(Alzal‘AOZQOxLl)

_ IE{ Y Tag=a0,A1=a1 }

P(Ag = a9) P(A1 = a1 | Ap = ao, L1)
_ E{ E[YHAo=ao,A1=al | Ll] }

P(Ao = ao) P(Al = a1 | Ao = 4o, Ll)
E {E[Y | Ag = ap, A1 = a1, L1]P(A1 = a1, Ao = ao | Ll)}

P(Ao = a0) P(A1 = a1 | Ao = a0, L1)
:E{E[Y | Ao = ao,Al = a1, L1]P(A0 = ap | Ll)}
P(Ao = a0)

= ZE[Y ‘ Ao = ao,Al = ai, Ll = /1]P(L1 = /1 I AO = ao).
h
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Standardization / g-formula: Intuition
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Standardization / g-formula: Intuition

1. Consider Y(a1) := Y(Ao, a1).

Ao f—(L1) (A1) Y @ Y(a1)

Within the stratum of (Ag, L1), A; is independent of Y(a1), so (why?)
E[Y(al) | Ao = 4o, Ll = /1] = E[Y | AO = ao,A1 = a1, Ll = /1]

30/39
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Standardization / g-formula: Intuition
1. Consider Y(a1) := Y(Ao, a1).
DR O On YN0 il [0 v
Within the stratum of (Ag, L1), A; is independent of Y(a1), so (why?)

E[Y(al) | Ao = 4o, Ll = /1] = E[Y | AO = ao,A1 = a1, Ll = /1]
2. Because Ag is randomly assigned,

E[Y(ao, 21)] = E[Y(al) ‘ Ao = a()] = ZE[Y(al) ‘ Ao = 4o, L1 = /1]P(L1 = /1 | Ao = ao).

30/39
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Positivity

From the standardization / g-formula

EY(a0,a1) = > E[Y|A =a;, A =ap, L1 = h]P(Ly = h | Ag = ap),
!

to identify E Y(ao, a1), we must have

Vi - P(Ll =4 | Ao = ao) > 0 — data within (ao, ai, /1),

’W;l:P(lell\Ao:ao)>O — P(Alzal|A0:ao,L1:/1)>o.\

= This can also be seen in the weighting identification formula.
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EXGI’CISG 2 E Y(ao, 81) = le ]E[Y | Ao = 4o, Al = ai, Ll = /1]P(L1 = /1 | AO = ao)
row n Ao L1 A1 E(Y | Ao, Ll, Al)

1 200 0 1 0 200
2 6000 0 1 1 220
3 6000 0 O O 50

4 2000 0 0 1 70

5 3000 1 1 O 130
6 900 1 1 1 110
7 3000 1 0 O 230
g§ 1000 1 0 1 250

> P(Ly = 1| Ao = 0) = (2000 + 6000)/(2000 + 6000 + 6000 + 2000) = 0.5,
P(Ly =1 | Ay = 1) = (3000 + 9000)/(3000 -+ 9000 + 3000 + 1000) = 0.75

» Finish calculating E Y(0,0),E Y(0,1),E Y(1,0),E Y(1,1). Calculate and interpret their
contrast.

» How is the above results compared to the IPW results? 23
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Generalization

1. Month 0: Assign therapy (Ap = 1: treated; Ag = 0: control) at the start of the
follow-up.
» Suppose Y(ap, a1) L Ag | Lo for baseline covariates L.

2. Month 6: Measure blood CD4 counts L; and assign therapy (A; = 1: treated;
A1 = 0: control).
» Suppose Y(ap, a1) L Az | Lo, Ao, L1.

3. Month 12: Measure the final health score Y.
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Generalization: g-formula

Under positivity and sequential randomization

Y(ao, 31) 1 Ao | L(),
Y (a0, a1) 1L A1 | Lo, Ao, L1,

E Y(a0, a1) = ZZ]E[Y | AL = a1, Ao = a0, L1 = I, Lo = ]
b b

X P(Ll =h | Ao = aop, Lo = Io)P(Lo = Io)

References

» Extends to more time points.
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Generalization: IPW

Under positivity and sequential randomization

Y(ao, al) 1 Ao | Lo,
Y (a0, a1) L A1 | Lo, Ao, L1,

Y Tag=a0, A=
EY(a, ai) =E o=a0, Ar=ay }
(20, 21) {P(Al_a1Ao_ao,Ll,Lo)P(AO—aOLO)

/E{ ]IA0=80,A1=31 } ]
P(Al = a ‘ AO = 4o, Ll, Lo)P(AO = 4o | Lo)

P(A1]Ao) P(Ao)
1/Ao,L1,Lo) P(Ao|Lo)

» We can also use stablized weights: PA

» Extends to more time points

35/39



Marginal structural model
©000

Marginal structural model
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Marginal structural (mean) model

Consider two treatments Ag, A1.

» Marginal structural mean model is to postulate and fit

E[Y(ao, 31)] = f(ao, ai, 9)

References
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Marginal structural (mean) model

Consider two treatments Ag, A1.

» Marginal structural mean model is to postulate and fit

E[Y(ao, al)] = f(a(), ai, 9)

For example, when Ag, A; are both binary:
> Saturated model

E[Y (a0, a1)] = a + foag + f1a1 + vyaoar

» Main effect only
E[Y (a0, a1)] = o + foao + fra1

References
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Fitting model with [PW

If (Ao, A1) is randomized, we have E[Y(ag, a1)] = E[Y | Ao = a9, A1 = a1], so the
model can be simply fitted with least squares.
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Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

38/39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References
00000000000 000 000000000000 000000 [e]e] e}

Fitting model with [PW
If (Ao, A1) is randomized, we have E[Y(ag, a1)] = E[Y | Ao = a9, A1 = a1], so the
model can be simply fitted with least squares.

Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

» To fit marginal structural mean model,

38/39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References
00000000000 000 000000000000 000000 [e]e] e}

Fitting model with [PW
If (Ao, A1) is randomized, we have E[Y(ag, a1)] = E[Y | Ao = a9, A1 = a1], so the
model can be simply fitted with least squares.

Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

» To fit marginal structural mean model,
1. Estimate the propensity score P(a1 | ag, h) (e.g., with logistic regression)

38/39



Difference-in-Differences DID extensions treatments Marginal structural model References
"""""" HOO00000 0080

Fitting model with [PW
If (Ao, A1) is randomized, we have E[Y(ag, a1)] = E[Y | Ao = a9, A1 = a1], so the
model can be simply fitted with least squares.

Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

» To fit marginal structural mean model,
1. Estimate the propensity score P(a1 | ag, h) (e.g., with logistic regression)
2. Compute weights w = 1/P(A;1 | Ao, L1) or the stabilized weights

W= | 3 P(AL| Ao, h)P(h | Ao) | /P(Ar| Ao, ).
h
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Fitting model with [PW
If (Ao, A1) is randomized, we have E[Y(ag, a1)] = E[Y | Ao = a9, A1 = a1], so the
model can be simply fitted with least squares.

Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

» To fit marginal structural mean model,
1. Estimate the propensity score P(a1 | ag, h) (e.g., with logistic regression)
2. Compute weights w = 1/P(A;1 | Ao, L1) or the stabilized weights

W= | 3 P(AL| Ao, h)P(h | Ao) | /P(Ar| Ao, ).
h

3. Fit least squares using w or ws as weights. » It makes a difference here.

» Statistical inference: bootstrap.
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Discussions: Static vs dynamic treatment regimes

> Static regime: everybody receives Ag = ag and A; = a;j regardless of the patient
characteristics,

- e.g. everybody receives ART the second time but not the first
» Dynamic regime: subject receives ART depending on the values of recorded
covariates
- E.g. nobody receives ART the first time and only those whose CD4 count are below
200 receive ART the second time.
» Today we have focused on the effects of static. The same idea applies to dynamic
regime, with some delicate differences.
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