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Plan

Difference-in-Differences

DID extensions

Time-varying treatments

Marginal structural model

Key references for this lecture

I Difference-in-differences: Wing et al. (2018) and Roth et al. (2022) for

I Time-varying treatments: Hernan and Robins book “What if” chapters 19, 20 and
21
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Review: casual inference in observational studies

I Methods under the no unmeasured confounders assumption

1. Matching and entropy balancing weight (Lecture 2)
2. G-computation, IPW, AIPW (Lecture 4)

I Methods to address unmeasured confounding

1. Sensitivity analysis (Lecture 3)
2. Natural experiment: instrumental variable (Lecture 5), regression discontinuity

design1

3. Causal exclusion: negative control exposure/outcome (Proximal inference),
difference-in-differences (this lecture)

1See https://en.wikipedia.org/wiki/Regression discontinuity design. Biggs et al. (2017) applied the
regression discontinuity design to compare those who received abortions and those were denied abortion in the
near-limit group.
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Motivations

I We can draw causal inference if controlling for all confounders

I If important confounders are unobserved, we might try to get at causal effects
using instrumental variables (IVs) or other methods

I Good IVs are hard to find, however, so we’d like to have other tools to deal with
unobserved confounders.

I DID is another strategy that uses data with a time dimension to control for
unmeasured but fixed confounding
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Example in labor economics: do minimum wage laws affect employment
(Card and Krueger, 1993)

I On April 1, 1992, New Jersey raised the state minimum from $4.25 to $5.05.

I Card and Krueger collected data on employment at fast food restaurants (Burger
King, Wendy’s, and so on) in New Jersey in February 1992 and again in
November 1992.

I Card and Krueger collected data from the same type of restaurants in eastern
Pennsylvania, just across the Delaware river. The minimum wage in Pennsylvania
stayed at $4.25 throughout this period.

I They compared the change in employment in New Jersey to the change in
employment in Pennsylvania around the time New Jersey raised its minimum (a
DID estimate).
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Example in labor economics: do minimum wage laws affect employment
(Card and Krueger, 1993)

5.2. DIFFERENCES-IN-DIFFERENCES 171

is the causal e§ect of interest. This is easily estimated using the sample analog of the population means.

Table 5.2.1: Average employment per store before and after the New Jersey minimum wage increase
PA NJ Di§erence, NJ-PA

Variable (i) (ii) (iii)
1. FTE employment before, 23.33 20.44 -2.89

all available observations (1.35) (0.51) (1.44)
2. FTE employment after, 21.17 21.03 -0.14

all available observations (0.94) (0.52) (1.07)
3. Change in mean FTE -2.16 0.59 2.76

employment (1.25) (0.54) (1.36)

Notes: Adapted from Card and Krueger (1994), Table 3. The

table reports average full-time equivalent (FTE) employment at

restaurants in Pennsylvania and New Jersey before and after a

minimum wage increase in New Jersey. The sample consists of

all stores with data on employment. Employment at six closed

stores is set to zero. Employment at four temporarily closed stores

is treated as missing. Standard errors are reported in parentheses

Table 5.2.1 (based on Table 3 in Card and Krueger, 1994) shows average employment at fast food

restaurants in New Jersey and Pennsylvania before and after the change in the New Jersey minimum wage.

There are four cells in the Örst two rows and columns, while the margins show state di§erences in each

period, the changes over time in each state, and the di§erence-in-di§erences. Employment in Pennsylvania

restaurants is somewhat higher than in New Jersey in February but falls by November. Employment in New

Jersey, in contrast, increases slightly. These two changes produce a positive di§erence-in-di§erences, the

opposite of what we might expect if a higher minimum wage pushes businesses up the labor demand curve.

How convincing is this evidence against the standard labor-demand story? The key identifying assump-

tion here is that employment trends would be the same in both states in the absence of treatment. Treatment

induces a deviation from this common trend, as illustrated in Ögure 5.2.1. Although the treatment and con-

trol states can di§er, this di§erence in captured by the state Öxed e§ect, which plays the same role as the

unobserved individual e§ect in (5.1.3).7

The common trends assumption can be investigated using data on multiple periods. In an update of their

7The common trends assumption can be applied to transformed data, for example,

E(log y0istjs; t) = s + t:

Note, however, that if there is a common trend in logs, there will not be one in levels and vice versa. Athey and Imbens

(2006) introduce a semi-parametric DD estimator that allows for common trends after an unknown transformation, which they

propose to use the data to estimate. Poterba, Venti and Wise (1995) and Meyer, Viscusi, and Durbin (1995) discuss DD-type

models for quantiles.
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Example: do earned income tax credits (EITC) reduce deaths of despair?

(National Conference of State Legislatures) 7 / 39
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Difference-in-Differences (DID) for causal effect

I Challenges from unmeasured confounding: states with EITC laws differ from
states without them in other ways that may be related to deaths of despair

I A before-after comparison of the same units can also be biased due to time trends
in the outcome even without the treatment

I DID uses both comparison, and is commonly used for estimating causal effects
with panel data

I Prototypical DID application: how do changes in state policies affect individual

- Did Missouri’s handgun purchaser licensing law affects firearm homicide rates?
- Did minimum wage laws change employment levels?
- Motivating application: do EITC reduce deaths of despair?
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Canonical DID

Parallel Trends: Absent treatment, treated and control would evolve over time in the
same way. (functional-form dependent)

t

Yt

1 2

Counterfactual

ATT

pre-post

E(Y2 − Y1 | G = trt)

E(Y2 − Y1 | G = ctl)

ATT

= DID

Control group

Before treatment

After treatment
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Potential outcomes and causal effect
Observed data

I Ai = 1 is the treated group and Ai = 0 is the control group

I For every unit i , we measure Yi1,Yi2 before and after the treated group adopts
the treatment

Potential outcomes

I Y
(1)
it potential outcome for unit i at time t if being treated, t = 1, 2

I Y
(0)
it potential outcome for unit i at time t if being untreated, t = 1, 2

I Consistency (SUTVA): Yi1 = Y
(0)
i1 and Yi2 = AiY

(1)
i2 + (1− Ai )Y

(0)
i2

I Parallel trends assumption (subscript i omitted):

E (Y
(0)
2 − Y

(0)
1 | A = 1) = E (Y

(0)
2 − Y

(0)
1 | A = 0)

I Causal effect: ATT = E (Y
(1)
2 − Y

(0)
2 | A = 1)
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Causal identification

Theorem
Under the consistency and parallel trends assumptions,

E (Y
(1)
2 − Y

(0)
2 | A = 1) = E (Y2 − Y1 | A = 1)− E (Y2 − Y1 | A = 0)

Proof.

E (Y
(1)
2 − Y

(0)
2 | A = 1)

= E
[
(Y

(1)
2 − Y

(0)
1 )− (Y

(0)
2 − Y

(0)
1 ) | A = 1

]
= E

[
Y

(1)
2 − Y

(0)
1 | A = 1]− E [Y

(0)
2 − Y

(0)
1 | A = 1

]
= E

[
Y

(1)
2 − Y

(0)
1 | A = 1]− E [Y

(0)
2 − Y

(0)
1 | A = 0

]
(parallel trends)

= E
[
Y2 − Y1 | A = 1]− E [Y2 − Y1 | A = 0] (consistency)
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Example in R
I Let’s apply the DID to study the effect of the minimum wage on log teen

employment.
I The dataset includes county-level data during 2003-2004.
I Treated group: states that increased their minimum wage in 2004
I Control group: states that did not increase their minimum wage during 2003-2004
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Example in R
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Remarks
I Parallel trends is a strong assumption

- Testing for pre-trends is a common practice but with caveats (Roth, 2022)
- Methods to relax parallel trends is an active research area (Rambachan and Roth,

2023; Ye et al., 2023)
- It is functional form dependent (log or not?)

I All assumptions are on the Y
(0)
it ’s, no restrictions on the treatment effect

I DID works under two different settings:
- Panel data: same units followed over time
- Repeated cross-sectional: a random (possibly overlap) sample of units at each time

I Estimation:
- Canonical DID estimator: (Ȳtrt,2 − Ȳtrt,1)− (Ȳctl ,2 − Ȳctl ,1)
- Static two-way fixed effects (TWFE) model:

- Panel data: Yit = α + δt + γAi + βAi I (t = 2) + εit
- Repeated cross-sectional data: YiTi = α + δTi + γAi + βAi I (Ti = 2) + εi

I Use cluster-robust variance estimator (robust to heteroscedasticity and correlation
within county), available from the clubSandwich R package.

- “CR2” is a type of small sample adjustment (analogous to HC adjustments) 14 / 39
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More general set up

Research on DID has been evolving rapidly during the past few years (Roth et al.,
2022). But we will cover the main setting and present the key takeaways.
We will cover:

I Observed (time-varying) covariates

I More than two time periods

I Staggered adoption: adopting treatment at different times

We won’t cover:

I Non-binary treatments (Callaway et al., 2024)
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No staggered adoption
If all treated groups adopt the treatment at the same time:

I Static TWFE model,

Ygit = βDgt + γTXgit + αg + ft + εgit

where Dgt is the indicator of being treated, Xgit are the observed time-varying
covariates, αg is the group indicator, ft is the time indicator.

I Dynamic TWFE model (event study),

Ygit =
∑

−k≤`≤−2

βlead
` I (t − Eg = `)+

∑
0≤`≤k̄

βlag
` I (t − Eg = `)+γTXgit+αg+ft+εgit

where Eg is when group g initiates the treatment (Eg =∞ if group g is never
treated), and for ` /∈ [−k, k̄] , usually bin them at −k and k̄ .
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Staggered adoption

However, estimators from TWFE models can be difficult to interpret under treatment
heterogeneity and staggered adoption (Goodman-Bacon, 2021; Sun and Abraham,
2021; Roth et al., 2022).

I TWFE estimator is a weighted average of group-year treatment effects and the
weights (especially the treatment effect for early adopters at a late period) can be
negative!

Recommendations:

- Use the static TWFE model only if confident in treatment effect homogeneity

- Use the dynamic TWFE model only if confident that there is heterogeneity only in
time since treatment

- Otherwise, consider using a “heterogeneity-robust” estimator, e.g., Callaway and
Sant’Anna (2021)
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Time-varying treatments
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Two treatments, randomized

1. Time 0: randomly assign A0 (1: treated; 0: control)

2. Time 1: randomly assign A1 (1: treated; 0: control) depending on A0.

3. Time 2: measure outcome Y

A0 A1 Y

(A0,A1) as a whole is randomized (why?), so

E [Y (a0, a1)] = E [Y | A0 = a0,A1 = a1].

19 / 39
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Two treatments, randomized (more complicated)
Study of the effect of antiretroviral therapy on a health score (Robins and Hernan,
2008): 32,000 HIV infected subjects followed for one year.

1. Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up. + Suppose A0 is randomly assigned.

2. Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control). + Suppose A1’s assignment depends only on A0 but not L1

3. Month 12: Measure the final health score Y .

A0 L1 A1 Y

U

U represents unobserved health status that affects both L1 and Y .

+ Can we identify E [Y (a0, a1)]? Yes, non-causal path is blocked and thus
E [Y (a0, a1)] = E [Y | A0 = a0,A1 = a1].

20 / 39
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Two treatments, with time-varying confounder

1. Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up. + Suppose A0 is randomly assigned.

2. Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control). + Suppose A1’s assignment depends on both A0 and L1

3. Month 12: Measure the final health score Y .

A0 L1 A1 Y

U

+ Can we identify E [Y (a0, a1)]?
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Dilemma

1. Not adjusting for L1, then A1 will be confounded

A0 L1 A1 Y

U

2. Adjusting for L1, opens a non-causal path from A0 to Y (collider bias)

A0 L1 A1 Y

U

I Need something more sophisticated.

22 / 39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References

Dilemma

1. Not adjusting for L1, then A1 will be confounded

A0 L1 A1 Y

U

2. Adjusting for L1, opens a non-causal path from A0 to Y (collider bias)

A0 L1 A1 Y

U

I Need something more sophisticated.

22 / 39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References

Dilemma

1. Not adjusting for L1, then A1 will be confounded

A0 L1 A1 Y

U

2. Adjusting for L1, opens a non-causal path from A0 to Y (collider bias)

A0 L1 A1 Y

U

I Need something more sophisticated.

22 / 39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References

Dilemma

1. Not adjusting for L1, then A1 will be confounded

A0 L1 A1 Y

U

2. Adjusting for L1, opens a non-causal path from A0 to Y (collider bias)

A0 L1 A1 Y

U

I Need something more sophisticated.
22 / 39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References

IPW: Removing A1’s dependency on L1

A0 L1 A1 Y

U

A0 L1 A1 Y

U

IPW: weight = 1/p(A1 | A0, L1)

+ After reweighting, EY (a0, a1) = Ew [Y | A0 = a0,A1 = a1].
IPW identification:

EY (a0, a1) = E
{

Y IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
/E
{

IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
.
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Exercise 1: data table

row n A0 L1 A1 E(Y | A0, L1, A1)

1 2000 0 1 0 200
2 6000 0 1 1 220
3 6000 0 0 0 50
4 2000 0 0 1 70
5 3000 1 1 0 130
6 9000 1 1 1 110
7 3000 1 0 0 230
8 1000 1 0 1 250
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Exercise 1: data table

row n A0 L1 A1 E(Y | A0, L1, A1) weight (1/p(A1 | A0, L1)) n-pseudo

1 2000 0 1 0 200 4 8000
2 6000 0 1 1 220 4/3 8000
3 6000 0 0 0 50 4/3 8000
4 2000 0 0 1 70 4 8000
5 3000 1 1 0 130 4 12000
6 9000 1 1 1 110 4/3 12000
7 3000 1 0 0 230 4/3 4000
8 1000 1 0 1 250 4 4000

Crude means in pseudo-study Ew [Y | A0 = a0,A1 = a1] = EY (a0, a1)

I EY (0, 0) = Ew [Y | A0 = 0,A1 = 0] = (200 ∗ 8000 + 50 ∗ 8000)/(8000 + 8000) = 125

I Finish calculating EY (0, 1),EY (1, 0),EY (1, 1). Calculate and interpret their contrast.

I How is the above results compared to crude means in the actual study
E(Y | A0 = a0,A1 = a1)?
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Rationale of the IPW procedure: summary

I We can pretend that the pseudo study is formed by two copies (“clones”) of each
person, one clone receives A1 = 0 and the other receives A1 = 1. So we can
pretend that to assign A1 we have flipped one same coin for everyone.

I Since we have also flipped one same coin for everyone to assign A0 (might be
different from the imaginary coin for assigning A1)

I Then, in the pseudo study, the subjects assigned to each of the four treatment
arms (A0,A1) = {(0, 0), (0, 1), (1, 0), (1, 1)} are exchangeable, so we can estimate
the counterfactual means EY (a0, a1) with the crude means in the pseudo study
Ew [Y | A0 = a0,A1 = a1].

26 / 39



Difference-in-Differences DID extensions Time-varying treatments Marginal structural model References

Bonus: stabilized IPW
I The IPW procedure we have just seen creates a pseudo-study in which

- has size equal to the double of the actual study size
- the crude mean in the pseudo-study Ew [Y | A0 = a0,A1 = a1] is the counterfactual

mean EY (a0, a1)
I There is a modification to IPW (called stablized IPW)

- has size equal to the actual study size
- the crude mean in the pseudo-study Esw [Y | A0 = a0,A1 = a1] is the counterfactual

mean EY (a0, a1)

A0 L1 A1 Y

U

stabilized weight = p(A1 | A0)/p(A1 | A0, L1)
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IPW: Identification

EY (a0, a1) = E
{

Y IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
/E
{

IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
.

+ It makes no difference to use the stabilized weight
P(A1 = a1 | A0 = a0)/P(A1 = a1 | A0 = a0, L1).
+ For some other estimands (like parameters of marginal structural models), there will
be differences.
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Standardization / g-formula
I With a bit more algebra, the IPW formula can be rewritten as

EY (a0, a1) = E
{

Y IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
/E
{

IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1)

}
= E

{
Y IA0=a0,A1=a1

P(A0 = a0)P(A1 = a1 | A0 = a0, L1)

}
= E

{
E[Y IA0=a0,A1=a1 | L1]

P(A0 = a0)P(A1 = a1 | A0 = a0, L1)

}
= E

{
E[Y | A0 = a0,A1 = a1, L1]P(A1 = a1,A0 = a0 | L1)

P(A0 = a0)P(A1 = a1 | A0 = a0, L1)

}
= E

{
E[Y | A0 = a0,A1 = a1, L1]P(A0 = a0 | L1)

P(A0 = a0)

}
=
∑
l1

E[Y | A0 = a0,A1 = a1, L1 = l1]P(L1 = l1 | A0 = a0).
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Standardization / g-formula: Intuition

1. Consider Y (a1) := Y (A0, a1).

A0 L1 A1 Y

U

A0 L1 A1 a1 Y (a1)

U

Within the stratum of (A0, L1), A1 is independent of Y (a1), so (why?)

E[Y (a1) | A0 = a0, L1 = l1] = E[Y | A0 = a0,A1 = a1, L1 = l1].

2. Because A0 is randomly assigned,

E[Y (a0, a1)] = E[Y (a1) | A0 = a0] =
∑
l1

E[Y (a1) | A0 = a0, L1 = l1]P(L1 = l1 | A0 = a0).
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Positivity

From the standardization / g-formula

EY (a0, a1) =
∑
l

E[Y | A1 = a1,A0 = a0, L1 = l1]P(L1 = l1 | A0 = a0),

to identify EY (a0, a1), we must have

∀l1 : P(L1 = l1 | A0 = a0) > 0 =⇒ data within (a0, a1, l1),

i.e.,

∀l1 : P(L1 = l1 | A0 = a0) > 0 =⇒ P(A1 = a1 | A0 = a0, L1 = l1) > 0.

+ This can also be seen in the weighting identification formula.
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Exercise 2: EY (a0, a1) =
∑

l1
E[Y | A0 = a0,A1 = a1, L1 = l1]P(L1 = l1 | A0 = a0)

row n A0 L1 A1 E(Y | A0, L1, A1)

1 2000 0 1 0 200
2 6000 0 1 1 220
3 6000 0 0 0 50
4 2000 0 0 1 70
5 3000 1 1 0 130
6 9000 1 1 1 110
7 3000 1 0 0 230
8 1000 1 0 1 250

I P(L1 = 1 | A0 = 0) = (2000 + 6000)/(2000 + 6000 + 6000 + 2000) = 0.5,
P(L1 = 1 | A0 = 1) = (3000 + 9000)/(3000 + 9000 + 3000 + 1000) = 0.75

I Finish calculating EY (0, 0),EY (0, 1),EY (1, 0),EY (1, 1). Calculate and interpret their
contrast.

I How is the above results compared to the IPW results?
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Generalization

1. Month 0: Assign therapy (A0 = 1: treated; A0 = 0: control) at the start of the
follow-up.
I Suppose Y (a0, a1) ⊥⊥ A0 | L0 for baseline covariates L0.

2. Month 6: Measure blood CD4 counts L1 and assign therapy (A1 = 1: treated;
A1 = 0: control).
I Suppose Y (a0, a1) ⊥⊥ A1 | L0,A0, L1.

3. Month 12: Measure the final health score Y .

L0 A0 L1 A1 Y

U
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Generalization: g-formula

L0 A0 L1 A1 Y

U

Under positivity and sequential randomization

Y (a0, a1) ⊥⊥ A0 | L0,

Y (a0, a1) ⊥⊥ A1 | L0,A0, L1,

EY (a0, a1) =
∑
l0

∑
l1

E[Y | A1 = a1,A0 = a0, L1 = l1, L0 = l0]

× P(L1 = l1 | A0 = a0, L0 = l0)P(L0 = l0).

I Extends to more time points.
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Generalization: IPW

Under positivity and sequential randomization

Y (a0, a1) ⊥⊥ A0 | L0,

Y (a0, a1) ⊥⊥ A1 | L0,A0, L1,

EY (a0, a1) =E
{

Y IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1, L0)P(A0 = a0 | L0)

}
/E
{

IA0=a0,A1=a1

P(A1 = a1 | A0 = a0, L1, L0)P(A0 = a0 | L0)

}
.

I We can also use stablized weights: P(A1|A0)P(A0)
P(A1|A0,L1,L0)P(A0|L0)

I Extends to more time points
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Marginal structural model
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Marginal structural (mean) model

Consider two treatments A0,A1.

I Marginal structural mean model is to postulate and fit

E[Y (a0, a1)] = f (a0, a1; θ).

For example, when A0,A1 are both binary:

I Saturated model

E[Y (a0, a1)] = α + β0a0 + β1a1 + γa0a1

I Main effect only
E[Y (a0, a1)] = α + β0a0 + β1a1
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Fitting model with IPW

If (A0,A1) is randomized, we have E[Y (a0, a1)] = E[Y | A0 = a0,A1 = a1], so the
model can be simply fitted with least squares.

Now under time-varying confounding, we can use IPW to reweigh data such that we
can treat the data as if it comes from a randomized experiment.

I To fit marginal structural mean model,

1. Estimate the propensity score P̂(a1 | a0, l1) (e.g., with logistic regression)
2. Compute weights ŵ = 1/P̂(A1 | A0, L1) or the stabilized weights

ŵs =

∑
l1

P̂(A1 | A0, l1)P̂(l1 | A0)

 /P̂(A1 | A0, l1).

3. Fit least squares using ŵ or ŵs as weights. I It makes a difference here.

I Statistical inference: bootstrap.
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Discussions: Static vs dynamic treatment regimes

I Static regime: everybody receives A0 = a0 and A1 = a1 regardless of the patient
characteristics,

- e.g. everybody receives ART the second time but not the first

I Dynamic regime: subject receives ART depending on the values of recorded
covariates

- E.g. nobody receives ART the first time and only those whose CD4 count are below
200 receive ART the second time.

I Today we have focused on the effects of static. The same idea applies to dynamic
regime, with some delicate differences.
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