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Motivation: smoking and lung cancer

I In Lecture 2, we discussed studying the causal effect of smoking on lung cancer
using observational data.

I The observational data contain rich covariate information: age, race, nativity,
rural versus urban residence, occupational exposures to dust and fumes, religion,
education, marital status, ...

I These variables are called confounders if they affect both treatment assignment
and the potential outcomes.

I Again, recall that we are interested in inferring

ATE := E [Y (1)− Y (0)].
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No unmeasured confounding

Suppose all confounders are measured, which we denote as X . In other words, people
who look comparable are comparable.
I This is called NUCA (no unmeasured confounding assumption) (or ‘conditional
exchangeability’).

A Y

X

causal effect

I NUCA requires the treatment is as good as randomly assigned in each stratum of X :

A ⊥⊥ Y (0),Y (1) | X .

+ “natural experiment” + This assumption cannot be falsified with data.
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Positivity

Recall that
ATE = EY (1)︸ ︷︷ ︸

everyone receives treatment

− EY (0)︸ ︷︷ ︸
everyone receives control

.

OVERALL POPULATION

TREAT ALL IN OVERALL 
POPULATION?

TREAT NONE IN OVERALL 
POPULATION?
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Positivity

Recall that
ATE = EY (1)︸ ︷︷ ︸

everyone receives treatment

− EY (0)︸ ︷︷ ︸
everyone receives control

.

+ Imagine there is a stratum of X = x where everyone only receives treatment
P(A = 1 | X = x) = 1, then we cannot know their outcomes under control; similarly, if
P(A = 0 | X = x) = 1, then we cannot know their outcomes under treatment.

I Positivity

∀x : P(X = x) > 0 =⇒ 0 < P(A = 1 | X ) < 1.
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Identification

I ATE can be identified from observational data under both NUCA and positivity.
I We focus on three most important identification formulae

1. g-computation / standardization
2. inverse probability weighting (IPW)
3. augmented inverse probability weighting (AIPW)

I Now that we are in observational studies, in general, we need correct models
(unlike in RCTs).
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g-computation

8 / 40



g-computation IPW estimation AIPW Propensity score References

Method 1: g-computation
+ Also known as: g-formula, standardization, outcome regression.

1. Within stratum x , treatment is randomly assigned by NUCA, so the average
treatment effect within stratum x is

ATE(x) := E[Y (1)− Y (0)|X = x ] = E[Y (1) | X = x ]− E[Y (0) | X = x ]

= E[Y | A = 1,X = x ]︸ ︷︷ ︸
µ1(x)

−E[Y | A = 0,X = x ]︸ ︷︷ ︸
µ0(x)

.

association = causation

2. Then we average over strata

ATE =
∑
x

ATE(x)P(X = x) =
∑
x

(µ1(x)− µ0(x))P(X = x).
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Method 1: g-computation

Formal derivation:

E[Y (a)] =
∑
x

E[Y (a) | X = x ]P(X = x) (law of total expectation)

=
∑
x

E[Y (a) | X = x ,A = a]P(X = x) (no unmeasured confounding)

=
∑
x

E[Y | X = x ,A = a]P(X = x) (consistency)

10 / 40
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Method 1: g-computation

ATE =
∑
x

ATE(x)P(X = x) =
∑
x

(µ1(x)− µ0(x))P(X = x).

+ When X is continuous, ATE =
∫

(µ1(x)− µ0(x))p(x)dx .
+ Regardless of the space of X , can also be written as

ATE = E[µ1(X )− µ0(X )] = E[E[Y | A = 1,X ]]− E[E[Y | A = 0,X ]].

+ Compare this with the naive contrast

E[Y | A = 1]−E[Y | A = 0] = E[E[Y | A = 1,X ] | A = 1]−E[E[Y | A = 0,X ] | A = 0].

11 / 40
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Method 1: g-computation

The idea can be extended to other (related) causal estimands:

I Average treatment effect among the treated (ATT):

ATT := E[Y (1)− Y (0) | A = 1] =
∑
x

{µ1(x)− µ0(x)}P(X = x | A = 1)

I Average treatment effect among the control:

E[Y (1)− Y (0) | A = 0] =
∑
x

{µ1(x)− µ0(x)}P(X = x | A = 0)

I Average treated effect in a target population (transported causal effect):∑
x

{µ1(x)− µ0(x)}P̃(X = x),

where P̃ is the distribution of X in the target population.
12 / 40
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A toy observational study: all binary variables

I Y = death (1: yes; 0: no)

I A = surgery (1: yes; 0: no)

I X = injury (1: severe; 0: non-severe)

I Naive contrast
E[Y | A = 1]− E[Y | A = 0] = 0.4− 0.6 = −0.2.

I Note: prob. of receiving surgery are

- 31% for non-severe injury
- 86% for severe injury

I We assume there is no confounder beyond X .
What is the causal effect of surgery on mortality?

X = 0 Outcome Y
0 1 Total

Treatment A 0 4 5 9
1 3 1 4

Total 7 6 13

X = 1 Outcome Y
0 1 Total

Treatment A 0 0 1 1
1 3 3 6

Total 3 4 7
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Quiz 1: g-computation in our toy example

I µ1(x = 0) = 1/4, µ0(x = 0) = 5/9

I µ1(x = 1) = 3/6, µ0(x = 1) = 1

ATE = ATE(0)P(X = 0) + ATE(1)P(X = 1)

= (E [Y (1)|X = 0]− E [Y (0)|X = 0])P(X = 0)

+ (E [Y (1)|X = 1]− E [Y (0)|X = 1])P(X = 1)

= (
1

4
− 5

9
)

13

20
+ (

3

6
− 1

1
)

7

20

= (−0.31)× 0.65 + (−0.5)× 0.35

= −0.37

X = 0 Outcome Y
0 1 Total

Treatment A 0 4 5 9
1 3 1 4

Total 7 6 13

X = 1 Outcome Y
0 1 Total

Treatment A 0 0 1 1
1 3 3 6

Total 3 4 7

14 / 40



g-computation IPW estimation AIPW Propensity score References

Quiz 1: g-computation in our toy example

I µ1(x = 0) = 1/4, µ0(x = 0) = 5/9

I µ1(x = 1) = 3/6, µ0(x = 1) = 1

ATE = ATE(0)P(X = 0) + ATE(1)P(X = 1)

= (E [Y (1)|X = 0]− E [Y (0)|X = 0])P(X = 0)

+ (E [Y (1)|X = 1]− E [Y (0)|X = 1])P(X = 1)

= (
1

4
− 5

9
)

13

20
+ (

3

6
− 1

1
)

7

20

= (−0.31)× 0.65 + (−0.5)× 0.35

= −0.37

X = 0 Outcome Y
0 1 Total

Treatment A 0 4 5 9
1 3 1 4

Total 7 6 13

X = 1 Outcome Y
0 1 Total

Treatment A 0 0 1 1
1 3 3 6

Total 3 4 7

14 / 40



g-computation IPW estimation AIPW Propensity score References

Method 2: Inverse probability weighting (IPW)
+ IPW assigns every unit a weight to create a pseudo-
population in which A no longer depends on X .

ATE = E
[

AY

π(X )
− (1− A)Y

1− π(X )

]
where π(x) = P(A = 1|X = x) is the propensity score.

 

X Xi 0.8
is

2

HiO

X x2 0.2 08
Ai Ai D

I This is simply a weighted average of the outcome, reweighed according to their
propensity of receiving their treatments.

I Suppose 5 patients have X = x , among those 1 received the treatment, 4 received the

control, i.e., P(A = 1 | X = x) = 0.2 and P(A = 0 | X = x) = 0.8. For EY (1), the

treated patient must stand in for the other 4 and has weight 1/0.2 = 5; for EY (0), the 4

control patients must stand in for the other 1 and each has weight 1/0.8 = 1.25.
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Method 2: Inverse probability weighting (IPW)

The IPTW identification formula

RE-CONSTRUCTED POPULATION OF TREATED PATIENTS

:   GHOST PATIENTS :   OBSERVED PATIENTS 

P (A = 1 | W = �) = 0.25 P (A = 1 | W = �) = 0.80

12 / 40
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Method 2: Inverse probability weighting (IPW)

I The IPW formula can be derived by repeated use of the law of total expectation:

E
[

AY

P(A = 1 | X )

]
= E

[
AY (1)

P(A = 1 | X )

]
(consistency)

= E
[
E{AY (1) | X}
P(A = 1 | X )

]
= E

[
E{A | X}E{Y (1) | X}

P(A = 1 | X )

]
(no unmeasured confounding)

= E [E{Y (1) | X}]
= EY (1).

Positivity: P(X = x) > 0 =⇒ P(A = 1 | X = x) > 0.
17 / 40
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Two seemingly different formula

EY (1) = E
[

AY

P(A = 1 | X )

]
︸ ︷︷ ︸

IPW

= E[E[Y | A = 1,X ]]︸ ︷︷ ︸
g-computation

.

+ But this identity (in population) is no coincidence:

E
[

AY

P(A = 1 | X )

]
= E

[
E
{

AY

P(A = 1 | X )
| X
}]

= E
[

E[AY | X ]

P(A = 1 | X )

]
= E

[
0 + P(A = 1 | X )E[Y | A = 1,X ]

P(A = 1 | X )

]
= E[E[Y | A = 1,X ]].

+ But it can make a difference when P(A = 1 | X ) and E[Y | A = 1,X ] are replaced by

estimates.

18 / 40
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Quiz 2: IPW in our toy example

I π(0) = P(A = 1 | X = 0)

I π(1) = P(A = 1 | X = 1)

ATE =
1

n

∑
i :Xi=0

AiYi

π(0)
− 1

n

∑
i :Xi=0

(1− Ai )Yi

1− π(0)

+
1

n

∑
i :Xi=1

AiYi

π(1)
− 1

n

∑
i :Xi=1

(1− Ai )Yi

1− π(1)

X = 0 Outcome Y
0 1 Total

Treatment A 0 4 5 9
1 3 1 4

Total 7 6 13

X = 1 Outcome Y
0 1 Total

Treatment A 0 0 1 1
1 3 3 6

Total 3 4 7
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∑
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n

∑
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1

n

∑
i :Xi=1

AiYi

6/7
− 1

n

∑
i :Xi=1

(1− Ai )Yi

1/7

=
1

20
(

13

4
× 1− 13

9
× 5 +

7

6
× 3− 7× 1)

= −0.37
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0 1 Total
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Estimation

causal inference ≈ causal identification + statistical inference.

G-computation and IPW give causal identification formulas. The remaining is statistics!
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Estimation with g-computation
G-computation

ATE =
∑
x

ATE(x)P(X = x) =
∑
x

(µ1(x)− µ0(x))P(X = x).

1. Fit an outcome model µ̂1(x) using data from the treated group

2. Fit another outcome model µ̂0(x) using data from the control group

3. The estimator is

ÂTEg :=
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi ).

I Advantages: more efficient; usually computationally stable
I Disadvantages: sensitive to model misspecification; potential danger of

extrapolation
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Estimation with IPW

IPW

ATE = E
[

AY

π(X )
− (1− A)Y

1− π(X )

]
, π(x) = P(A = 1|X = x).

1. Fit a propensity score model π̂(x) (e.g., logistic regression)

2. The IPW estimator (Horvitz–Thompson type)

ÂTE
HT

IPW :=
1

n

n∑
i=1

AiYi

π̂(Xi )
− 1

n

n∑
i=1

(1− Ai )Yi

1− π̂(Xi )
.

I Advantages: sometimes the propensity score may be easier to model

I Disadvantages: sensitive to model misspecification; less efficient; can be unstable
if some π̂(Xi ) are close to zero
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Estimation with IPW

Practical recommendations

I A usually more stable option is the stabilized, Hájek-type IPW estimator

ÂTE
Hájek

IPW =
1

n

n∑
i=1

AiYi

π̂(Xi )
/

{
1

n

n∑
i=1

Ai

π̂(Xi )

}
− 1

n

n∑
i=1

(1− Ai )Yi

1− π̂(Xi )
/

{
1

n

n∑
i=1

(1− Ai )

1− π̂(Xi )

}

I It is helpful to examine π̂(Xi ) separately for the treated and control groups. If
π̂(Xi ) can get very close to 0 or 1, we can either truncate π̂(Xi ) at 0.1 and 0.9, or
drop units with π̂(Xi ) outside [0.1, 0.9]. I Caution: population change
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Example: School meal program and body mass index
Chan et al. (2016) used a subsample of National Health and Nutrition Examination Survey
(NHANES) 2007-2008 to study whether participation in school meal programs led to an
increase in BMI for school children.

The dataset has the following key covariates: age, sex, race, ethnicity, family above 200%
federal poverty level, participation in the special supplemental nutrition program, participation
in food stamp program, childhood food security, any insurance, sex of the adult respondent,
age of the adult respondent.

Given the nature of observational studies, covariates are not balanced between the treated and
control groups. For example, children who receive treatment tend to come from families with
incomes below 200% of the federal poverty level and are more likely to participate in other food
programs.

A naive comparison (simple outcome mean difference) says that the treated children on

average have 0.53 higher BMI compared to the control children. 25 / 40
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Example: School meal program and body mass index
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Example: School meal program and body mass index

We apply the IPW and stabilized IPW, with the propensity scores truncated at (0, 1),
(0.01, 0.99), (0.05, 0.95), and (0.1, 0.9), with bootstrap SE:
$trunc0

est se

IPW -1.516 0.494

SIPW -0.156 0.254

$trunc.01

est se

IPW -1.516 0.468

SIPW -0.156 0.250

$trunc.05

est se

IPW -1.499 0.503

SIPW -0.152 0.255

$trunc.1

est se

IPW -0.713 0.406

SIPW -0.054 0.242

I The IPW: large SE, and is sensitive to the truncation values.
This is an example showing the instability of the IPW estimator

I Stabilized IPW: smaller SE and more stable
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AIPW
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Method 3: Augmented inverse probability weighting (AIPW)

+ Why not use both the outcome model and the propensity score model?

ATE = E
[
µ1(X )− µ0(X )︸ ︷︷ ︸

g-computation

+
A{Y − µ1(X )}

π(X )
− (1− A){Y − µ0(X )}

1− π(X )︸ ︷︷ ︸
augmentation, with mean zero

]
.

I Augmentation seeks to rectify any incorrect estimation of µ1(X ),µ0(X ) in
g-computation.

I Suppose µ̂1(x) overestimates µ1(x) = E (Y | A = a,X = x) throughout, then the
g-computation estimator overshoots the target but the augmentation term is
negative and brings it back down on target.
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Method 3: Augmented inverse probability weighting (AIPW)

AIPW can also be rewritten as

ATE = E
[

AY

π(X )
− (1− A)Y

1− π(X )︸ ︷︷ ︸
IPW

+

(
1− A

π(X )

)
µ1(X )−

(
1− 1− A

1− π(X )

)
µ0(X )︸ ︷︷ ︸

augmentation, with mean zero

]
.

I Augmentation seeks to rectify any incorrect estimation of π(X ) in IPW.

I Suppose Y is non-negative and π̂(x) underestimates π(x) = P(A = 1 | X = x)
throughout, then the IPW estimator overshoots the target but the augmentation
term is negative and brings it back down on target.
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Method 3: Double robustness of AIPW

Suppose µ̂a(x)
P−→ µ∗a(x) for a = 0, 1, and π̂(x)

P−→ π∗(x), where µ∗0(x),µ∗1(x),π∗(x)
are not necessarily equal to the true values µ0(x),µ1(x),π(x).

Then,

E
[
µ∗

1(X )− µ∗
0(X ) +

A{Y − µ∗
1(X )}

π∗(X )
− (1− A){Y − µ∗

0(X )}
1− π∗(X )

]
= E

[
µ∗

1(X )− µ∗
0(X ) +

π(X ){µ1(X )− µ∗
1(X )}

π∗(X )
− (1− π(X )){µ0(X )− µ∗

0(X )}
1− π∗(X )

]
(why?)

Double robustness: the above equation equals ATE if either
(i) µ∗1(x) = µ1(x) and µ∗0(x) = µ0(x), or
(ii) π∗(x) = π(x). + Two chances to get it right!
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Estimation after causal identification

AIPW

1. Fit an outcome model µ̂1(x) using data from the treated group

2. Fit another outcome model µ̂0(x) using data from the control group

3. Fit a propensity score model π̂(x)

4. The estimator is

ÂTEAIPW :=
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi ) +
1

n

n∑
i=1

Ai (Yi − µ̂1(Xi ))

π̂(Xi )
− 1

n

n∑
i=1

(1− Ai )(Yi − µ̂0(Xi ))

1− π̂(Xi )

I Advantages: doubly robust; more efficient and stable compared to IPW; can be
used in combination with machine learning algorithms

I Disadvantages: still biased if all models are wrong; can be unstable if some π̂(Xi )
are close to zero
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ÂTEAIPW :=
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi ) +
1

n

n∑
i=1

Ai (Yi − µ̂1(Xi ))

π̂(Xi )
− 1

n

n∑
i=1

(1− Ai )(Yi − µ̂0(Xi ))

1− π̂(Xi )

I Advantages: doubly robust; more efficient and stable compared to IPW; can be
used in combination with machine learning algorithms

I Disadvantages: still biased if all models are wrong; can be unstable if some π̂(Xi )
are close to zero

32 / 40



g-computation IPW estimation AIPW Propensity score References

Robust covariate adjustment for RCT
Recall that in an RCT, we can use baseline covariates to improve efficiency.

ÂTEAIPW =
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi ) +
1

n

n∑
i=1

Ai (Yi − µ̂1(Xi ))

π̂(Xi )
− 1

n

n∑
i=1

(1− Ai )(Yi − µ̂0(Xi ))

1− π̂(Xi )

=
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi ) +
1

n

∑
i :Ai=1

Yi − µ̂1(Xi )

π̂(Xi )
− 1

n

∑
i :Ai=0

(Yi − µ̂0(Xi ))

1− π̂(Xi )
.

+ Replacing π̂(Xi ) by n1/n, we get I This ensures consistency (why?)

ÂTEAIPW =
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi ) +
1

n1

∑
i :Ai=1

(Yi − µ̂1(Xi ))− 1

n0

∑
i :Ai=0

(Yi − µ̂0(Xi ))

= Ȳ1 − Ȳ0 −
{

1

n1

∑
i :Ai=1

µ̂1(Xi )−
1

n0

∑
i :Ai=0

µ̂0(Xi )

}
︸ ︷︷ ︸

=0 for logistic, Poisson, etc.

+

{
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi )

}
︸ ︷︷ ︸

g-computation

.
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{

1

n1

∑
i :Ai=1

µ̂1(Xi )−
1

n0

∑
i :Ai=0

µ̂0(Xi )

}
︸ ︷︷ ︸

=0 for logistic, Poisson, etc.

+

{
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi )

}
︸ ︷︷ ︸

g-computation

.

33 / 40



g-computation IPW estimation AIPW Propensity score References

AIPW in our toy example1

I µ1(x = 0) = 1/4, µ0(x = 0) = 5/9

I µ1(x = 1) = 3/6, µ0(x = 1) = 1

I P(A = 1|X = 0) = 4/13

I P(A = 1|X = 1) = 6/7

ATE =
1

n

∑
i :Xi=0

Ai (Yi − 1/4)

4/13

−
1

n

∑
i :Xi=0

(1− Ai )(Yi − 5/9)

9/13

+
1

n

∑
i :Xi=1

Ai (Yi − 3/6)

6/7

−
1

n

∑
i :Xi=1

(1− Ai )(Yi − 1)

1/7

+
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi )

= 0 +
1

n

n∑
i=1

µ̂1(Xi )−
1

n

n∑
i=1

µ̂0(Xi ) = −0.37

X = 0 Outcome Y
0 1 Total

Treatment A 0 4 5 9
1 3 1 4

Total 7 6 13

X = 1 Outcome Y
0 1 Total

Treatment A 0 0 1 1
1 3 3 6

Total 3 4 7

1When X is discrete and π̂(x) ∈ (0, 1) for all x , all three estimators are equal.
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Example: School meal program and body mass index
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Example: School meal program and body mass index

Comparing all the estimators (bootstrap SE, no propensity score truncation):

reg IPW SIPW DR

est -0.017 -1.516 -0.156 -0.019

se 0.231 0.513 0.256 0.235

Comparing all the estimators (bootstrap SE, propensity score truncated at [0.1, 0.9]):

reg IPW SIPW DR

est -0.017 -0.713 -0.054 -0.043

se 0.226 0.418 0.239 0.235
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Statistical inference

1. When µ̂0(x), µ̂1(x), π̂(x) are estimated using parametric models:

I Bootstrap for estimating standard errors, computing confidence intervals, and
hypothesis testing

- The lazy statistician’s method
- Sample with replacement to create a new sample of the same size as the study

sample, estimate the effect estimate in that sample, repeat many (e.g., 1000) times,
find 2.5 and 97.5 percentiles of the 1000 estimates as the 95% confidence interval

I Sandwich variance estimator (implemented in the CausalGAM package in R)

2. When µ̂0(x), µ̂1(x), π̂(x) are estimated using machine learning algorithms (like
random forest):
I Use AIPW + cross fitting (implemented in the AIPW package in R)
I Influence-function based variance estimator

+ The primary consideration is to choose an approach such that µ̂1(x), µ̂0(x), π̂(x)
are close to the truth.
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Propensity score
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The central role of the propensity score

I Under the NUCA A ⊥⊥ Y (0),Y (1) | X , we have introduced the propensity score
π(X ) = P(A = 1 | X ), which is the probability of receiving treatment given
covariate value X .

I To remove confounding, we need to adjust for covariates X (e.g., age, race, ...)

I Key observation: π(X ) is a scalar and coarsest summary of the observed
covariates X that can make the treated and control groups comparable
(Rosenbaum and Rubin, 1983)

A ⊥⊥ Y (0),Y (1) | π(X ).

I In practice, we estimate π(X ), commonly by fitting a logistic regression of Ai on
Xi . Denote the estimated propensity score as π̂(X ).
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The central role of the propensity score

Other approaches motivated by A ⊥⊥ Y (0),Y (1) | π(X ).

I Subclassification (propensity score stratification): We stratify by the estimated
propensity score π̂(X ), e.g. with five subclasses. Within each subclass, the true
propensity score π(X ) is approximately constant. We can estimate the outcome
mean difference within each stratum and combine them by a weighted average.

I g-computation (outcome regression) with the propensity score as a covariate: the
above formula shows that we can just use π(X ) as a “derived covariate”.

I Propensity score matching
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