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using observational data.
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Motivation: smoking and lung cancer

» In Lecture 2, we discussed studying the causal effect of smoking on lung cancer
using observational data.

> The observational data contain rich covariate information: age, race, nativity,
rural versus urban residence, occupational exposures to dust and fumes, religion,
education, marital status, ...

» These variables are called confounders if they affect both treatment assignment
and the potential outcomes.

> Again, recall that we are interested in inferring

|ATE := E[Y(1) - Y(0)].|
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Suppose all confounders are measured, which we denote as X. In other words, people
who look comparable are comparable.
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No unmeasured confounding

Suppose all confounders are measured, which we denote as X. In other words, people
who look comparable are comparable.

» This is called NUCA (no unmeasured confounding assumption) (or ‘conditional
exchangeability’).

» NUCA requires the treatment is as good as randomly assigned in each stratum of X:

AL Y(0),Y(1)]X]

= “natural experiment” & This assumption cannot be falsified with data.
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Positivity

Recall that

ATE = E Y(1) - E Y (0)
—— ——

everyone receives treatment everyone receives control

OVERALL POPULATION
° o : T o
°
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TREAT ALL IN OVERALL TREAT NONE IN OVERALL
POPULATION? POPULATION?

References

5/40



Positivity

Recall that
ATE = EY(1) — E Y(0)
—— ——
everyone receives treatment everyone receives control
1= |magine there is a stratum of X = x where everyone only receives treatment
P(A=1]| X = x) =1, then we cannot know their outcomes under control; similarly, if
P(A=0] X = x) =1, then we cannot know their outcomes under treatment.
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Positivity
Recall that

ATE = E Y(1) - E Y(0)
S—— SN——
everyone receives treatment everyone receives control

1= |magine there is a stratum of X = x where everyone only receives treatment
P(A=1]| X = x) =1, then we cannot know their outcomes under control; similarly, if
P(A=0] X = x) =1, then we cannot know their outcomes under treatment.

» Positivity

¥x:P(X=x)>0 = 0<P(A=1|X)<1]
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Identification

» ATE can be identified from observational data under both NUCA and positivity.
» We focus on three most important identification formulae

1. g-computation / standardization
2. inverse probability weighting (IPW)
3. augmented inverse probability weighting (AIPW)

> Now that we are in observational studies, in general, we need correct models
(unlike in RCTs).
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Method 1: g-computation

1z Also known as: g-formula, standardization, outcome regression.
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Method 1: g-computation

i Also known as: g-formula, standardization, outcome regression.

1. Within stratum x, treatment is randomly assigned by NUCA, so the average
treatment effect within stratum x is

ATE(x) := E[Y(1) — Y(0)|X = x] = E[Y(1) | X = x] — E[Y(0) | X = X]
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Method 1: g-computation

i Also known as: g-formula, standardization, outcome regression.

1. Within stratum x, treatment is randomly assigned by NUCA, so the average

treatment effect within stratum x is
ATE(x) :=E[Y(1) — Y(0)|X = x] = E[Y(1) | X = x] —E[Y(0) | X = x]

—E[Y|A=1X=x]-E[Y|A=0X =x].

pa(x) po(x)

association = causation
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Method 1: g-computation

i Also known as: g-formula, standardization, outcome regression.

1. Within stratum x, treatment is randomly assigned by NUCA, so the average
treatment effect within stratum x is

ATE(x) := E[Y(1) — Y(0)|X = x] = E[Y(1) | X = x] — E[Y(0) | X = X]
—E[Y|A=1X=x]-E[Y|A=0X =x].

pa(x) po(x)

association = causation
2. Then we average over strata

ATE = ST ATE(x)P(X = x) = 3 (11(x) — o(x))P(X = x).

X

9/40



g-computation IPW estimation AIPW Propensity score References
00e0000 000000 0000000 0000000000 000

Method 1: g-computation

Formal derivation:

E[Y(a)] = ZE[Y(a) | X = x]P(X = x) (law of total expectation)
= ZE[Y(a) | X =x,A=a]P(X = x) (no unmeasured confounding)

= ZE[Y | X =x,A=a]lP(X =x) (consistency)
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Method 1: g-computation

ATE = ST ATE(x)P(X = x) = 3 (1(x) — o(x))P(X = x).
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Method 1: g-computation

ATE = ST ATE(x)P(X = x) = 3 (1(x) — o(x))P(X = x).

X

w When X is continuous, ATE = [(u1(x) — po(x))p(x) dx.
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Method 1: g-computation

ATE = 3T ATE(x)P(X = x) = 3 (11(x) — o (x))P(X = x).

X

w When X is continuous, ATE = [(u1(x) — po(x))p(x) dx.
15 Regardless of the space of X, can also be written as

ATE = E[1(X) — uo(X)] = E[E[Y | A= 1, X]] — E[E[Y | A= 0, X]].
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Method 1: g-computation

ATE = 3T ATE(x)P(X = x) = 3 (11(x) — o (x))P(X = x).

X

w When X is continuous, ATE = [(u1(x) — po(x))p(x) dx.
15 Regardless of the space of X, can also be written as

ATE = E[u1(X) — uo(X)] = E[E[Y | A= 1,X]] - E[E[Y | A =0, X]].
1 Compare this with the naive contrast

E[Y |A=1]-E[Y |A=0]=E[E[Y |A=1X]|A=1]-E[E[Y |A=0X]| A=0].
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Method 1: g-computation

The idea can be extended to other (related) causal estimands:
» Average treatment effect among the treated (ATT):

ATT = B[Y(1) = Y(0)| A= 1 = 3 {m(x) — na()}P(X = x | A=1)
» Average treatment effect among the control:
E[Y(1)-Y(0)[A=0]= Z{ul (x)}P(X =x[A=0)

» Average treated effect in a target populatlon (transported causal effect):

Z{ul (x)}P(X = x),

where P is the distribution of X in the target population.
12/40
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A toy observational study: all binary variables

vV v vy

Y = death (1: yes; 0: no)
A = surgery (1: yes; 0: no)
X = injury (1: severe; 0: non-severe)

Naive contrast
E[Y|A=1]-E[Y|A=0]=04-0.6=-0.2.

Note: prob. of receiving surgery are

- 31% for non-severe injury
- 86% for severe injury

We assume there is no confounder beyond X.
What is the causal effect of surgery on mortality?

Propensity score

References

X =0 QOutcome Y
0 1 Total
Treatment A 0 4 5 9
1 3 1 4
Total | 7 6 | 13
X=1 QOutcome Y
0 1 Total
Treatment A 0 0 1 1
1 3 3 6
Total ‘ 3 4 7
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Quiz 1: g-computation in our toy example

X=0 Outcome Y
0 1 Total
Treatment A 0 ‘ 4 5 9
1 3 1 4
ATE = ATE(0)P(X = 0) + ATE(1)P(X =1)
Total | 7 6 | 13
= (E[Y(1)|X =0] — E[Y(0)|X = 0]) P(X = 0)
+(E[Y(1)|X =1] - E[Y(0)|X =1]) P(X =1)
X=1 Outcome Y
0 1 Total
Treatment A 0 0 1 1
1 3 3 6
Total ‘ 3 4 ‘ 7
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Quiz 1: g-computation in our toy example

> ui(x=0)=1/4, po(x =0)=5/9
b a(x=1) = 3/6, po(x =1) =1

ATE = ATE(0)P(X = 0) + ATE(1)P(X = 1)
= (E[Y(1)IX = 0] - E[Y(0)|X = 0]) P(X = 0)
+wwuw=u—ﬂwwxzmmxzn

1 5,13 1.7
’(1_6)20 7_1 20

= (—0.31) x 0.65 + (—0.5) x 0.35
=037

Pmpcnswt score References

X=0 Outcome Y
0 1 Total
Treatment A 0 4 5 9
1 3 1 4
Total | 7 6 13
X=1 Outcome Y
0 1 Total
Treatment A 0 0 1 1
1 3 3 6
Total ‘ 3 4 7
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Method 2: Inverse probability weighting (IPW)

1 |PW assigns every unit a weight to create a pseudo-
population in which A no longer depends on X.

References
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Method 2: Inverse probability weighting (IPW)

1 |PW assigns every unit a weight to create a pseudo-
population in which A no longer depends on X. N

AY  (1-AY

ATE=E 1700 7 1=

e %

where 7(x) = P(A = 1|X = x) is the propensity score.

Propensity score

[e]e]e}

References

(24
Ar=t

0.2

Aco

0|
1

og
Ai=D

15 /40



g-computation IPW estimation AIPW Propensity score References
0000000 @00000 0000000 0000000000 000

Method 2: Inverse probability weighting (IPW)

1 |PW assigns every unit a weight to create a pseudo-

population in which A no longer depends on X. N X3 o
Ar=1 Ao
ATE - & AY B (1-AY
71'(X) 1- 7T(X) Xz *a o[ of
i gt|  AieD

where 7(x) = P(A = 1|X = x) is the propensity score.
» This is simply a weighted average of the outcome, reweighed according to their
propensity of receiving their treatments.
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Method 2: Inverse probability weighting (IPW)

1 |PW assigns every unit a weight to create a pseudo-

population in which A no longer depends on X. K X 0. o
Ar=1 Ao
AY 1-A)Y
ATE = E — ( )
m(X) 1-=(X) s %o | of
pe|  meD

where 7(x) = P(A = 1|X = x) is the propensity score.

» This is simply a weighted average of the outcome, reweighed according to their
propensity of receiving their treatments.

P Suppose b patients have X = x, among those 1 received the treatment, 4 received the
control, i.e., PA=1|X=x)=0.2and P(A=0| X = x) =0.8. For E Y(1), the
treated patient must stand in for the other 4 and has weight 1/0.2 = 5; for E Y(0), the 4
control patients must stand in for the other 1 and each has weight 1/0.8 = 1.25.
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Method 2: Inverse probability weighting (IPW)

RE-CONSTRUCTED POPULATION OF TREATED PATIENTS

(o o %o

O °
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o ®
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@ % : 0BSERVEDPATIENTS (O Yy : GHOSTPATIENTS

PA=1|W=%)=025 PA=1|W =@) =080
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Method 2: Inverse probability weighting (IPW)

» The IPW formula can be derived by repeated use of the law of total expectation:

AY
= s 2]

= P(Ajmz/(ll)|X)] (consistency)

[E{AY(1) | X}]
| P(A=1]X)
[E{A [ X}E{Y() | X}
L P(A=1]X)
=E[E{Y(1) | X}]
—EY(1).

=E

=E

} (no unmeasured confounding)

Positivity: P(X =x) >0 = P(A=1|X=x)>0.
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Two seemingly different formula

AY
P(A=1]X)
IPW

Ewn:E[ ]:Emwyészy

g-computation
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Two seemingly different formula

AY
P(A=1]X)
IPW

Ewn:E[ ]:EEW!ﬁ:LML

g-computation

v But this identity (in population) is no coincidence:

=@z = Blras x| = F resiix)

g [0HPA=1IX)E[Y [A=1X]
- [ P(A=1]X)
=E[E[Y | A=1,X]].

18/40
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Two seemingly different formula

AY
P(A=1]|X)

IPW

EY(l):IE[ ]:E[E[Y!é:l,x]].

g-computation

v But this identity (in population) is no coincidence:

=@z = Blras x| = F resiix)

:E[O+P(A:1|X)E[YIA:1,X]

P(A=1]|X)
=E[E[Y | A=1,X]].

> But it can make a difference when P(A=1| X) and E[Y | A= 1, X] are replaced by

estimates.

References
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Quiz 2: IPW in our toy example

> m(0)=P(A=1|X=0)
> r(1)=PA=1|X=1)

1« AY 1« (1—A)Y
ATE = - _ =
i;XZ,-EO w(0) n i;XZ,-;0 1—m(0)
1 AiYi 1 1-A)Y:
NS w(1) n P 1—m(1)

AIPW Propensity score
X=0 QOutcome Y
0 1 Total
Treatment A 0 4 5 9
1 3 1 4
Total | 7 6 | 13
X=1 Outcome Y
0 1 Total
Treatment A 0 0 1 1
1 3 3 6
Total ‘ 3 4 7

References
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Quiz 2: IPW in our toy example

> 71'(0) = P(A =1 | X = O) = 4/13 X=0 ‘ OOUtcomle Y ‘ Total
> m(l)=P(A=1|X=1)=6/7 Treatment A 0 4 5 9
N
1 AY: 1 (1-A)Y:
ATE = — - =
Z: 4/13 n :ZO 9/13 Total ‘ 7 6 ‘ 13
1 AYi 1 (1-A)Y;:
n 2o 81 e 1T __ —
s 3 . — ‘ utcome ‘
_ 113 13 ’ —7x1 0 1 Total
0% 9 x5+ 6 x 3 x 1)
- Treatment A 0 0 1 1
=—-0.37 1 ‘ 3 3 6
Total | 3 4 | 7
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Estimation

causal inference ~ causal identification -+ statistical inference.

G-computation and IPW give causal identification formulas. The remaining is statistics!

21/40
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Estimation with g-computation
G-computation

ATE = ZATE(X Z(Ml x) = po(x))P(X = x).
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Estimation with g-computation
G-computation

ATE = Z ATE(x)P

Z(Ml x) — po(x))P(X

1. Fit an outcome model ji1(x) using data from the treated group
2. Fit another outcome model fig(x) using data from the control group

3. The estimator is

n
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Estimation with g-computation
G-computation

ATE = ZATE(X Z(ul x) = po(x))P(X = x).

1. Fit an outcome model ji1(x) using data from the treated group
2. Fit another outcome model fig(x) using data from the control group
3. The estimator is

o 1 n R 1 n R
ATEg = =% fin(Xi) — — > jio(Xi)
i=1

i=1

» Advantages: more efficient; usually computationally stable
» Disadvantages: sensitive to model misspecification; potential danger of

extrapolation
22/40
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Estimation with IPW

IPW

estimation
00®0000

AIPW
0000000000

ATE =E

AY  (1-A)Y

7X)  1-n(X)

(x) =

Propensity score
[e]e]e}

P(A =1|X = x).

References
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Estimation with IPW
IPW

ATE:E[

AY (1—A)Y}
X) 1-x(X)]"

(x) =

P(A =1|X = x).

1. Fit a propensity score model 7(x) (e.g., logistic regression)
2. The IPW estimator (Horvitz—Thompson type)

——HT 1
ATE|PW = ;

n

2.

i=1

AiY;
7(Xi)

1

n

n

D

(1-A)Y;
1-7(X)
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Estimation with IPW
IPW

ATE:E[

AY (1—A)Y}
X) 1-x(X)]"

(x) =

P(A =1|X = x).

1. Fit a propensity score model 7(x) (e.g., logistic regression)
2. The IPW estimator (Horvitz—Thompson type)

——HT 1
ATE|PW = ;

n

2.

i=1

AiY;
7(Xi)

1

n

n

D

1-7(X)

(1-A)Y;

> Advantages: sometimes the propensity score may be easier to model

» Disadvantages: sensitive to model misspecification; less efficient; can be unstable

if some 7(X;) are close to zero

23/40
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Estimation with IPW

Practical recommendations

» A usually more stable option is the stabilized, Hajek-type IPW estimator

=Mk 1 AY 1 A 1 (1
ATEipw _niz;%(x,-) {niz;?r(x,-)}_ Z1—7r><) { Zl—w }

» It is helpful to examine 7(X;) separately for the treated and control groups. If
7(X;) can get very close to 0 or 1, we can either truncate 7(X;) at 0.1 and 0.9, or
drop units with 7(X;) outside [0.1, 0.9]. » Caution: population change

24 /40



estimation
0000000

Example: School meal program and body mass index
Chan et al. (2016) used a subsample of National Health and Nutrition Examination Survey
(NHANES) 2007-2008 to study whether participation in school meal programs led to an
increase in BMI for school children.

The dataset has the following key covariates: age, sex, race, ethnicity, family above 200%
federal poverty level, participation in the special supplemental nutrition program, participation
in food stamp program, childhood food security, any insurance, sex of the adult respondent,
age of the adult respondent.

Given the nature of observational studies, covariates are not balanced between the treated and
control groups. For example, children who receive treatment tend to come from families with
incomes below 200% of the federal poverty level and are more likely to participate in other food
programs.

A naive comparison (simple outcome mean difference) says that the treated children on
average have 0.53 higher BMI compared to the control children. 25/40
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Example: School meal program and body mass index

Estimated propensity scores for the treated (gray) and control (white)

References
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Example: School meal program and body mass index

We apply the IPW and stabilized IPW, with the propensity scores truncated at (0, 1),
(0.01, 0.99), (0.05, 0.95), and (0.1, 0.9), with bootstrap SE:

$truncoO $trunc.01 $trunc.05 $trunc.1
est se est se est se est se
IPW -1.516 0.494 1IPW -1.516 0.468 IPW -1.499 0.503 1IPW -0.713 0.406

SIPW -0.156 0.254 SIPW -0.156 0.250 SIPW -0.152 0.255 SIPW -0.054 0.242

» The IPW: large SE, and is sensitive to the truncation values.
This is an example showing the instability of the IPW estimator

» Stabilized IPW: smaller SE and more stable

27 /40
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AIPW
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Method 3: Augmented inverse probability weighting (AIPW)

1 \Why not use both the outcome model and the propensity score model?

ATE = E | ju(X) — po(X)
—_—

g-computation

29 /40
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Method 3: Augmented inverse probability weighting (AIPW)

1 \Why not use both the outcome model and the propensity score model?

ALY — (X)) (1— ALY — (X))
(X) 1—7(X)

TV
augmentation, with mean zero

ATE =E | pin(X) — po(X) +
—_—

g-computation

J/
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Method 3: Augmented inverse probability weighting (AIPW)

1 \Why not use both the outcome model and the propensity score model?

B ALY — i (X)} (1 =AY = (X))}
ATE = E | p1(X) — po(X) + (X) B 1—7r(X)0

g-computation -~
augmentation, with mean zero

> Augmentation seeks to rectify any incorrect estimation of p1(X), po(X) in
g-computation.

» Suppose [i1(x) overestimates pi1(x) = E(Y | A= a, X = x) throughout, then the
g-computation estimator overshoots the target but the augmentation term is
negative and brings it back down on target.

29 /40
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Method 3: Augmented inverse probability weighting (AIPW)

AIPW can also be rewritten as

=] B0~ * (1 <00) 1m0~ (1 g ) e

IPW augmentation, with mean zero

» Augmentation seeks to rectify any incorrect estimation of 7(X) in IPW.

» Suppose Y is non-negative and 7(x) underestimates 7(x) = P(A=1| X = x)
throughout, then the IPW estimator overshoots the target but the augmentation
term is negative and brings it back down on target.

30/40
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Method 3: Double robustness of AIPW

31/40
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Method 3: Double robustness of AIPW

Suppose fia(x) 2> 1i%(x) for a = 0,1, and 7(x) 2> 7*(x), where 1(x), 123 (x), 7 (x)
are not necessarily equal to the true values po(x), u1(x), 7(x).
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Method 3: Double robustness of AIPW

Suppose fia(x) 2> 1i%(x) for a = 0,1, and 7(x) 2> 7*(x), where 1(x), 123 (x), 7 (x)
are not necessarily equal to the true values po(x), u1(x), 7(x).

Then,
B 1300 - 00 + 2L LE D pst)
S PP 10 KL RIS P EE)
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Method 3: Double robustness of AIPW

Suppose fia(x) 2> 1i%(x) for a = 0,1, and 7(x) 2> 7*(x), where 1(x), 123 (x), 7 (x)
are not necessarily equal to the true values 1i9(x), p11(x), 7(x).

Then,
B 1300 - 00 + 2L LE D pst)
S PP 10 KL RIS P EE)

Double robustness: the above equation equals ATE if either
(1) pi(x) = pa(x) and pg(x) = po(x), or
(ii) 7 (x) = 7(x). 1= Two chances to get it right!
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Estimation after causal identification
AIPW

1. Fit an outcome model ji1(x) using data from the treated group
. Fit another outcome model ig(x) using data from the control group

2
3. Fit a propensity score model 7(x)
4. The estimator is

n n

mNPW = % Zﬁ1(X;) — % Zﬁo(Xi) + % Z A’(%%E)g;(xf)) _ % Z (1- A{)E);(;(IZL)\O(XI))

32/40



AIPW
0000®00000

Estimation after causal identification
AIPW

1. Fit an outcome model ji1(x) using data from the treated group
. Fit another outcome model ig(x) using data from the control group

2
3. Fit a propensity score model 7(x)
4. The estimator is

n

ATEapw ::%iﬁl(xi)_%iﬁo( +%ZA'Y7“1(X)) Z(lf 1_\; XA)LO(X))

i=1 i=1 i=1

» Advantages: doubly robust; more efficient and stable compared to IPW; can be
used in combination with machine learning algorithms

» Disadvantages: still biased if all models are wrong; can be unstable if some 7(X;)
are close to zero
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Robust covariate ad ustment for RCT

Recall that in an , We can use baseline covariates to improve efficiency.
— 1 ALY = (X)) 1~ (1= A)(Y; = fio(X)
ATEnpw = — S S AP A
= 53700~ 1S () + 5 3 AL D)2y GRS
1~ - I~ 1 Yi—m(X) 1 (Yi — Ho(X1)
= - Xi) — — Xi - — = v~  — — =< v -
n 4 (%) n 4 fio(Xi) + n Z 7T(Xi) n Z 1-7(X)
i=1 i=1 i:Ai=1 i:Ai=0
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Robust covariate ad ustment for RCT _ _ o
Recall that in an , We can use baseline covariates to improve efficiency.

— 1Y 1 1N ALY — (X)) 1n (L= A)(Y; = fio(X)
ATE == mX)—=> mX)+=) ———r = o '
APW = ;'ul( ) n ;MO( )+ n ; 7(Xi) n ; 1—7(X)

1~ - I~ 1 Yi—m(X) 1 (Yi — Ho(X1)
= - Xi) — — Xi - — = v~  — — — = o
n Zﬂl( ) n Z#O( )+ n Z 7T(Xi) n Z 1-7(X)
i=1 i=1 i:Ai=1 i:Ai=0
1= Replacing 7(X;) by n1/n, we get » This ensures consistency (why?)
— 1< 1< 1
ATEapw = = Y i1(X0) = = > fio(Xi) + — > (Vi — (X)) — — Z(Y Lo (Xi))
i3 L M a1 0 j.A=0
_ 1 R
=Y1—-Yo— {ZM(X - Fo(X } { Zul X)—*Zuo }
irAi=1 0 i:A;=0
=0 for logistic, Poisson, etc. g-computation
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g-computation IPW

AIPW in our toy example!
> pa(x =0) =1/4, po(x =0) =5/9
> pa(x=1)=3/6, po(x =1) =1
> P(A=1X =0) =4/13
> PA=1X=1)=6/7

estimation

AIPW
000000@000

Propensity score

References

)(Yi—1)

ATEZ L Ai(Yi—1/4) 1 3 (1—Aj)(Yi—5/9)
n. n.
i:X;=0 i:X;=0

+1 Ai(Yi*3/6)7lz (1-A
Mixi=1 M ixi=1
1 ¢

+ = m(X) = = > (X))
=t =t

X=0 QOutcome Y
0 1 Total
Treatment A 0 4 5 9
1 3 1 4
Total | 7 6 | 13
X=1 QOutcome Y
0 1 Total
Treatment A 0 0 1 1
1 3 3 6
Total | 3 4 | 7

'When X is discrete and 7(x) € (0, 1) for all x, all three estimators are equal.
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AIPW in our toy example!
> pa(x =0) =1/4, po(x =0) =5/9
> pa(x=1)=3/6, po(x =1) =1
> P(A=1X =0) =4/13
> PA=1X=1)=6/7

ATEZ L Ai(Yi —1/4) _1 3 (1-A

ni:X,-:O 4/13 IX =0
1 A —-3/6 1 1-A —

L1 i(Yi : /6) Z ( 1 7
ni:X,':l / IX =1 /
1¢ ¢

+ = m(X) = = > (X))
= =

:o+%im(><)——2uo<)<)——o37

i=1

1When X is discrete and m(x) €

(Yi —5/9)
9/13

AlIPW Propensity score References
0O00000e000
X=0 Outcome Y
0 1 Total
Treatment A 0 4 5 9
1 3 1 4
Total | 7 6 | 13
1)
X=1 Outcome Y
0 1 Total
Treatment A 0 0 1 1
1 3 3 6
Total | 3 4 | 7

(0,1) for all x, all three estimators are equal.
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Example: School meal program and body mass index

Estimated propensity scores for the treated (gray) and control (white)

References
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Example: School meal program and body mass index

Comparing all the estimators (bootstrap SE, no propensity score truncation):

reg IPW  SIPW DR
est -0.017 -1.516 -0.156 -0.019
se 0.231 0.513 0.256 0.235

Comparing all the estimators (bootstrap SE, propensity score truncated at [0.1, 0.9]):

reg IPW  SIPW DR
est -0.017 -0.713 -0.054 -0.043
se 0.226 0.418 0.239 0.235
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Statistical inference

1. When fig(x), i1(x), 7(x) are estimated using parametric models:
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Statistical inference

1. When fig(x), 11(x), 7(x) are estimated using parametric models:

» Bootstrap for estimating standard errors, computing confidence intervals, and
hypothesis testing
- The lazy statistician’s method
- Sample with replacement to create a new sample of the same size as the study
sample, estimate the effect estimate in that sample, repeat many (e.g., 1000) times,
find 2.5 and 97.5 percentiles of the 1000 estimates as the 95% confidence interva

» Sandwich variance estimator (implemented in the CausalGAM package in R)

37/40



AIPW
0000000008

Statistical inference

1. When fig(x), 11(x), 7(x) are estimated using parametric models:

» Bootstrap for estimating standard errors, computing confidence intervals, and
hypothesis testing
- The lazy statistician’s method
- Sample with replacement to create a new sample of the same size as the study
sample, estimate the effect estimate in that sample, repeat many (e.g., 1000) times,
find 2.5 and 97.5 percentiles of the 1000 estimates as the 95% confidence interva

» Sandwich variance estimator (implemented in the CausalGAM package in R)
2. When fip(x), fi1(x), 7(x) are estimated using machine learning algorithms (like
random forest):

> Use AIPW + cross fitting (implemented in the AIPW package in R)
» Influence-function based variance estimator
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Statistical inference

1. When fig(x), 11(x), 7(x) are estimated using parametric models:

» Bootstrap for estimating standard errors, computing confidence intervals, and
hypothesis testing
- The lazy statistician’s method
- Sample with replacement to create a new sample of the same size as the study
sample, estimate the effect estimate in that sample, repeat many (e.g., 1000) times,
find 2.5 and 97.5 percentiles of the 1000 estimates as the 95% confidence interval

» Sandwich variance estimator (implemented in the CausalGAM package in R)
2. When fip(x), fi1(x), 7(x) are estimated using machine learning algorithms (like
random forest):

> Use AIPW + cross fitting (implemented in the AIPW package in R)
» Influence-function based variance estimator

~

15 The primary consideration is to choose an approach such that i1(x), fio(x), 7(x)
are close to the truth.
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The central role of the propensity score

| 4

Under the NUCA A L Y(0), Y(1) | X, we have introduced the propensity score
m(X) = P(A =1 X), which is the probability of receiving treatment given
covariate value X.

To remove confounding, we need to adjust for covariates X (e.g., age, race, ...)

Key observation: 7(X) is a scalar and coarsest summary of the observed
covariates X that can make the treated and control groups comparable
(Rosenbaum and Rubin, 1983)

(AL Y(0),Y(1) | 7(X).|

In practice, we estimate 7(X), commonly by fitting a logistic regression of A; on
Xi. Denote the estimated propensity score as 7(X).
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The central role of the propensity score

Other approaches motivated by A L Y(0), Y(1) | w(X).

» Subclassification (propensity score stratification): We stratify by the estimated
propensity score 7(X), e.g. with five subclasses. Within each subclass, the true
propensity score m(X) is approximately constant. We can estimate the outcome
mean difference within each stratum and combine them by a weighted average.

» g-computation (outcome regression) with the propensity score as a covariate: the
above formula shows that we can just use 7(X) as a “derived covariate”.

» Propensity score matching
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