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Plan

Correlation does not imply causation.

General theory for randomization inference for randomized experiments.

>
>
» Example 1: Fisher’s exact test for 2 x 2 contigency tables.
» Example 2: Stepped-wedge cluster randomized trials.

>

Example 3: Matched observational studies.

Recommended references for this lecture

Paul R. Rosenbaum (2002). Observational Studies. Springer Series in Statistics. New
York: Springer. DOI: 10.1007/978-1-4757-3692-2, Chap. 2;

Yao Zhang and Qingyuan Zhao (Apr. 2023). “What Is a Randomization Test?" In:
Journal of the American Statistical Association 118.544, pp. 2928-2942. DOI:
10.1080/01621459.2023.2199814.
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Causality and association

» Causality is central to human knowledge.
» The major part of classic statistics is about association (e.g., Pearson correlation,
regression coefficient) rather than causation.

- Association/correlation describes the statistical relationship in the data, indicating
difference in one variable is associated with difference in another.

- Association / correlation does not imply causation.

- May be good for prediction but not enough for causation.

» Causation requires mechanistic understanding, indicating whether intervention
in one variable leads to change in another.
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Yule-Simpson paradox

Success  Failure
Open surgical procedure 273 77
Small puncture procedure 289 61

» From Clive R Charig et al. (1986). “Comparison of treatment of renal calculi by
open surgery, percutaneous nephrolithotomy, and extracorporeal shockwave
lithotripsy.”. In: Br Med J (Clin Res Ed) 292.6524, pp. 879-882. DOI:
10.1136/bmj.292.6524.879.

273 289

273 +77 289 + 61
—_—— ———
open small

» Success rate is higher among the small puncture group (association)

> Estimated risk difference: RD = = 78% — 83% = —5% < 0.

» But is small puncture procedure better? (causation)

421
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Yule-Simpson paradox

» Patients were not randomized into the two procedures

P Patients receiving open surgical tend to have large stones, whereas patients
receiving small puncture tend to have small stones.

With small stones Success Failure  With large stones Success Failure
Open surgical 81 6 Open surgical 192 71
Small puncture 234 36 Small puncture 55 25

» Yule-Simpson’s paradox:

RDs = o= 22" _ g9 RD, =
°T 816 234146 6% >0, RD.

192 55

— =49 Oybt@:*? 0.
192171 55105 2% >0 bu % <

» Confounding: stone size affects both treatment assignment and success rate.
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Another example with linear regression

» The kidney stone example shows that marginal association and conditional
association may have different signs.

» Here is another example (non-causal but very memorable).!

!Dataset and R code for the figures below can be found at

https://allisonhorst.github.io/palmerpenguins/articles/examples.html.
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Another example with linear regression

» The kidney stone example shows that marginal association and conditional
association may have different signs.

» Here is another example (non-causal but very memorable).!

|Bill depth

GENTOO/ ADELigy

onwSTRP

Note: In the raw data, bill dimensions
are recorded as “culmen length” and
“culmen depth”. The culmen is the
dorsal ridge atop the bill.

!Dataset and R code for the figures below can be found at
https://allisonhorst.github.io/palmerpenguins/articles/examples.html.
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Marginal association

Penguin bill dimensions (omit species)
Palmer Station LTER

17.5

Bill depth (mm)

15.0

60

40 50
Bill length (mm)
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Conditional association

Penguin bill dimensions
Bill length and depth for Adelie, Chinstrap and Gentoo Penguins at Palmer Station LTER

20.0
€
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15.0 Penguin species
=& Adelie
=& Chinstrap
= Gentoo

60

40 50
Bill length (mm)
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Suppose there are n units (e.g. clinics or patients) in an experiment.
» Covariates X = (Xy,... Xp).
» Treatment Z € Z is randomly determined (e.g. by tossing coins or using the
RNG in R).
» Exposure A= (Ay,...,Ap) is determined by Z.

» Semantically, “treatment” speaks from the investigator's perspective and “exposure”
from the experimental unit’s perspective.
» Often (but not always), A = Z and these terms are used interchangeably.

» Outcome Y = (Yi,..., Yy).
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Conceptulizing causality
Every possible treatment assignment z corresponds to a vector of potential outcomes

Y(z) = (Yi(2),..., Ya(2)).

Assumptions

» The observed outcomes are consistent with the potential outcomes: Y = Y (Z).
» The exposure map is valid: if A;(z) = A;(Z), then Y;(z) = Yi(2).
» Under this assumption, the potential outcome is also denoted as Y;(a;).

The Neyman-Rubin causal model

» Further assumes A;(z) = z; (no interference).

» Often z; € {0(control), 1 (treatment)} is binary, so the individual treatment
effect of unit i is Y;(1) — Y;(0).
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Fundamental problem of causal inference

» Only one potential outcome can ever be observed.

» But we would like to infer the full potential outcomes schedule (Y (2))zcz.

i | Yi(0) Yi(1) |

( (
? 1
0 ?
? 0

W N =

> A; = 0: open surgical procedure; A; = 1: small puncture procedure.
» Y; = 0: failure; Y; = 1: success.
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The role of randomization

Assumption: Exogeneity of randomization

The treatment is independent of the potential outcomes schedule given the covariates:
Z 1 (Y(2))zez | X. (1)

Furthermore, the conditional distribution of Z given X is known (often called the
randomization scheme or treatment assignment mechanism).

Remarks

» If the randomization scheme does not use X, we can drop X in (1).
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Imputation of potential outcomes

Next we will explore, in the Neyman-Rubin causal model, how to use randomization to
test the sharp null hypothesis Hp : Y;(0) = Y;(1) for all /.

Key insight
Under Hp, we may impute all the potential outcomes by Y;(0) = Yi(1) = Y;.
Example

i Yi(0) i) | A | Y

1 1 1 1|1

2 0 0 010

3 0 0 1|0
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Randomization distribution

» Consider any test statistic T = T(A, Y).

» Under a potential treatment assignment a = (ay, .. ., ap), the corresponding
statistic is T(a) = T(a, Y(a)).

» The last insight suggests that under Hp, we know the value of T(a) for every a.

» The randomization distribution is that of T(A) under the randomization scheme.

Example: An simple estimator of the average treatment effect

oS AY LAY
Zi:l A; Zi:l(l - Ai)

i| Yi(0) Yi(1) |

(
1
0
0

W N =
O O

Equal probability (1/3) on 7(1,0,1) =1/2; T(1,1,0)=1/2; T(0,1,1) =
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Randomization tests

We may reject the null hypothesis Hp if the observed T(A) is too extreme when
compared to its potential values.

> The p-value is the probability that T exceeds the observed value:
P=Pr(T(A", Y(A")>T(A Y(A)|Z Y()),

where A = A(Z), A* = A(Z*), and Z* is an independent and identically
distributed copy of Z.

Remarks

» Compared the usual formulation of hypothesis testing (e.g. t-test and F-test),
randomization test uses a reference distribution that is entirely based on
randomization generated by the experiment.

» Randomization tests are particularly attractive for small sample sizes and complex
design (e.g. repeated measurements, individuals from the same household).
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Example: Fisher's exact test and lady tasting tea

>

>

A basic yet important statistical problem is hypothesis testing in 2 x 2
contingency tables.

This is illustrated by a famous example in Fisher's 1935 book The Design of
Experiments.

A lady declares that by tasing a cup of tea made with milk she can discrim-
inate whether the milk or the tea infusion was first added to the cup... Our
experiment consists in mixing eight cups of tea, four in one way and four in
the other, and presenting them to the subject for judgment in a random order.
The subject has been told in advance of what the test will consist... Her task
is to divide the 8 cups into two sets of 4.

Exercise: What are the units, treatment, exposure, and outcome in this
experiment?

Examples
0®00000
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2 X 2 contigency tables

» Let A; be the exposure of the i-th cup (0/1 if milk/tea was added first).

> Let Y; be the outcome of the i-th cup (0/1 if the lady guesses milk/tea was
added first).

» Let N,, be the number of cups with A; =aand Y;=y, a,y =0,1.

» The outcome of this experiment can be summarized by the following 2 x 2 table.

Outcome Y
0 1 Total

Treatment A 0 Noo No1 No.

1 Ny N Ny.
Total ‘ N.o N.l ‘ N
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Fisher's exact test (abstract)

Outcome Y
0 1 Total
Treatment A 0 Noo No1 No.
1 NlO N11 N]_.

Total ‘ N.g N1 ‘ N

Null hypothesis Hp : Y;(0) = Yi(1) for all i, meaning the lady’s guess is random.
No. = Ny. = 4 by design and N = N.; by Hp.

So there is only one degree of freedom: Given Ny, the entire table is known.
Fisher showed that the probability of observing (Noo, No1, Nio, N11) is given by

(NN NoINLINGIN !

(N) ~ Noo!No1 ! Nig! Ny1! V!
No.

» So we may reject Hy if Noo is large (compared to this hypergeometric distribution).
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Fisher's exact test (example)

» Suppose the lady gave random guesses and got 3 milk-first cups correct.

Outcome Y
0 1 Total
Treatment A 0 3 1 4
1 1 3 4
Total | 4 4 | 8

P Pr(guessed > 3 correctly | random guesses)

Examples
0000000

Pr(guessed 4 correctly | random guesses) + Pr(guessed 3 correctly | random guesses)

®) @ 70 70 70

00,00 1 w6 7.
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Example: Stepped-wedge design and a real clinical trial

Haines et al., PLOS Medicine, 2017, DOI:10.1371 /journal.pmed.1002412.

>

>

The goal was to investigate the impact of disinvestment from weekend allied
health services across acute medical and surgical wards.

12 wards in 2 hospitals were randomized to switch from an old model of weekend
allied health services to no services, before adopting a new model of services.
(You can visualize the design in Figure 1 of the article.)

During this trial, a number of patient characteristics were collected. Of interest is
the average length of stay in these wards.

Exercise: What are the units, treatment, exposure, and outcome in this
experiment?

This example will be further explored in the R practical.
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Example: Matched observational studies

>

>

By matching units in an observational studies with very similar covariates, the
hope is that we reconstruct a block randomized experiment.

Consider the Neyman-Rubin causal model. Suppose treated observation
i=1,...,nis matched to control observation i + n. Define

M = {apy,) € {0.13°™ | aj + aj4n, = 1,Vi € [m]}
Randomization analysis of matched observational studies assumes

2=m ifae M,

0, otherwise.

IP’(A:a‘X,AEM):{

This would be satisfied if (X;, A;) are drawn i.i.d. (independent and identically
distributed) from a population and the matching is exact.
By further assuming no unmeasured confounders A; L Y;(a) | X; for all a,

randomization tests can be constructed in the same way as before.
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