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Chapter 1

Introduction

1.1 This course

This course requires a good understanding of the Part IB course Statistics. (Don’t worry
if you are rusty; we will review all we need from IB Statistics in the first two lectures.)
This course complements the Part II courses Principles of Statistics and Mathematics
of Machine Learning by providing a more applied and computational perspective. You
will learn to write some R code, use statistical models to analyze some real datasets,
prove a few results that are not too technically challenging but very insightful, and, most
importantly, think like a statistician.

On the course website you will find the lecture notes from 2019 and 2024. This year
we have a slightly revised schedule which brings in a few “modern” elements. Additionally,
you might find the following books useful:

• A. Agresti. Foundations of Linear and Generalized Linear Models. Wiley 2015.
(Especially Chapters 2, 3, 4, 7.)

• D. Freedman. Statistical Models: Theory and Practice. Cambridge University Press
2009. (Provides perspectives from causal inference and social science.)

• G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical
Learning (with Applications in R). Springer 2013. (Provides perspectives from
machine learning.)

• B. Efron, T. Hastie. Computer Age Statistical Inference: Algorithms, Evidence and
Data Science. Cambridge University Press 2016. (Not in the schedules but expand
course materials in many ways.)

We will make the distinction between lectures and practical sessions (in which you will
need to bring in a laptop with R installed) less pronounced.

For Cambridge mathematics students, it might not be obvious that statistics is not a
branch of mathematics.1 There is no consensus on the definition of statistics (especially
with the rise of machine learning and data science), but the following definition in
Wikipedia cannot be too wrong:

1
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https://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf
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• Statistics is the discipline that concerns the collection, organization, analysis, inter-
pretation, and presentation of data.

Compare this with the following definition of mathematical statistics:

• Mathematical statistics is the study of statistics from a mathematical standpoint,
using probability theory as well as other branches of mathematics such as linear
algebra and analysis.

This is similar in many ways to physics versus theoretical physics. Another way to
think about it is that mathematics is mostly about deductive reasoning from a set of
axioms and assumptions, while statistics is mostly concerned with inductive reasoning
from empirical data.2 Through exploring different statistical models and learning R, a
great programming language for statistical computing, you will be exposed to both the
mathematical and non-mathematical elements of statistics.

To understand how statistics are used in practice, the following quote by George Box3

may be illuminating:

Scientific research is usually an iterative process. The cycle: conjecture–
design–experiment–analysis leads to a new cycle of conjecture–design–experiment–
analysis and so on.... The experimental environment ... and techniques appro-
priate for design and analysis tend to change as the investigation proceeds.

At one point, the dominant view was that statistical modelling is a critical step of “analysis”
and the model is built after data are collected. However, modern statisticians (and in fact,
many pioneers like Box and Fisher) view statistical model as an essential component of
the scientific process that guides all steps of the cycle and is being continuously updated.
And others like John Tukey envisioned a more dynamic/less rigorous process. My personal
take is a tree—“statistical theory” is the root, “statistical methodology” is the trunk,
“statistical principles” are the branches, and “statistical practices” are the leaves and
fruits. In any case, the title of this course is of great taste: we will learn about “statistical
modelling” instead of just “statistical models”.

In the broad sense, a statistical model is a mathematical representation of some
real-world process that generate data. With the rise of data mining/machine learning/big
data/data science/artificial intelligence, you will notice a divide between “two cultures”
of statistical modelling: the “data modelling” culture and the “algorithmic modelling”
culture in the language used by Leo Breiman a quarter of a century ago.4 This is about
two aspects of any data analyses:

Computing Numbers (or other types of data) go into a computer, and some numbers
(or other types of data) come out.

Inference What the input means, and what the output tells us about our problem.

While statistics are mainly concerned with inference in the past, computing is playing a
bigger and bigger role. We will try to maintain a neutral position and introduce both
perspectives in this course.

2



We will primary use “statistical model” in the narrow sense to refer to a collection of
probability distributions P = {Pθ : θ ∈ Θ}.5 Statistical inference in the narrow sense is
about learning the unknown parameter θ or the distribution Pθ using a realization from Pθ
(this is why statistics was sometimes called “inverse probability” in very old times). Actually
most of the time we will specify statistical models by making restrictions/assumptions
on (the probability distribution of) the random variables. Although we often do not
write down the statistical model explicitly, you should always be prepared to accept that
challenge.

A slightly more technical point is that statistical models can be defined at different
levels:

(i) Models for conditional moments. For example, a linear model for conditional
expectation assumes E[Y | X = x] = xTβ.

(ii) Models for joint or conditional distributions. For example, the classical normal
linear model assumes Y = XTβ+ε where the noise variable ε ⊥⊥ X and ε ∼ N(0, σ2).

(iii) Structural or causal models that not only describe (associational) relationship for
the data at hand but also (causal) relationship under counterfactual interventions.
For example, the linear structural equation model assumes Y (x) = xTβ + ε, where
Y (x) is the counterfactual value of Y under the intervention that sets X to x and ε
is an independent noise variable.

This course used to be mainly about models of the second kind, but we will try to cover
other kinds of models as part of the modernization effort.

3



1.2 Basic probability and statistics

1.2.1 Notation

Upper-case letters indicate matrices or random variables. Lower-case letters indicate fixed
quantities. We use Ip to denote the p× p identity matrix, 1p to denote the p-vector of
ones, and 0p the p-vector of zeros. Independent random variables (or vectors) X and
Y are denoted as X ⊥⊥ Y . As a convention, we usually use subscript i ∈ {1, . . . , n} to
index observations and j ∈ {1, . . . , p} to index variables. “Independent and identically
distributed” is abbreviated as “i.i.d.”. The Euclidean norm of a vector Y is denoted as
‖Y ‖. Convergence in probability is denoted as p→. Convergence in distribution (weak
convergence) is denoted as d→. We use sans serif font P to denote a probability distribution
and P to denote a statistical model—a collection of probability distributions.

1.2.2 Basic probability

A probability space (Ω,F ,P) is a triple where Ω is a set of outcomes (the sample space),
F is a collection of subsets of Ω that is a σ-algebra (the event space), and P : F → [0, 1]
is a function that satisfies the standard Kolmogorov axioms (non-negativity, unit measure,
and countable additivity). A (real-valued) random variable X is a (Borel measurable)
function from the probability space to R. A random vector X is a (Borel measurable)
function from the probability space to R, d ≥ 2. These abstract definitions will never be
used and best forgetten in this course. Instead, what is important for us is the probability
measure on R, Rd, or a more general space that the data live in that is induced by
the random variable. So the basic objects for us are the data—modelled as a random
variable/vector—and how they are generated—modelled by their probability distribution,
which we also denote by P.

There are many ways to characterize the probability distribution of a real-valued
random variable X. The cumulative distribution function (CDF) of X is defined as6

F (x) = P(X ≤ x).

The quantile function is the inverse of the CDF:

F−1(u) = inf{x ∈ R : F (x) ≥ u}.

If X is (aboslutely) continuous, we can describe the distribution of X using its probability
density function

f(x) =
d

dx
F (x).

If X is discrete, we can use its probability mass function

f(x) = P(X = x).

If you know the Radon-Nikodym theorem, you will know these are basically the same
thing (so we use the same notation). The moment generating function is defined as

M(t) = E(etX), t ∈ R .

4



We know M(0) = 1, but it can be infinite elsewhere. The expectation E here is over the
probability distribution P and you should know how that is defined.7 All these definitions,
besides the quantile function, can be naturally extended to multivariate X.

At this point, you should check if you can confidently answer the following questions:

(i) What does it mean for random variables X1, . . . , Xn to be independent? What is
the implication of independence on the joint density function of X = (X1, . . . , Xn)?

(ii) How do you compute the expectation and variance of a random variable? If
X = (X1, . . . , Xn) is a random vector, A ∈ Rm×n and b ∈ Rm are fixed, what is the
expectation and covariance matrix of AX + b?

(iii) What is the law of large numbers? What is the central limit theorem?

(iv) What is conditional expectation? What is the law of total expectation?

If you are unsure about anything above, take a look at the notes for IB Statistics lecture
1.

We now review the normal distribution and related distributions. A d-dimensional
random vector Z is said to follow the multivariate normal distribution with mean µ ∈ Rd
and positive definite8 covariance matrix Σ ∈ Rd×d, written as Z ∼ Nd(µ,Σ), if its
probability density function is given by

f(z) =
1

(2π)d/2|Σ|1/2
e−(z−µ)TΣ−1(z−µ)/2.

The multivariate normal distribution has two important properties:

(i) If Z ∼ Nd(µ,Σ), then for any fixed matrix A ∈ Rk×d and vector b ∈ Rk, AZ + b ∼
Nk(Aµ+ b, AΣAT ).

(ii) If Z1 and Z2 are two random vectors and
(
Z1

Z2

)
follows a multivariate normal

distribution, then Z1 ⊥⊥ Z2 if and only if Cov(Z1, Z2) = 0.

We often omit the subscript d in Nd(µ,Σ) if the dimension is clear from the context.
Let Z ∼ Nd(0, I). Then we say

‖Z‖2 =
d∑
i=1

Z2
i ∼ χ2

d

follows the chi-square distribution with d degrees of freedom. Suppose Z ∼ N(0, 1),
S ∼ χ2

d, and Z ⊥⊥ S. Then we say

Z√
S/d

∼ td

5
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follows the (Student’s) t-distribution9 with d degrees of freedom. Suppose S1 ∼ χ2
d1
,

S2 ∼ χ2
d2
, and S1 ⊥⊥ S2. Then we say

S1/d1

S2/d2
∼ Fd1,d2

follows the F -distribution with degrees of freedom d1 and d2.
As a memory aid, the above definitions can be summarized as follows:

χ2
d = N(0, 1)2 + · · ·+ N(0, 1)2︸ ︷︷ ︸

d times

, td =
N(0, 1)√
χ2
d/d

, Fd1,d2 =
χ2
d1
/d1

χ2
d2
/d2

.

In this informal description, two random variables (as indicated by their distributions) are
independent whenever they appear in the same expression. It is obvious that t2d = F1,d.

1.2.3 Basic statistics

A statistical model is a collection of probability distributions P = {Pθ : θ ∈ Θ} indexed by
a unknown parameter θ. This notation comes with an implicit bias that the interesting
object is the parameter θ, but a true statistician is really interested in knowing the
probability distribution Pθ. This motivates the concept of identifiability: we say a
statistical model is identifiable if Pθ1 = Pθ2 implies θ1 = θ2. Most of the models in this
course are parametric, meaning Θ is an (usually open) subset of Rp, p ≥ 1. However,
nonparametric and semiparametric models, in which Θ is infinite dimensional, do creep
in. The properties of any statistical procedure (how we interpret the “numbers” coming
out of a computer) depend on the statistical model P. When doing math we assume the
statistical model P is given, but that is usually not the case when we analyze data.

We learned in IB Statistics about ways to obtain point/interval estimators of θ and
test a hypothesis like θ ∈ Θ0. In parametric models, the center pillar for this the likelihood
function:

L(θ) = f(X; θ),

where the data X ∼ Pθ with density function f(·; θ). In words, the likelihood function is
the density function evaluated at the data and viewed as a function of the parameter.
The maximum likelihood estimator (MLE) is defined as

θ̂MLE = arg max
θ

L(θ).

It is often easier to do this maximization using the log-likelihood function, l(θ) = logL(θ).
The MLE is a statistic (a function of the data), because the likelihood function depends
on the data.

We can characterize how good a point estimator θ̂ is using its bias:

Biasθ(θ̂) = Eθ(θ̂)− θ

and its mean squared error (MSE):

MSEθ(θ̂) = Eθ{(θ̂ − θ)2}.

6



These are functions of the unknown parameter θ, which is important because we care
about how good θ̂ is over the entire statistical model. We say θ̂ is unbiased if Bias(θ̂; θ) = 0
for all θ. We say a statistic T = T (X) is sufficient if the conditional distribution of X
given T does not depend on θ. The factorization theorem says that T is sufficient if and
only if f(x; θ) = g(T (x), θ)h(x) for some suitable functions g and h. The Rao-Blackwell
theorem says that if T is a sufficient statistic, then the MSE of E(θ̃ | T ) is no larger than
that of θ̃ for any estimator θ̃ at any θ. The mean squared error admits a bias-variance
decomposition:

MSEθ(θ̂) = Biasθ(θ̂)
2 + Varθ(θ̂).

So it is possible for biased estimators to have smaller MSE than unbiased estimators.
We say S(X) ⊆ Θ is a (1− α)-confidence set of θ if

Pθ{θ ∈ S(X)} = 1− α, for all θ ∈ Θ.

In IB Statistics we only looked at the case where S(X) = [L(X), U(X)] is an interval.
The key to construct confidence intervals/sets is usually a pivotal quantity R(X, θ) whose
distribution under Pθ does not depend on θ.

Hypothesis testing is often formulated as deciding betweenH0 : θ ∈ Θ0 andH1 : θ ∈ Θ1

(usually Θ1 = Θ\Θ0), and the decision can be represented by a test function T (X) ∈ {0, 1}.
The key concept is the power function β(T ; θ) = Pθ(T (X) = 1). The size of the test is
supθ∈Θ0

β(T, θ). The Neyman-Pearson theory formulates hypothesis testing as maximizing
β(T ; θ) for θ ∈ Θ1 while controlling its size at some prespecified level α. For simple versus
simple (Θ0 = {θ0} and Θ1 = {θ1}), the most powerful test rejects H0 if the following
likelihood ratio statistic is larger than some threshold

Λ(X) =
L(θ1)

L(θ0)
=
f(X; θ1)

f(X; θ0)
.

This is a special case of the generalized likelihood ratio statistic

Λ(X) =
supθ∈Θ0∪Θ1

L(θ)

supθ∈Θ0
L(θ)

, (1.1)

which can be used for composite hypotheses. It is often easier to work with them on
the logarithmic scale. For the multinomial model (N1, . . . , Nk) ∼ Multi(n; p1, . . . , pk)
where n is given and θ = (p1, . . . , pk) is any vector in the standard (k − 1)-simple,
we saw in IB Statistics that the generalized log-likelihood ratio statistic for testing
H0 : pi = p0i, i = 1, . . . , k for some given θ0 = (p01, . . . , p0k) is given by

2 log Λ = 2
k∑
i=1

Oi log

(
Oi
Ei

)
≈

k∑
i=1

(Oi − Ei)2

Ei
,

where Oi = Ni is the “observed count”, Ei = np0i is the “expected count”, and the
approximation on the right hand side is called Pearson’s χ2-statistic because it (and also
the other expression) converge in distribution to χ2

k−1 as n→∞ by Wilks’ theorem.
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There is a useful duality between simple hypothesis tests and confidence sets. Consider

T (θ,X) = 1{θ 6∈I(X)} and S(X) = {θ : T (θ,X) = 0}.

Then T (θ0, X) is a size-α test of H0 : θ = θ0 for all θ0 ∈ Θ if and only if S(X) is a
(1− α)-confidence set for θ.

For hypothesis tests, it is often easier to report the P-value:

P = sup
θ∈Θ0

P (θ,X), where P (θ,X) = Pθ(Λ(X̃) ≥ Λ(X) | X),

and X̃ is an i.i.d. copy of X (X̃ ∼ Pθ and X̃ is independent of X). So P (θ,X) measures
how “extreme” Λ(X) is if the data X are generated from Pθ. Rejecting H0 when P ≤ α (so
T = 1{P≤α}) ensures that the test has size α. This corresponds to the (1− α)-confidence
set

S(X) = {θ ∈ Θ : P (θ,X) > α},

which contains all θ not rejected at level α.
Thus far we have discussed frequentist inference that treats probability as long-term

frequency and the parameter θ as a fixed quantity describing a natural law. An alternative
viewpoint is Bayesian inference that treats probability as subjective plausibility and the
parameter θ as a random variable, with prior distribution π. By using the Bayes formula,
the posterior distribution of θ is given by

π(θ | X) =
π(θ)f(x | θ)

f(x)
,

where f(x) =
∫
f(x | θ)π(θ)dθ is the marginal density of X. We often ignore the

normalizing constant and write π(θ | X) ∝ π(θ)f(x | θ), or in other words,

posterior ∝ prior · likelihood.

So we use information in the likelihood to update our belief about θ.
In Bayesian statistics, all we know about the parameter is contained in the posterior

distribution θ(θ | X). We can use the Bayes risk to evaluate an estimator θ̃ = θ̃(X):

R(θ̃) = Eπ(L(θ, θ̃) | X) =

∫
Θ
L(θ, θ̃(X))π(θ | X)dθ,

where L : Θ×Θ→ R is a loss function. The Bayes estimator is given by θ̂ = arg minθ̃ R(θ̃).
We saw in IB Statistics that the Bayes estimator under the quadratic loss L(θ, θ̃) = (θ−θ̃)2

is the posterior mean Eπ(θ | X).

Exercise 1.1. Suppose X is a random variable with a continuous cumulative distribution
function F (x). Without assuming F (x) is strictly increasing, show that F (X) ∼ Unif[0, 1].
Use this to show that P (θ,X) is a pivotal quantity if the CDF of Λ(X) is continuous for
all θ ∈ Θ.
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1.3 Practical 1: R basics

R is a free and open-source programming language for statistical computing and data
visualization. Please download and install the appropriate distribution of R from https:
//cran.r-project.org/. Many students will find it easier to use an integrated development
environment (IDE) such as RStudio, which can be downloaded from https://posit.co/
download/rstudio-desktop/.

1.3.1 Arithmetics

R can be used as a calculator:

> (9.1^3) * sqrt(14) * exp(-5) / log(4)

Help on any R function can be found by typing a question mark followed by the
function.

> ?exp
> help(exp)
> ??exp

You will need to use this help facility extensively (and get used to skim-reading to
find the relevant bit!). Note that R is case-sensitive.

The <- symbol is the usual assignment operator in R (the = symbol can also be used,
but it has slightly different purposes so you are recommended to stick to <-). For instance,
we can assign the value 3 to the variable x, and then perform operations on x. Anything
which appears after the hash symbol # is a comment and need not be typed.

> x <- 3
> round(x^2 + log10(x), 3) # try ?round to see what it does
[1] 9.477
> 37 %/% 3 # try ?‘%/%’
[1] 12
> 37 %% 3
[1] 1

1.3.2 Vectors, matrices, lists

Creating vectors

The c function (for “concatenate”) combines values into a vector.

> x <- c(3, 6, 4, 2)
> x
[1] 3 6 4 2
> length(x)
[1] 4
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There is no such thing as a scalar in R; what one might think of as a scalar is treated as
a vector of length 1. Note that, unlike Matlab, R does not distinguish between row and
column vectors.

A sequence of equally spaced numbers can be created using the seq function. The
rep function provides different ways of repeating vectors.

The base R does many things in a “smart” way. This is often convenient but can
sometimes be perilous. For example, the default seq method takes the following input:

seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL, ...)

> seq(1, 10)
[1] 1 2 3 4 5 6 7 8 9 10

> seq(10)
[1] 1 2 3 4 5 6 7 8 9 10

> seq(1, 10, 2)
[1] 1 3 5 7 9
> seq(1, by = 2, length = 5)
[1] 1 3 5 7 9
> seq(1, 10, length = 5)
[1] 1.00 3.25 5.50 7.75 10.00
> seq(10, length = 5)
[1] 10 11 12 13 14
> seq(to = 10, length = 5)
[1] 6 7 8 9 10

The seq function is a bit extreme, but it is generally a good idea to try things out
when you are not sure.

Operations on vectors

Operations on vectors in R are performed component by component. For example

> x + x
[1] 6 12 8 4
> x*x
[1] 9 36 16 4
> exp(x)
[1] 20.085537 403.428793 54.598150 7.389056

Another “smart” thing in R: when operations are performed on vectors of different lengths,
the shorter vector is cycled until it is the same length as the longer vector.

> x <- c(3, 6, 4, 2)
> y <- c(1, 2)
> x + y
[1] 4 8 5 4
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> x*y
[1] 3 12 4 4
> x^y
[1] 3 36 4 4
> y <- 1:3 # same as y <- c(1, 2, 3) or y <- seq(1, 3)
> x + y
[1] 4 8 7 3
Warning message:
In x + y : longer object length is not a multiple of shorter object length

What are the values of x + 2, 3*x and (2 + x)ˆ3?

Indexing vectors

> x <- c(3, 6, 4, 2)
> x[2] # 2nd component of x
[1] 6
> x[c(1, 3)] # 1st and 3rd components of x
[1] 3 4
> x[-1] # All of x except the 1st component
[1] 6 4 2
> x[-(1:2)] # All of x except the 1st two components
[1] 4 2
> x[1:2] <- c(7.1, 3.4) # We can assign values to components
> x
[1] 7.1 3.4 4.0 2.0

Note that after the final command, x has automatically transformed from a vector of
integers to a vector of floating point numbers (these are a way of representing real numbers
on computers, though of course only to a certain degree of accuracy).

We can also index components of a vector using a TRUE / FALSE (logical) vector.

> index_vec <- c(TRUE, TRUE, FALSE, TRUE)
> x[index_vec]
[1] 7.1 3.4 2.0

Logical vectors can also be created using the binary operator < which performs compo-
nentwise comparisons.

> x > 3.6
[1] TRUE FALSE TRUE FALSE
> x[x > 3.6]
[1] 7.1 4.0
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Matrices

We can create a matrix using the matrix function.

> A <- matrix(1:8, 2, 4)
> A

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

Can you enter the terms by row instead?
Rows and columns of matrices can be extracted in the following way:

> A[1, ]
[1] 1 3 5 7
> A[, 3]
[1] 5 6

Note that the rows and columns thus formed are now vectors. We can check this using
the very helpful str (for ‘structure’) function.

> str(A[1, ])
int [1:4] 1 3 5 7

Here we see that A[1, ] is an integer vector of length 4. To keep the 2-by-1-matrix
structure-type, we use

> A[, 2, drop = FALSE]
[,1]

[1,] 3
[2,] 4

An alternative is to do

> matrix(A[, 2])
[,1]

[1,] 3
[2,] 4

Submatrices can be formed by e.g. A[, 1:3]. The diagonal can be extracted using diag.
We can perform many standard operations on matrices.

> A %*% x # matrix vector multiplication
[,1]

[1,] 51.3
[2,] 67.8
> A*A # componentwise multiplication

[,1] [,2] [,3] [,4]
[1,] 1 9 25 49
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[2,] 4 16 36 64
> t(A)

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
> A %*% t(A) # matrix matrix multiplication

[,1] [,2]
[1,] 84 100
[2,] 100 120

The solve function can be used to solve linear systems like Ax = b. If b is missing in the
input, it will invert the matrix A.

> solve(A %*% t(A))
[,1] [,2]

[1,] 1.50 -1.25
[2,] -1.25 1.05

Lists

Lists collect together items of different types, e.g.

> Empl <- list(employee="Eve", spouse = "Adam",
children=2, child.ages = c(4, 7))

Elements of a list need not be of the same length, but its components are numbered. Thus
Empl is a list of length 4, and its components are referred to as Empl[[1]] etc.. Notice
that Empl[[4]] is a vector, so Empl[[4]][1] is its first entry. Names of components can
also be used:

> Empl$employee
> Empl[["employee"]]
> Empl$child.ages[2]

The different components of a list can be almost anything, even functions or other lists.

1.3.3 Functions

A few important functions

> x <- c(3, 6, 4, 2)
> sum(x)
[1] 15
> sum(x > 3) # TRUE is treated as 1 and FALSE, 0
[1] 2
> mean(x)

13



[1] 3.75
> sort(x)
[1] 2 3 4 6
> sd(x) # standard deviation
[1] 1.707825

How is the standard deviation being calculated? Functions for matrices:

> mean(A) # mean treats A as a vector
[1] 4.5
> colMeans(A)
[1] 1.5 3.5 5.5 7.5
> rowSums(A)
[1] 16 20

The function cbind ‘glues’ columns of matrices together.

> cbind(1, A)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 3 5 7
[2,] 1 2 4 6 8

Writing your own functions

When writing anything more than a few lines, it is useful to edit the commands from a
script file that ends with .R. Create a script file (in Rstudio you can use Ctrl+Shift+N),
then copy and paste the following code:

f <- function (x, y) {
z <- x^2 + y^2
return(c(cos(z), sin(z)))

}

Once you have written the algorithm and saved the file as Rubbish.R, say, in the current
working directory, you can execute the commands by typing

> source("Rubbish.R")

in the console. Typing f in the console will now echo the code of your function, and you
can run your function by giving it the right arguments e.g. f(2, 3).

Generating (pseudo) random numbers

(Pseudo) independent and identically distributed sequences of random numbers are
generated with commands like rnorm, runif, rchisq etc. (normal, uniform, χ2). The
corresponding density, cumulative distribution and quantile functions are, e.g. dnorm,
pnorm, qnorm.
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> x <- rnorm(1000)
> hist(x, freq = FALSE)
> x_vec <- seq(-3, 3, by = 0.1)
> lines(x_vec, dnorm(x_vec), col = "red") # adds lines to an existing plot

What does the following code do?

> X <- matrix(runif(50*1000, min=-1, max=1), 50, 1000)
> hist(sqrt(50) * colMeans(X) / sd(X), freq = FALSE) # sd treats X as a vector
> lines(x_vec, dnorm(x_vec), col = "red")

lines plots on top of the current plot, but if you wish to use superposition to histograms
(or plots) you can use the following instruction (equivalent to to “hold on” in MATLAB).

> par(new=TRUE)

Experiment with other distributions and other sample sizes.

1.3.4 Loops and vectorization

for Loops and while Loops

Often we will like to run the same code many times, for instance if we using simulated
data to examine a statistical methodology. The prime tools to do this are for and while
loops in the code. These loops repeat the code inside the { } blocks then iterates until
the for loop runs out of indices or the while loop condition is broken. These have similar
syntax:

for (i in 1:B) { doSomething() }

counter <- 0
while (counter < B) {

doSomething()
counter <- counter + 1

}

both of which accomplish the same goal of calling the doSomething function B times.

This approach applies the code blocks in sequence, which is useful if accessing the
same memory block and adjusting it multiple times (which is what happened to the
memory storing i in the while loop). However often the code will access new memory for
each iteration, and so we could instead run these in parallel. For further reading on this,
search for the documentation on the parallel package in R.
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Vectorization of Code

Consider the computing the column means of the elements in a large matrix X using a
for loop:

n <- 100
d <- 3000

X <- matrix(rnorm(n * d), nrow = n, ncol = d)
X_means <- rep(0, d)
for (i in 1:d) {

X_means[i] <- mean(X[,i])
}

we can use the system.time function to test how long this computation takes:

system.time(for (i in X) {X_means[i] <- mean(X[,i])})
user system elapsed

43.518 7.317 51.124

In contrast, we can compute this much more quickly by using the apply function to
compute these column means in parallel.

system.time(apply(X, 1, mean))
user system elapsed

0.002 0.000 0.002

This is much faster because vectorized computation in R directly calls functions
written in C. Vectorizing the for loops also helps you focus on the statistical operations.

1.3.5 Exercises

You are recommended to discuss computing exercises in this course with a learning partner
during and/or after the practical sessions.

Exercise 1.2. Use R to solve the following linear equations:

3a+ 4b− 2c+ d = 9

2a− b+ 7c− 2d = 13

6a+ 2b− c+ d = 11

a+ 6b− 2c+ 5d = 27.

Exercise 1.3. Estimate the upper 5% quantile of a χ2
6 distribution using the dchisq

and quantile functions, then validate your answer using qchisq.

Exercise 1.4. Consider a real valued random variable X with distribution function given
by:

FX(x) = 1
πarctan(x) + 1

2 .
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Write a function rmydist(n) that generates n independent samples of X. Use this
function to estimate Var(X). [Hint: Exercise 1.1]

Exercise 1.5. Two lecturers mark the same Tripos question for two randomly selected,
disjoint sets of students. To make sure that neither of them is more lenient than the
other, they want to test whether their average marks are equal. But they are afraid the
sample size is too small to apply the Central Limit Theorem, so one of them writes the
following code.

grades1 <- c(10,11,14.5,15,15,18,12,19,18.5,19,20,13)
grades2 <- c(12,11,14.5,13,12,11,12,14.5,20,17)
(diff <- mean(grades1) - mean(grades2))
grades.all <- c(grades1,grades2)
n1 <- length(grades1); n2 <- length(grades2);

one.sim <- function(iter) {
grades.perm <- sample(grades.all);
mean(grades.perm[1:n1]) - mean(grades.perm[n1 + 1:n2])

}

system.time(diff.perms <- replicate(100000, one.sim(0)))
typeof(diff.perms)
mean(abs(diff.perms) > diff)

system.time(diff.perms <-
parallel::mclapply(1:100000, one.sim, mc.cores = 2))

typeof(diff.perms)
diff.perms <- unlist(diff.perms)
mean(abs(diff.perms) > diff)

hist(abs(diff.perms))
abline(v = abs(diff), col = "red", lty = "dashed")

Execute the code in your R session and explain what it is doing. Search for the documen-
tation of any function you have not encountered before.
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1.4 Normal linear models

1.4.1 Model and likelihood

We now review the normal linear model introduced in IB Statistics. This model assumes
that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ Rp×R1 are independent and the conditional dis-
tribution of Yi given Xi satisfies10

Yi =

p∑
j=1

Xijβj + εi, εi ⊥⊥ Xi, εi ∼ N(0, σ2), i = 1, . . . , n. (1.2)

Equation (1.2) is rather cumbersome and can be simplified by introducing the following
vector/matrix notation:

Y =

Y1
...
Yn

 , X =

X
T
1
...
XT
n

 , β =

β1
...
βp

 , and ε =

ε1...
εn

 .

Now we can rewrite (1.2) as

Y = Xβ + ε, ε | X ∼ N(0, σ2Ip). (1.3)

This is also known as linear regression, due to early applications of such models by Francis
Galton that identified a “regression toward the mean” phenomenon in the inheritance of
human traits (such as height).

Example 1.6 (Normal measurements). This model assumes Yi
i.i.d.∼ N(µ, σ2), i = 1, . . . , n.

The model matrix X = 1n is a matrix with just one column and the regression coefficient
β = µ is one-dimensional.

Example 1.7 (ANOVA). Let Fi ∈ {1, . . . , l} be a categorical variable with l levels
(also called a factor). The classical ANalysis Of VAriance (ANOVA) assumes Yi =

βFi + εi, εi
i.i.d.∼ N(0, σ2) where β is a l-dimensional parameter vector. The ith row Xi of

the corresponding model matrix X is an indicator vector whose Fith entry is 1 and all
other entries are 0.

The matrix X is known as the design matrix or model matrix. The former terminology
was derived from the classical setting in experimental design in which X is chosen by the
experimenter. This is rarely the case in modern applications. For this reason, we will
refer to X as the model matrix in this course.

To distinguish (1.2) and (1.3) with models for the conditional expectation, let µi =
E[Yi | Xi]. Then (1.3) contains three different types of assumptions:
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(i) The conditional expectation satisfies

µ =

µ1
...
µn

 = Xβ;

(ii) The noise ε = Y − µ satisfies ε ⊥⊥ X;

(iii) The noise ε is distributed as N(0, σ2In).

Note that (1.2) does not make any assumptions on the distribution of the regressors X.
This is dangerous, because the distribution of X should really be regarded as a parameter
in the model and be included as an argument of the likelihood function in (1.4). In other
words, although the normal linear model is often regarded as the most basic parametric
model, it is actually semiparametric (involving infinite-dimensional parameters) in general.
Of course, this remark no longer applies if one assumes X is fixed or the distribution of
X is unknown, but in most applications the distribution of X is unknown.

In any case, the distribution of X does not really matter in the classical normal linear
model because the assumption ε ⊥⊥ X allows us to factorize the likelihood function as

L(β, σ2) = f(x1, . . . , xn, y1, . . . , yn;β, σ2) = f(x1, . . . , xn) ·
n∏
i=1

f(yi | xi;β, σ2), (1.4)

where f is a generic symbol for density functions and f(yi | xi;β, σ2) is the density
function of a normal random variable:

f(y | x;β, σ2) =
1√

2πσ2
e−(y−xT β)2/(2σ2).

Because the marginal density function f(x1, . . . , xn) of X does not depend on β, whether
the distribution of X is known or not does not affect the inference for β following the
likelihood principle.11

1.4.2 Ordinary least squares and its geometry

Derivation of ordinary least squares

Following (1.4), the log-likelihood function is given by

l(β, σ2) = log
n∏
i=1

f(Yi | Xi;β) + constant

= −n
2

log σ2 − 1

2σ2

n∑
i=1

(Yi −XT
i β)2 + constant

= −n
2

log σ2 − 1

2σ2
‖Y −Xβ‖2 + constant
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Therefore, the maximum likelihood estimator (MLE) of β is given by the solution of the
ordinary least squares (OLS) problem

β̂ = arg min
β

‖Y −Xβ‖2. (1.5)

Notice that this holds regardless of whether σ2 is known or not.
We may obtain a closed-form solutionto (1.5) by using the following identities for

matrix calculus:
∂

∂β
(aTβ) = a, and

∂

∂β
(βTAβ) = (A+AT )β.

Therefore the OLS estimator satisfies

XT (Y −Xβ̂) = 0. (1.6)

Equation (1.6) is called the normal equations because it requires the vector of residuals
R = Y −Xβ̂ to be orthogonal to X.

The linear equations (1.6) have an unique solution if XTX is invertible (or equivalently
if X has full column rank, which requries n ≥ p). In this case, we have

β̂ = (XTX)−1XTY.

We maintain the assumption that X has rank p in this Chapter.
The maximum likelihood estimator of σ2 can be obtained by differentiating l(β, σ2)

with respect to σ2:
∂

∂σ2
l(β, σ2) = − n

2σ2
+

1

2σ4
‖Y −Xβ‖2.

By solving l(β̂, σ2) = 0, we obtain

σ̂2
MLE =

1

n
‖Y −Xβ̂‖2 =

1

n
‖R‖2.

The quantity ‖R‖2 is often referred to as the residual sum of squares (RSS). Because
σ̂2

MLE is biased (see Section 1.4.3), it is more common to use the following unbiased
estimator of σ2:

σ̂2 =
n

n− p
σ̂2

MLE =
1

n− p
‖Y −Xβ̂‖2 =

1

n− p
‖R‖2.

Orthogonal projections

Before discussing the statistical properties of the OLS estimator, it is useful to get a
geometric understanding of what it does. By definition, the fitted values in the linear
model are given by

µ̂ = Xβ̂ = X(XTX)−1XTY,

which is a linear transformation of the original response vector Y . Let P = X(XTX)−1XT ,
which is sometimes called the hat matrix in statistics literature for the obvious reason.
Geometrically, the least squares problem (1.5) implies that the vector of fitted values
µ̂ = PY is the projection of the response vector Y onto the column space of X.

The matrix P is an orthogonal projection matrix, meaning it is symmetric (P T = P )
and idempotent (P 2 = P ). Some useful properties include:
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(i) P = UUT , where columns of U ∈ Rn×p form an orthonormal basis for the column
space of X.

(ii) Eigen-values of P are either 0 or 1. In consequence, tr(P ) = rank(P ) = p.

(iii) I − P is also an orthogonal projection matrix, and

‖Y ‖2 = ‖PY ‖2 + ‖(I − P )Y ‖2 = ‖µ̂‖2 + ‖R‖2.

The following result will be useful.

Lemma 1.8. Let Z ∼ N(0, In) be a standard normal vector. Then ‖PZ‖2 ∼ χ2
p.

Exercise 1.9. Prove the last result.

Projection onto nested models

Consider a partition of the regressors:

X = (X0 X1), β =

(
β0

β1

)
,

where X0 ∈ Rn×p0 , X1 ∈ Rn×(p−p0), β0 ∈ Rp0×1, and β1 ∈ R(p−p0)×1. Recall that
µi = E(Yi | Xi) and µ = (µ1, . . . , µn)T . It useful to think about this in terms of defining
different statistical models:

(i) The saturated model µ ∈ Rn;

(ii) The full model µ ∈ {Xβ : β ∈ Rp};

(iii) The submodel µ ∈ {X0β0 : β0 ∈ Rp0}.

To formally define the model we have to further specify the distribution of Y . In the
normal linear model, this is Y ∼ N(µ, σ2In).

Let P (P0) denote the projection matrix onto the column space of X (X0). They
satisfy two important properties:

(i) PP0 = P0P = P0; see Figure 1.1.

(ii) P − P0 is also a projection matrix.

Exercise 1.10. Prove the second property. Which subspace does P − P0 project onto?

These geometric properties imply the following useful result that generalizes the
Gram-Schmidt process in linear algebra.12
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β1X1

β0X0

Y

PY

P0Y

Figure 1.1: Nested model projections.

Proposition 1.11 (Partial regression characterization). Consider the partition of
X as described above and let

β̂ =

(
β̂0

β̂1

)
be the corresponding partition of the OLS estimator β̂. Let X̃1 = (I − P0)X1 and
Ỹ = (I − P0)Y be the residuals of X1 and Y after projecting onto the column space
of X0. Then β̂1 is equal to the OLS estimator for a linear regression of Ỹ on X̃1:

β̂1 = (X̃T
1 X̃1)−1X̃T

1 Ỹ . (1.7)

To prove this, consider any X2 ∈ Rn×(n−p) such that (X0 X1 X2) is a full-rank n× n
matrix. By applying Gram-Schmidt, we obtain matrices X0, X̃1 = (P − P0)X1, and
X̃2 = (I − P )X2 that are orthogonal to each other. In consequence, P − P0 = PX̃1

=

X̃1(X̃T
1 X̃1)−1X̃T

1 is the projection matrix onto the column space of X̃1. Correspondingly,
Y can be decomposed as

Y = X0β̂0 +X1β̂1 +R

= (X0β̂0 + P0X1β̂1︸ ︷︷ ︸
P0Y

) + (I − P0)X1β̂1︸ ︷︷ ︸
(P−P0)Y

+ R︸︷︷︸
(I−P )Y

.

Therefore,
X̃1β̂1 = (P − P0)Y = PX̃1

Y.

Because X̃1 has full column rank, this establishes (1.7).
An important special case is p0 = p − 1, where X1 is a single regressor. In this

case, some authors refer to β̂1 as the partial regression coefficient to distinguish from the
marginal regression coefficient in a regression of Y on just X1.
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Example 1.12 (Simple linear regression). When p = 1, the OLS estimator is given by
the simple formula:

β̂ =
XTY

XTX
.

When p = 2 and the model matrix is

X =

1 X1
...

...
1 Xn

 ,

the coefficient β1 is called the intercept and β2 is called the slope. By treating the first
column of X as X0 in the above partition, we obtain

β̂2 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
,

where X̄ =
∑n

i=1Xi/n and Ȳ =
∑n

i=1 Yi/n.

1.4.3 Exact inference for the normal linear model

Besides motivating the OLS problem (1.5) as finding the MLE of β in the normal linear
model, the rest of Section 1.4.2 was entirely algebraic. Next, we discuss statistical
properties of the OLS estimator and how to use it to make exact inference under the
normal linear model (1.2).

Distribution of β̂ and σ̂2

Since β̂ = (XTX)−1XTY is a linear transformation of Y , it has a multivariate normal
distribution conditional on X:

β̂ | X ∼ N
(
(XTX)−1XTµ, (XTX)−1XTσ2InX(XTX)−1

)
= N

(
β, σ2(XTX)−1

)
.

This shows that β̂ is unbiased. Unbiasedness depends on linearity of µ but not the
assumption of normal distribution. The Gauss-Markov theorem says that β̂ is the best
linear unbiased estimator (BLUE), that is, it has the smallest variance among all unbiased
estimators of β that is linear in Y .

The estimator σ̂2 of the noise variance σ2 can be written as

σ̂2 =
1

n− p
‖Y −Xβ̂‖2 =

1

n− p
‖(In − P )Y ‖2.

Because In − P is also a projection matrix, this implies that

σ̂2 | X ∼ σ2χ2
n−p/(n− p).

This shows that E(σ̂2) = E[E(σ̂2 | X)] = σ2 and thus σ̂2 is unbiased.13
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Exercise 1.13. Show β̂ and σ̂2 are still unbiased without the normality assumption, that
is, by only assuming E(ε | X) = 0 and Var(ε | X) = σ2In.

Finally, under the normal linear model β̂ and σ̂2 are independent (more precisely,
conditionally independent given X) because (XTX)−1XTY and (In − P )Y are linear
transforms of Y that is multivariate normal and

Cov
(
(In − P )Y, (XTX)−1XTY | X

)
= (In − P )σ2InX(XTX)−1 = 0.

Confidence sets

We have been very careful about when X is conditioned on. This makes the statements
precise but clumsy. For the rest of this section, we view X as fixed. You should know
how to translate the statements if X is not fixed but conditioned on.

The key to exact inference is to find pivotal quantities whose distribution does not
depend on unknown parameters. For example,

(n− p)σ̂2

σ2
∼ χ2

n−p (1.8)

is pivotal, but
β̂ − β ∼ N

(
0, σ2(XTX)−1

)
(1.9)

is not pivotal because the distribution depends on σ2. Instead, we can use the following
pitoval quantity

β̂ − β
σ̂
∼

N
(
0, (XTX)−1

)√
χ2
n−p/(n− p)

.

Element-wise, we have

β̂j − βj
σ̂

∼
N
(

0, (XTX)−1
jj

)
√
χ2
n−p/(n− p)

=
√

(XTX)−1
jj · tn−p, j = 1, . . . , p. (1.10)

By using (1.10), we can immediately construct a (1− α)-confidence interval for βj :

CIj(α) =

[
β̂j − σ̂

√
(XTX)−1

jj tn−p(α/2), β̂j + σ̂
√

(XTX)−1
jj tn−p(α/2)

]
,

where tn−p(α/2) is the upper (α/2)-quantile of tn−p. By (1− α)-confidence interval, we
mean the following probabilistic statement is true:

P (βj ∈ CIj(α)) = 1− α.

Indeed, this is true given any realization of X, and conditional coverage is stronger than
unconditional coverage because P (βj ∈ CIj(α)) = E{P (βj ∈ CIj(α) | X)} by the law of
total probability.

To construct a confidence region for the p-dimensional vector β, a simple approach is
to take the product of univariate confidence intervals

∏p
j=1 CIj(α/p). (Exercise: Show
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that this set covers β with probability at least 1−α.) However, this product set is usually
quite conservative because it does not take into account the dependence between the
entries of β̂. A better solution is to use the following pivotal quantity

(β̂ − β)T (XTX)(β̂ − β)

pσ̂2
∼ Fp,n−p. (1.11)

So the following ellipsoid is a (1− α)-confidence set of β:

CS(α) =

{
β ∈ Rp

∣∣∣∣∣ (β̂ − β)T (XTX)(β̂ − β)

pσ̂2
≤ Fp,n−p(α)

}
,

where Fp,n−p(α) is the upper α-quantile of Fp,n−p.

Exercise 1.14. Use (1.8) to construct a (1− α)-confidence interval for σ2.

Exercise 1.15. Let (X∗, Y ∗) ∈ Rp×R be a new observation of the normal linear model.
That is, suppose Y ∗ = (X∗)Tβ + ε∗ where ε∗ ⊥⊥ (X, ε,X∗) and ε∗ ∼ N(0, σ2). Construct
a (1−α)-confidence interval for (X∗)Tβ and Y ∗. (The latter is called a (1−α)-prediction
interval.)

Hypothesis tests and analysis of variance

By using the duality between hypothesis testing and confidence interval, we can easily
construct level-α tests for

H0 : βj = 0 vs. H1 : βj 6= 0 and H0 : β = 0 vs. H1 : β 6= 0.

That is, we reject βj = 0 if 0 6∈ CIj(α) and reject β = 0 if 0 6∈ CI(α).
More generally, we may be interested in comparing nested linear models. As before,

consider the following partition

X = (X0 X1) and β =

(
β0

β1

)
,

where X0 ∈ Rn×p0 and β0 ∈ Rp0 . We are interested in comparing the full model µ = Xβ
with the submodel µ = X0β0, which amounts to testing H0 : β1 = 0 vs. H1 : β1 6= 0. The
(generalized) likelihood ratio statistic is given by

supβ∈Rp L(β, σ2)

supβ0∈Rp0 ,β1=0 L(β, σ2)
=

{
1 +
‖(P − P0)Y ‖2

‖(I − P )Y ‖2

}n/2
Exercise 1.16. Prove the above equality.

Thus, the likelihood ratio test rejects H0 : β1 = 0 if ‖(P − P0)Y ‖2/‖(I − P )Y ‖2 is
large. To determine the critical value, we need to derive the distribution of the test
statistic under H0 : β1 = 0, which is given by

F =
‖(P − P0)Y ‖2/(p− p0)

‖(I − P )Y ‖2/(n− p)
∼ Fp−p0,n−p under H0.

So the level-α likelihood ratio test rejects H0 : β1 = 0 when F > Fp−p0,n−p(α).
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Exercise 1.17. Show that the null distribution of the F -statistic above in the normal
linear model is Fp−p0,n−p. [Hint : Show that ‖(P − P0)Y ‖2 = ‖(P − P0)ε‖2, then use
Lemma 1.8.]

Note that ‖(I − P )Y ‖2 is the residual sum of squares (RSS) of the full model, while
‖(P − P0)Y ‖2 is the reduction of RSS when we enlarge the submodel to the full model.
This ratio has obvious geometric interpretations; see Figure 1.1.

Exercise 1.18. Show that the t-test and F -test for H0 : βj = 0 vs. H0 : βj = 0 are
equivalent.
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1.5 Practical 2: Data and normal linear models

1.5.1 *Data manipulation

Many functions in R expect that the dataset is stored in a data.frame object, which is
essentially a list of equal-length vectors (possibly of heterogeneous types). We will learn
about a package called data.table which provides a fast and modern implementation of
the legacy data.frame data structure in R. To this end, you will first need to install and
load the data.table package.

install.packages("data.table")
library(data.table)

One important advantage of data.table is that it is much faster.

> path <- "https://raw.githubusercontent.com/Rdatatable/data.table/"
> file <- "master/vignettes/flights14.csv"
> input <- paste0(path, file)
> system.time(flights <- read.csv(input))

user system elapsed
0.657 0.023 1.143

> class(flights)
[1] "data.frame"
> system.time(flights <- fread(input))
[100%] Downloaded 2193882 bytes...

user system elapsed
0.127 0.028 0.340

> class(flights)
[1] "data.table" "data.frame"

The last line shows that flights is an object of class “data.table”, which inherits the
“data.frame” class.

The flights dataset contains all flights that departed from New York City airports
in January to October, 2014. You can get a sense about this dataset in various ways.

> dim(flights)
[1] 253316 11
> print(flights, 2)

year month day dep_delay arr_delay carrier origin dest air_time
1: 2014 1 1 14 13 AA JFK LAX 359
2: 2014 1 1 -3 13 AA JFK LAX 363

---
253315: 2014 10 31 -4 15 MQ LGA DTW 75
253316: 2014 10 31 -5 1 MQ LGA SDF 110

distance hour
1: 2475 9
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2: 2475 11
---

253315: 502 11
253316: 659 8
> summary(flights)

year month day dep_delay
Min. :2014 Min. : 1.000 Min. : 1.00 Min. :-112.00
1st Qu.:2014 1st Qu.: 3.000 1st Qu.: 8.00 1st Qu.: -5.00
Median :2014 Median : 6.000 Median :16.00 Median : -1.00
Mean :2014 Mean : 5.639 Mean :15.89 Mean : 12.47
3rd Qu.:2014 3rd Qu.: 8.000 3rd Qu.:23.00 3rd Qu.: 11.00
Max. :2014 Max. :10.000 Max. :31.00 Max. :1498.00

arr_delay carrier origin dest
Min. :-112.000 Length:253316 Length:253316 Length:253316
1st Qu.: -15.000 Class :character Class :character Class :character
Median : -4.000 Mode :character Mode :character Mode :character
Mean : 8.147
3rd Qu.: 15.000
Max. :1494.000

air_time distance hour
Min. : 20.0 Min. : 80 Min. : 0.00
1st Qu.: 86.0 1st Qu.: 533 1st Qu.: 9.00
Median :134.0 Median : 944 Median :13.00
Mean :156.7 Mean :1099 Mean :13.06
3rd Qu.:199.0 3rd Qu.:1416 3rd Qu.:17.00
Max. :706.0 Max. :4983 Max. :24.00

The data.table class implements an elegant syntax of data maniputation. The
general form is DT[i, j, by], which means “take DT, subset/reorder rows using i, then
calculate j, grouped by by”. For example, we can easily count the number of departure
delays longer than 2 hours for each carrier in June, 2014 by

> flights[dep_delay > 120 & month == 6, table(carrier)]
carrier
AA AS B6 DL EV F9 FL MQ UA US VX WN
76 2 80 109 213 2 4 24 139 26 4 63

We can find the five most delayed carrier-destination pairs that have at least 30 flights
in total by

> delay_summary <- flights[, .(total = .N,
delayed = sum(dep_delay > 120),
percent = mean(dep_delay > 120),
mean = mean(dep_delay)),

by = .(carrier, dest)]
> delay_summary[total > 30][order(-percent)][1:5]
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carrier dest total delayed percent mean
1: AA EGE 85 11 0.12941176 43.32941
2: WN MSY 284 28 0.09859155 25.68662
3: EV CHO 124 12 0.09677419 26.16129
4: WN CAK 365 33 0.09041096 31.77808
5: EV BGR 274 22 0.08029197 22.54380

This should be enough for us for now, but you are encouraged to follow the offi-
cial introduction to data.table (https://cran.r-project.org/web/packages/data.table/
vignettes/datatable-intro.html) to learn more about it.

1.5.2 Data visualization

For simple and quick visualization, you can use the plot, hist, and boxplot functions
in base R. Try the following

x <- rnorm(100); y <- x + rnorm(100); plot(x, y)
hist(flights$air_time)
boxplot(air_time ~ carrier, flights)

The last command requires a bit of explanation. The boxplot function can take in a
vector or a “formula” (such as y ∼ grp where the numeric vector y is split into groups
according to grp). Boxplot is a powerful way to visualize the distribution of a continuous
variable, see Figure 1.2.14

Figure 1.2: A boxplot.

The ggplot2 package and extensions provide tools to generate production-quality
figures using human-friendly syntax. We provide one example here to give you a taste;
there are many amazing tutorials online and you can also easily get help from Google/Stack
Overflow/LLMs.
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> # install.packages("ggplot2") # uncomment if ggplot2 is not installed yet
> library(ggplot2)
> pl <- ggplot(delay_summary[total > 30],

aes(x = percent, y = mean, col = carrier, size = total))
> pl <- pl + geom_point(alpha = 0.5) + theme_minimal(base_size = 15)
> pl <- pl + scale_x_continuous(labels = scales::percent)
> pl <- pl + xlab("Delay > 2 hours") + ylab("Average delay (in minutes)")
> pl

The output can be found in Figure 1.3.
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Figure 1.3: Flight delay summary.

1.5.3 Normal linear models

Let us learn about fitting normal linear models in R using some simulated data.

set.seed(42)
n <- 50
a <- rnorm(n)

30



b <- rnorm(n)
y <- a - b + 2 * rnorm(n)
data <- data.frame(y = y, x1 = a, x2 = b)

The main function for normal linear model in R is lm.

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

You can directly use lm on the global variables a, b, y, but you are recommended to
use the data argument which needs to be a data.frame object. The following function
fits a normal linear model and outputs some important summary statistics.

> fit1 <- lm(y ~ x1 + x2, data)
> summary(fit1)

Call:
lm(formula = y ~ x1 + x2, data = data)

Residuals:
Min 1Q Median 3Q Max

-3.4578 -0.8958 -0.1260 0.5328 6.1281

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.3005 0.2680 -1.122 0.2677
x1 1.1764 0.2406 4.888 1.23e-05 ***
x2 -0.9570 0.2996 -3.194 0.0025 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.883 on 47 degrees of freedom
Multiple R-squared: 0.484, Adjusted R-squared: 0.462
F-statistic: 22.04 on 2 and 47 DF, p-value: 1.767e-07

The summary function is very useful and adapts to the object class. (When applying
the summary method to fit1 which is a lm object, R automatically calls summary.lm; try
?summary.lm.)

Here are what the numbers in the output mean:

• Below Residuals: are the five-number summary of the residuals R.

• The Estimate column contains the OLS estimator β̂j , j = 1, . . . , p.

• The Std. Error column contains the estimated standard errors σ̂
√

(XTX)−1
jj .
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• The t value column contains the t-statistics, which is simply the ratio between
the previous columns.

• The Pr(>|t|) column contains the p-values for the two-sided t-tests.

• The Residual standard error is simply σ̂, with degrees of freedom n− p.

• The Multiple R-squared refers to the so-called “coefficient of determination”, which
is defined as the variance explained by the regressors

R2 =
‖µ̂− Ȳ 1‖2

‖Y − Ȳ 1‖2
= 1− ‖Y − µ̂‖

2

‖Y − Ȳ 1‖2
,

where Ȳ =
∑n

i=1 Yi/n. The Adjusted R-squared is a less biased estimator of the
population R2 and is defined as (you don’t need to remember this)

R2
adj = 1− (1−R2)

n− 1

n− p− 1
.

• The F-statistic is the F -statistic with respect to the submodel in which the
coefficients of all non-intercept terms are 0, which has degrees of freedom p− 1 and
n− p. The p-value is the p-value for the corresponding F -test.

You can use anova for analysis of variance. Here is a simple example.

> fit2 <- lm(y ~ x1, data)
> anova(fit2, fit1)
Analysis of Variance Table

Model 1: y ~ x1
Model 2: y ~ x1 + x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 48 202.93
2 47 166.73 1 36.2 10.205 0.0025 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

1.5.4 Exercises

Exercise 1.19. Explain why the p-value in the anova output (0.002502) is exactly the
same as the p-value in the summary.lm output for x2.

Exercise 1.20. You can fit an intercept-only model using fit3 <- lm(y ~ 1, data).
Without executing anova(fit3, fit1), can you guess what its output will be based on
the output summary.lm?

Exercise 1.21. Use R to validate Proposition 1.11.
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Exercise 1.22. Without calling lm or using an LLM,15 write a function called mylm with
arguments X (n× p model matrix) and Y (n-vector) that outputs all the numbers reported
by summary.lm. Test your code using the example above.

Exercise 1.23. Modify your mylm function so that it also accepts a logical vector S0 of
length p and performs the analysis of variance test for the sub-model that only uses the
regressors X0 <- X[, S0]. Compare your output with anova.
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1.6 Basic asymptotic statistics

The theory of normal linear model is beautiful but relies quite heavily on properties of
the multivariate normal distribution. We will introduce many relaxations of the normal
linear model in this course. In general, we cannot obtain exact inference for parameters
in those models, but it is often possible to obtain approximate inference when the sample
size n is large. As the focus of this course is on statistical modelling instead of statistical
theory, we will only state the relevant results in asymptotic statistics (the proofs are
covered in Principles of Statistics) and discuss how to use them in statistical modelling.

Asymptotic statistics (or large-sample theory) is primarily based on two fundamental
results in probability theory: the law of large numbers and the central limit theorem. We
will state the versions in IA Probability. Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d.
random variables and let X̄n = (X1 + . . . Xn)/n. The weak law of large numbers says
that if µ = E(X1) exists, then as n→∞,

X̄n
p→ µ,

where p→ means “convergence in probability”, that is, P(|X̄n − µ| > ε)→ 0 for all ε > 0.
The central limit theorem says that if in addition σ2 = Var(X1) exists, then as n→∞,

√
n(X̄n − µ)

σ

d→ N(0, 1),

where d→ means “convergence in distribution”, that is, P(
√
n(X̄n − µ)/σ ≤ z)→ Φ(z) for

all z ∈ R where Φ is the CDF of N(0, 1). A less precise but more intuitive way to state
this is X̄n

·∼ N(µ, σ2/n) where ·∼ means “approximate distribution”.
One of the most important results in asymptotic statistics is the following.

Theorem 1.24 (Informal). If P is a “regular” parametric model and the data
X1, . . . , Xn are generated i.i.d. from Pθ, then the maximum likelihood estimator

(i) exists;

(ii) is consistent in the sense that θ̂MLE → θ in probability as n→∞;

(iii) is asymptotically normal in the sense that

√
n(θ̂MLE − θ)

d→ N(0, {I(θ)}−1),

where I(θ) = Varθ(∇θl(θ)) is called the Fisher information matrix and l(θ) =
logL(θ) is the log-likelihood function of a single observation X1. Moreover,
I(θ)−1 is the “best possible asymptotic variance” for any “regular” estimator of
θ.

There is a fanscinating history about how this result was conceived, formalized, and
proved.16 We will not attempt to prove it, but our investigation of exponential family in
Chapter 3 will provide some insights about this deep result.
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The next two lemmas about convergence of random variables are often useful.

Lemma 1.25 (Slutsky’s lemma). Suppose An
d→ A and Bn

p→ b where b is a constant.
Then

(i) An +Bn
d→ A+ b;

(ii) AnBn
d→ Ab;

(iii) An/Bn
d→ A/b if b 6= 0.

This can be easily extended to multivariate settings. This result is a corollary of the
continuous mapping theorem, which says if g is a continuous function, thenXn → X implies
g(Xn)→ g(X) where → can be almost sure convergence, convergence in probability, or
convergence in distribution (but the two → need to be the same).

Lemma 1.26 (Delta method). Suppose

√
n(η̂ − η)

d→ N(0, τ2),

where τ2 may depend on η and g(η) is continuously differentiable at η. Then

√
n {g(η̂)− g(η)} d→ N

(
0, τ2g′(η)2

)
.

This result can be proved by considering the Taylor expansion of g(η̂) at η and
applying Slutsky’s lemma. It can be easily extended to multivariate settings.

For this course, you only need to know how to apply Slutsky’s lemma and the delta
method. An immediate application of Slutsky’s lemma at this point is that

√
nI(θ̂)1/2(θ̂MLE − θ)

d→ N(0, I).

This allows us to use
θ̂MLE

·∼ N(θ, {I(θ̂)}−1/n)

to construct asymptotic tests and confidence intervals. For example, a (pointwise17)
asymptotic (1− α)-confidence interval for θj is

CIj(α) =

[
θ̂j − σ̂

√
(XTX)−1

jj z(α/2), θ̂j + σ̂
√

(XTX)−1
jj z(α/2)

]
,

where z(α/2) is the upper (α/2)-quantile of N(0, 1), that is,

lim
n→∞

Pθ (θj ∈ CIj(α))→ 1− α as n→∞ for all θ ∈ Θ. (1.12)

The last useful asymptotic result for us is Wilks’ theorem.
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Theorem 1.27 (Informal). Consider testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ \ Θ0 in
parametric models using the generalized likelihood ratio statistic Λ in (1.1). Under
regularity conditions (smoothness of the likelihood function), if Θ0 ⊂ Θ are nested
linear spaces, then

2 log Λ
d→ χ2

dim(Θ)−dim(Θ0) as n→∞,

under Pθ for any θ ∈ Θ0.
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Notes
1Perhaps this is so obvious because for most people mathematics and statistics are both about

“numbers”. When I told my neighbours that I am a statistician, most of their first reaction is that I do
mathematics.

2Mathematics also involves induction, see G. Pólya’s book Mathematics and Plausible Reasoning, but
mathematical induction is a deductive method. Statistics also involves deductive reasoning (which is
basically mathematical statistics).

3Box, G. E. P. (1957). Abstracts. Biometrics, 13 (2), 238–246.
4Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16 (3), 199–231.
5The notation here has the risk of being eccentric because many authors use P to denote a probability

measure. The problem with that is it encourages one to think the probability measure as something
fixed, which is very dangerous for statisticians. The blackboard bold font is commonly used to denote
“special sets”, such as R, C, etc. In statistics, the special set is often the statistical model—a collection
of probability distributions. So in this sense it is appropriate to denote a statistical model by P, and it
is even better when someone is confused about what P means because that forces them to think about
what model is being used.

6I received complaints about also using P to denote CDF in IB Statistics, so I am switching to the
conventional notation in this course.

7In IA Probability, expectation is defined as a unique linear functional on random variables on a
probability space that satisfies certain properties. Some people actually prefer to define probability via
expectation, with good reasons; see Whittle, P. (2000). Probability via expectation. Springer. De Finetti
would even use P to also denote the expectation operator. We will not be a zealot about this.

8It is possible to define multivariate normal with a degenerate covariance matrix; see Rao, C. R.
(1973). Linear statistical inference and its applications (2nd ed.). Wiley, Chapter 8.

9Named after the statistician W. S. Gosset who used the pseudonym "Student" to publish his method.
10Equation (1.2) does not necessarily describe the causal relationship between Xi and Yi. That is,

if an external force sets Xi to xi (instead of its “natural” value), (1.2) does not make any assumptions
on what the resulting Yi would become. In contrast, a linear structural equation model assumes that
the counterfactual value of Yi, often denoted as Y (xi)

i , is xTi β + εi. What has confused generations of
statisticians and scientists is that many people also use (1.2) to indicate a linear structural equation
model. For more discussion on the distinction between regression and causation, see Section 6.4 of
Freedman’s book.

11This is why some texts assume X is “fixed”. A better way to think about this is that the inference
for the normal linear model (1.2) is conditional on the model matrix X. This is an instance of the
conditionality principle, which says that the unconditional distribution and the conditional distribution
given an ancillary statistic (X in this case) carry the same information for statistical inference.

12In econometrics, this result is known as the Frisch–Waugh–Lovell theorem.
13If we are more rigorous, we should write the estimator of σ2 as σ̂2 instead of σ̂2. But it is widely

understood that we estimate σ by first estimating σ2 and σ̂2 does not mean “σ̂ square”. Notice that
unbiasedness of σ̂2 does not translate to unbiasedness of

√
σ̂2 as an estimator of σ.

14Image source: https://leansigmacorporation.com/box-plot-with-minitab/.
15Do we still need to learn programming with the rise of LLMs? I asked the same question to an AI

and got the following code https://g.co/gemini/share/add2a2a9cad6. There are at least two substantial
mistakes in the examples that accompany the funtion written by the AI. Can you find them?

16Stigler, S. M. (2007). The epic story of maximum likelihood. Statistical Science, 22, 598–620.
17Results like (1.12) are sometimes unsatisfactory in practice because it does not tell us how large

the sample size n needs to be for the coverage probability to be sufficiently close to 1 − α. Moreover,
(1.12) does not exclude the possibility that the confidence interval may have bad coverage probability (e.g.
less than 1− 2α) at some θ for any sample size n. This is why some people prefer uniform asymptotic
confidence sets S that satisfy

lim inf
n→∞

inf
θ∈Θ

Pθ (θ ∈ S) ≥ 1− α as n→∞.
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Chapter 2

Advanced linear models

2.1 Linear model diagnostics

Our setting in this Chapter is similar to that in Section 1.4: we observe some data
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ Rp×R1 and would like to model µi = E(Yi | Xi) as a
linear function of Xi. As discussed in Section 1.4, the normal linear model (1.3) contains
three assumptions:

(i) the conditional expectation follows a linear model µ = Xβ;

(ii) the noise ε is independent of X;

(iii) the noise ε ∼ N(0, σ2In).

These assumptions are essential in the exact statistical inference discussed in Section 1.4.3
but are often too restrictive in practice. One nice thing about making restrictive assump-
tions is that we can often check them empirically. Here we provide some useful diagnostic
quantities and plots for the normal linear model.

Let P = X(XTX)−1XT denote the projection matrix onto the column space of X.
The leverage of the ith observation is defined as Pii, the ith diagonal element of the hat
matrix. Recall that the fitted value for Yi is

µ̂i = (PY )i = PiiYi +
∑
k 6=i

PikYk.

So the leverage Pii measures how much the fitted value µ̂i is determined by the observed
value Yi. Another motivation for leverage is the following result (recall R = Y − µ̂ is the
vector of residuals)

Var(Ri | X) = σ2(1− Pii). (2.1)

So the residual Ri is close to 0 if the leverage Pii is close to 1. Motivated by (2.1), the
studentized or standardized residual of the ith observation is defined as

R̃i =
Ri

σ̂
√

1− Pii
.

Exercise 2.1. Prove (2.1).
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Exercise 2.2. In the normal linear model, show that R̃i ∼ tn−p−1 if we replace σ̂ in
the definition of R̃i by σ̂(−i), which is the estimator of σ using all observations besides
(Xi, Yi).

Next we describe the diagnostic plots produced by the R function plot.lm by default.
The first is the residual vs. fitted plot, which plots the studentized residual R̃i against

the predicted value µ̂i. We can visually assess the linearity assumption by looking for
apparent trends (e.g. a quadratic trend) in the plot.

The second is the quantile-quantile (Q-Q) plot, which is used to visually check normality
of the noise εi. If the normal linear model is correct, R̃i should be close to εi/σ, which
follows a standard normal distribution. We may check this assumption by plotting the
sample quantiles of (R̃1, . . . , R̃n) against the theoretical quantiles of N(0, 1); see Figure 2.1
for an illustration.

Figure 2.1: Quantile-quantile (Q-Q) plot.

The third diagnostic plot is the scale-location plot, which shows the square root of the

absolute value of the standardized residual
√
|R̃i| against the fitted value µ̂i. This plot

is used to check the homoscedasticity assumption Var(εi | Xi) = σ2 (see Section 2.2.2

below), under which
√
|R̃i| should have an average value around 1.

The fourth and final one is a plot of residuals vs. leverage. More precisely, this
plot shows R̃i against Pii and is used to identify outliers with a large leverage. We
say an observation (Xi, Yi) is an outlier if |Ri| is much larger than what is expected if
εi ∼ N(0, σ2). In other words, these observations differ substantially from model-predicted
values. Especially of concern are outliers with a high leverage, because just one or a few of
them can severely bias a regression model. (Note that the definition of “outlier” depends
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on the model.) It is not rare to have one observation that is not an outlier originally
become an outlier when some other apparently outlying observations are removed. See
Figure 2.2 for an illustration.

Figure 2.2: Outliers with a high leverage can severely bias a regression model.

A useful quantity for outlier detection is Cook’s distance:

Di =
‖X(β̂ − β̂(−i))‖2

pσ̂2
=

1

p

Pii
1− Pii

R̃2
i , (2.2)

where β̂(−i) is the “leave-one-out” OLS estimator of β when (Xi, Yi) is removed from the
dataset. By definition, Di is a standardized change of the fitted values when the ith
observation is removed. Therefore, a large value of Di indicates that the ith observation
have a large influence on the fitted values. Some clever algebra produces the second
equality in (2.2), so in order to compute Cook’s distance, it is unnecessary to repeatedly
solve least squares problems.

Exercise 2.3. Prove the second equality in (2.2) using the Sherman-Morrison formula

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
,

which holds for any invertible A ∈ Rp×p and u, v ∈ Rp such that vTA−1u 6= −1.

Recall from Section 1.4.3 that a (1− α)-confidence ellipsoid for β in the normal linear
model is given by

CS(α) =

{
β ∈ Rp

∣∣∣∣∣ ‖X(β̂ − β)‖2

pσ̂2
≤ Fp,n−p(α)

}
,

Motivated by this, a rule of thumb is that a Cook’s distance Di > Fp,n−p(0.5) indicates
an outlier of concern.
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As a final remark on model diagnostics, the above quantities and plots should be
regarded as visual “falsification tests” of the various assumptions made by the normal
linear model. This means that even when all the diagnostic plots look exactly like what
are expected, we cannot conclude that the linear model must be correct. These tools
depart from rigorous theorems in mathematical statistics but are immensely useful in
practice. They provide empirical evidence to improve a statistical model and fit in nicely
with Box’s cycle of scientific research discussed in Section 1.1.
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2.2 Linear conditional expectation models

We next discuss several possible relaxations of the standard normal linear model.

2.2.1 Generalized least squares

One possible relaxation is to assume ε follows an non-isotropic normal distribution:

Y = Xβ + ε, ε | X ∼ N(0, σ2Σ), (2.3)

where σ2 ∈ R is unknown and Σ ∈ Rn×n is a known positive-definite matrix that may
depend on X.

Theoretical results in Sections 1.4.2 and 1.4.3 can be easily extended to this model by
using the transformation

(X,Y )→ (Σ−1/2X,Σ−1/2Y ).

The maximum likelihood estimator of β in this model is given by the generalized least
squares (GLS) estimator:

β̂GLS = (XTΣ−1X)−1XTΣ−1Y.

Here we assume XTΣ−1X is invertible.

Exercise 2.4. Derive the above formula for β̂GLS by maximizing the likelihood function
for the model (2.3). Then derive it again using the transformation above.

An important special case of GLS is the weighted least squares (WLS). Given a vector
of weights w = (w1, . . . , wn), the WLS estimator is given by

β̂WLS = arg min
β

n∑
i=1

wi(Yi −XT
i β)2.

This is equivalent to choosing Σ = diag(w−1
1 , . . . , w−1

n ) in GLS. In R, you can obtain the
WLS estimator by using the weights argument in the lm method.

2.2.2 Heteroscedasticity

Consider the following less restrictive linear model:

Yi = XT
i β + εi, i = 1, . . . , n,

where

• (εi, Xi), i = 1, . . . , n, are i.i.d.;

• E(εi | Xi) = 0;

• Var(εi | Xi) = σ2(Xi).
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Exercise 2.5. Write down this model as a collection of probability distributions of
(X1, Y1), . . . , (Xn, Yn).

Compared to the model in (2.3), it no longer assumes εi ⊥⊥ Xi, the distribution of
εi is normal, or the variance of εi is known (up to a multiplicative constant). When
σ2(Xi) = σ2 is a constant, we say the noise is homoscedastic; otherwise, we say the noise
is heteroscedastic.

Due to the lack of distributional assumptions, exact statistical inference is no longer
possible. However, we can rely on asymptotic arguments. Let β̂ = (XTX)−1XTY be the
OLS estimator, then

√
n(β̂ − β) =

√
n
{

(XTX)−1XTY − β
}

=
√
n
{

(XTX)−1XT (Xβ + ε)− β
}

=
√
n(XTX)−1XT ε

=

(
1

n

n∑
i=1

XiX
T
i

)−1(
1√
n

n∑
i=1

Xiεi

)
.

Under suitable regularity conditions, the first term converges in probability to ΣX =
E[XiX

T
i ] by the weak law of large numbers, and the second term converges in distribution

to N(0,Ω), where Ω = E(XiX
T
i ε

2
i ) = E{σ2(Xi)XiX

T
i }. Therefore, by Slutsky’s lemma,

√
n(β̂ − β)

d→ N
(
0,Σ−1

X ΩΣ−1
X

)
, as n→∞. (2.4)

The form of matrix Σ−1
X ΩΣ−1

X is common in misspecified maximum likelihood and is often
called the sandwich variance (for the obvious reason) or the inverse Godambe information
matrix. When the noise is homoscedastic, i.e. σ2(Xi) = σ2, (2.4) reduces to

√
n(β̂ − β)

d→ N(0, σ2Σ−1
X ),

which is consistent with the exact distribution (1.9) obtained under normality after taking
n→∞.

Equation (2.4) is not an (asymptotic) pivotal quantity yet because the distribution
depends on ΣX and Ω. These unknown quantities can be estimated by

Σ̂X =
1

n

n∑
i=1

XiX
T
i and Ω̂ =

1

n

n∑
i=1

XiX
T
i R

2
i , where Ri = Yi −XT

i β̂.

Under suitable regularity conditions, they converge to ΣX and Ω in probability. By
Slutsky’s lemma,

√
nΣ̂XΩ̂−1/2(β̂ − β)

d→ N(0, Ip), as n→∞.

It is then straightforward to construct confidence intervals or hypothesis tests for β.

Exercise 2.6. Suppose Xi ∈ R and we know σ2(Xi) = σ2(1 + ηX2
i ) for some unknown

σ2, η > 0. Could you find a more efficient estimator of β by first giving an estimator of
(σ2, η)?
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2.2.3 Misspecified conditional expectation

One may further question the validity of the linear model µ = Xβ itself. To emphasize
that the linear model could be misspecified, we sometimes call µ = Xβ a linear working
model. But what does β mean when the working model is incorrect?

Suppose (X1, Y1), . . . , (Xn, Yn) ∈ Rp×R are i.i.d. Recall that the OLS estimator β̂
minimizes (1/n)

∑n
i=1(Yi −XT

i β)2. Therefore, it is expected that β̂ will converge (e.g. in
probability), as n→∞, to

βOLS = arg min
β

E
{

(Yi −XT
i β)2

}
= {E(XiX

T
i )}−1 E(XiYi). (2.5)

Exercise 2.7. Prove the second equality in (2.5) by assuming that you can exchange
derivative and expectation.

Here is another way to understand βOLS. Let µ(Xi) = E(Yi | Xi) and εi = Yi − µ(Xi),
so E(εi | Xi) = 0. Then

βOLS = arg min
β

E
{

(Yi −XT
i β)2

}
= arg min

β
E
{

(µ(Xi)−XT
i β + εi)

2
}

= arg min
β

E
{

(µ(Xi)−XT
i β)2

}
+ E

{
(µ(Xi)−XT

i β)εi
}︸ ︷︷ ︸

=0 (by Law of Total Expectation)

+ E(ε2i )︸ ︷︷ ︸
=constant

= arg min
β

E
{

(µ(Xi)−XT
i β)2

}
.

Therefore, XT
i βOLS may be viewed as the projection of µ(Xi) onto the space of linear

functions of Xi.
We make two remarks on misspecified linear models. First, the “best approximation”

parameter βOLS depends on the distribution of X; see Figure 2.3 for an illustration.
Second, the definition of the population regression coefficient β also generally depends on
the estimator we use. For example, the least absolute deviation (LAD) estimator1

β̂LAD = arg min
β

n∑
i=1

|Yi −XT
i β|

does not converge to βOLS in general.
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Figure 2.3: The “true” value of βOLS depends on the distribution of the regressors. This
figure shows two samples generated from the same conditional distribution of Yi given
Xi but different marginal distributions of Xi. In both samples, Yi = X2

i +Xi + εi where
εi ∼ N(0, 1). In sample a, Xi ∼ N(−1, 1); in sample b, Xi ∼ N(1, 1). The value of βOLS
is negative in sample a but positive in sample b.
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2.3 Model selection

Although the normal linear model makes several restrictive assumptions, it remains the
default choice for many applications used due to its simplicity. In practice, a common
task is to select a linear working model according to one or some of the following criteria:

(i) Does the model appears to provide a good fit to the observed data?

(ii) How interpretable is the model?

(iii) How large is the model’s prediction error?

(iv) How likely is the true model covered, assuming the data are indeed generated from
it?

Although answers to the first two questions are going to be subjective, we can gain
considerable insights about statistical modelling by trying to answer the other two
questions.

2.3.1 The bias-variance decomposition

We first consider the prediction error of a linear working model when it is possibly
misspecified. Consider the so-called nonparametric regression model:

Yi = µ(Xi)+εi, (Xi, εi) are i.i.d., εi ⊥⊥ Xi, E(εi) = 0, Var(εi) = σ2, i = 1, . . . , n.
(2.6)

In Section 2.2.3, we saw that the OLS estimator β̂OLS estimates βOLS, the projection
of µ(Xi) onto the space of linear functions of Xi in the population. Here we additionally
assume εi = Yi − µ(Xi) is independent of Xi to simplify the calculations below.

Let βn = E(β̂ | X1, . . . , Xn) be the expected value of any estimator β̂. Notice that
βn depends on the model matrix X, so βn is generally a random quantity and this is
why a subscript n is included. But we will treat X1, . . . , Xn (and thus βn) as fixed in the
calculations below.

Let (Xn+1, Yn+1) be a new independent observation from the same distribution. The
mean squared prediction error (MSPE) at a fixed value x ∈ Rn of the regressors is defined
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as2

MSPE(x) = E
[
{Yn+1 −XT

n+1β̂}2 | Xn+1 = x
]

= E
[
{µ(x)− xT β̂ + εn+1}2

]
= E

[
{µ(x)− xT β̂}2

]
+ E

[
{µ(x)− xT β̂}εn+1

]
︸ ︷︷ ︸

=0 because εn+1 ⊥⊥ β̂ and E[εn+1] = 0.

+E(ε2n+1)

= E
[
{µ(x)− xTβn + xTβn − xT β̂}2

]
+ E(ε2n+1)

= E
[
{µ(x)− xTβn}2

]
+ E

[
{µ(x)− xTβn}{xTβn − xT β̂}

]
︸ ︷︷ ︸

=0 because E[β̂ − βn] = 0.

+ E
[
{xTβn − xT β̂}2

]
+ E(ε2n+1)

= E
[
{µ(x)− xTβn}2

]
+ E

[
{xTβn − xT β̂}2

]
+ E(ε2n+1).

To summarize, we have obtained the following bias-variance decomposition of MSPE:

MSPE(x) = E
[
{µ(x)− xTβn}2

]
︸ ︷︷ ︸

bias2

+Var
(
xT β̂

)
︸ ︷︷ ︸

variance

+ σ2︸ ︷︷ ︸
irreducible

. (2.7)

Equation (2.7) plays a central role in understanding the predictive behaviour of
regression models, as its derivation does not rely on how β̂ is obtained. For the OLS
estimator β̂OLS, it can be shown that

n∑
i=1

Var(XT
i β̂OLS | X) = pσ2. (2.8)

Therefore, the average MSPE over the observed regressors is given by

1

n

n∑
i=1

MSPE(Xi) =
1

n

n∑
i=1

{µ(Xi)−XT
i βn}2 +

pσ2

n
+ σ2. (2.9)

Exercise 2.8. Prove (2.8).

Equation (2.9) illustrates a fundamental phenomenon called the bias-variance trade-off.
In order to make the bias term

∑n
i=1{µ(Xi)−XT

i βn}2 smaller, we can increase model
complexity and include more regressors in the linear model. However, this comes at a
price: the variance term pσ2/n will become larger. This trade-off of bias and variance
applies to not only the least squares estimator but also many other statistical tasks;3 see
Figure 2.4 for a nice schematic illustration.

In linear models, the complexity of the least squares estimator is measured by p,
which coincides with the degrees of freedom. In more complex models, it is not always
straightforward to come up with a good measure of model complexity.
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Figure 2.4: Schematic of the behavior of bias and variance.4

2.3.2 Quantitative criteria for model selection

Next, we review some commonly used criteria for model selection. A better idea is to
estimate the prediction error of the working model.

The first criterion is Mallows’ Cp, which is an unbiased estimator of the average MSPE
in (2.9) (up to a constant scaling). To derive Cp, we first compute the expected value of
the RSS under the nonparametric regression model (2.6):

E
(
‖Y − µ̂‖2 | X

)
= E

{
‖(I − P )Y ‖2 | X

}
= E

{
‖(I − P )(µ+ ε)‖2 | X

}
= ‖(I − P )µ‖2 + E

{
‖(I − P )ε‖2 | X

}
= ‖(I − P )µ‖2 + (n− p)σ2.

Notice that for the OLS estimator β̂OLS,

Xβn = X E(β̂OLS | X) = X(XTX)−1X E(Y | X) = Pµ.

Therefore, by comparing with (2.9), we see that

Cp = ‖Y − µ̂‖2 + 2pσ2 (2.10)

is an unbiased estimator of
∑n

i=1 MSPE(Xi).
In practice, in order to use Mallows’ Cp the noise variance σ2 needs to be estimated.

One common choice is to use the σ̂2 obtained from the full working model that uses all
the regressors.
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Heuristically, because the training error rate ‖Y − µ̂‖2/n evaluates the predictive
performance of the model using the same data that the model is fitted to, it underestimates
the prediction error rate

∑n
i=1 MSPE(Xi)/n. The gap between the training error and

prediction error is sometimes referred to as the optimism of the training error rate. In
the case of OLS, the amount of optimism is 2pσ2/n, which is proportional to the degrees
of freedom p, a measure of model complexity. In general, the optimism tends to become
larger when the working model becomes more complex.

Exercise 2.9. Consider any linear estimator µ̂ = MY of µ where M ∈ Rn×n only
depends on the data through X. Show that tr(M) is a “generalized degrees of freedom”
in the sense that

CM = ‖Y − µ̂‖2 + 2σ2tr(M)

is an unibased estimator of
∑n

i=1 MSPE(Xi) for µ̂.

Our second criteria is leave-one-out cross-validation (LOO-CV), which is defined as

LOO-CV =

n∑
i=1

(Yi − µ̂(−i))
2, µ̂(−i) = XT

i β̂(−i),

where β̂(−i) is the leave-one-out OLS estimator that is computed using all observations
besides (Xi, Yi). The idea of leave-one-out was used in the definition of Cook’s distance
(2.2) previously. Likewise, it is not necessary to actually compute the LOO OLS estimators
repeatedly. Indeed, it can be shown that

µ̂i = PiiYi + (1− Pii)µ̂(−i).

Therefore, we have the following simple formula

LOO-CV =
n∑
i=1

(
Yi −

µ̂i − PiiYi
1− Pii

)2

=
n∑
i=1

(Yi − µ̂i)2

(1− Pii)2
.

For linear models, Mallows’ Cp and LOO-CV often lead to very similar estimates of the
prediction error. The advantage of cross-validation is that it can still be used in more
complex problems when there is no closed-form formula.

Another two commonly used criteria for model selection are Akaike’s information
criterion (AIC) and the Bayesian information criterion (BIC). Because these information
criteria are based on the likelihood function, they can be applied to a wide range of
statistical problems. To illustrate this flexibility, we describe these criteria in more general
setups.

Suppose Yi
i.i.d.∼ f(y), i = 1, . . . , n, but a parametric model Yi

i.i.d.∼ f(y; θ) is fitted
instead over an Euclidean model space Θ. Under suitable regularity conditions, the MLE
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is expected to converge to

θ̂ = arg max
θ∈Θ

1

n

n∑
i=1

log f(Yi; θ)

= arg max
θ∈Θ

1

n

n∑
i=1

log
f(Yi; θ)

f(Yi)

p→ arg max
θ∈Θ

Ef

{
log

f(Yi; θ)

f(Yi)

}
= arg min

θ∈Θ
Ef {− log f(Yi; θ)} ,

where the subscript f under E means that the expectation is computed over the density
f(·). To select an approriate model space Θ, AIC attempts to estimate

Ef

{
−2 log f(Yn+1; θ̂) | θ̂

}
,

where the expectation is taken over a new observation Yn+1 ∼ f . It does so by making a
correction to the log-likelihood of the observed data at the MLE θ̂:

AIC = −2
n∑
i=1

log f(Yi; θ̂) + 2 dim(Θ). (2.11)

The correction term 2 dim(Θ) penalizes the log-likelihood function evaluated at the same
data used to fit the model. This closely resembles the idea of estimating the optimism of
the training error in Mallows’ Cp. It can be shown that AIC (divided by n) is a consistent
estimator of its target as n→∞, but that proof is beyond the scope of this course.

To simplify the presentation, we assumed above that the data are i.i.d.. The same idea
can be easily extended to regression problems by replacing f(Yi; θ̂) with the conditional
likelihood given Xi.

Exercise 2.10. Show that for the normal linear model with known σ2, AIC concides
with Mallows’ Cp.

Let {Θ1, . . . ,Θm} be a collection of Euclidean model spaces. Then BIC is defined as

BIC(Θk) = −2
n∑
i=1

log f(Yi; θ̂k) + dim(Θk) log n,

where θ̂k is the MLE over Θk. BIC, as its name indicates is motivated by the Bayesian
perspective on model selection. If we assign a uniform prior on the model spaces,

π(Θk) =
1

m
, k = 1, . . . ,m,

Then it can be shown that, as n→∞, the posterior probability for a model is approxi-
mately given by

π(Θk | Data) ∝ e−BIC(Θk)/2.

Compared with AIC, BIC puts a larger penalty on model complexity and thus selects a
sparser model. In practice, a rule of thumb is that AIC is more suitable for predictions
and BIC is more suitable for selecting the “correct” model.5
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2.3.3 Algorithms for model selection

Besides the statistical considerations discussed above, there are also computational
challenges in model selection, as the number of submodels grows exponentially as the
number of regressors increases. This section describes some algorithms that explore a
large numberof of models more efficiently.

Our discussion thus far provides two useful insights for model selection. First, the RSS
‖Y −Xµ̂‖2 concides with the (negative) log-likelihood function in the classical normal
linear model and is indicative of predictive performance. Thus, it is reasonable to compare
different models (especially those with the same complexity) by their RSS. Second, a good
measure of model complexity is the degrees of freedom, i.e. the number of parameters
in the model that are allowed to vary freely. These insights motivate the best subset
algorithm, which selects the submodel with the smallest RSS for every degrees of freedom
k.

However, the best subset algorithm is still computationally intensive for large p
because it requires us to compute the RSS for all 2p submodel. Two greedy algorithms are
commonly used to reduce the number of search paths. The first is the forward stepwise
algorithm, which starts from the null model and greedily adds one unselected regressor at
a time that reduce RSS the most. The second is the backward stepwise algorithm, which
starts from the full model and greedily removes one unselected regressor at a time that
increases the RSS the least. There is of course no guarantee that these greedy algorithms
will select the aboslute best submodel for each degrees of freedom k. But they often select
a reasonably good submodel by examining only O(p2) submodels.

Example 2.11. Consider Figure 2.5, which shows the RSS for every submodel represented
by a set of indicies of regressors for p = 3. For k = 0, 1, 2, and 3,

• The best subset algorithm selects ∅, {3}, {1, 2}, and {1, 2, 3};

• The forward stepwise algorithm selects ∅, {3}, {2, 3}, and {1, 2, 3};

• The backward stepwise algorithm selects ∅, {2}, {1, 2}, and {1, 2, 3}.

A common feature of these algorithms is that they produce a path of solutions that is
indexed by model complexity. Once such a path is obtained, we can then select a single
model by using one of the quantitative criteria introduced above. We can also resort
to the model diagnostics and select a model that passes the visual checks or add new
regressors to the search space (e.g. add a quadratic term when the residual vs. fitted plot
shows a quadratic trend). There is no need to feel too uncomfortable about the ad hoc
nature of model selection. As G. Box summarized in a famous aphorism, “All models are
wrong, but some are useful.”

2.3.4 *Regularization

Thus far, our discussion on model selection has been fairly “discrete”. A single subset of
regressors is selected, and model complexity is measured by an integer (the number of
selected regressors). It is possible and in fact often desirable to “smoothen” this process
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Figure 2.5: An illustration of model selection.

via an important idea called regularization. Briefly speaking, regularization tries to
stablize the fitted model (or in statistical terms, reduce the variance of the estimator) by
penalizing model complexity.6

Our first example is the best subset algorithm, which can be rewritten as the solution
to the following optimization problem

minimize ‖Y −Xβ‖2

subject to ‖β‖0 ≤ k,

where ‖β‖0 = |{j | βj 6= 0}| is the number of non-zero entries in β (the `0-“norm”). Because
the minimal value of this problem is decreasing in k, the solution path for k = 0, . . . , p
can be reconstructed by the solution to the following unconstrained optimization problem

minimize ‖Y −Xβ‖2 + λ‖β‖0,

where λ‖β‖0 is the regularzing penalty to the least squares objective ‖Y − Xβ‖2 and
λ ≥ 0 is a tuning parameter that controls the amount of regularization.

However, the l0-“norm” ‖β‖0 is a difficult penalty to work with computationally. The
most widely used alternatives are the ridge regression (l2-norm penalty) that solves

min
β

‖Y −Xβ‖2 + λ‖β‖22, (2.12)

and the lasso (l1-norm penalty) that solves

min
β

‖Y −Xβ‖2 + λ‖β‖1. (2.13)
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One can also combine the l1 and l2 penalties and arrive at the elastic net regularization

min
β

‖Y −Xβ‖2 + λ{(1− α)‖β‖2/2 + α‖β‖1}, (2.14)

which often works well for correlated regressors (0 ≤ α ≤ 1 is another tuning parameter).

Exercise 2.12. Show that the ridge regression estimator is given by

β̂λ = (XTX + λI)−1XTY

using the following two methods:

(i) Matrix calculus (see Section 1.4.2); and

(ii) Transforming (2.12) to an ordinary least squares problem of the form in (1.5).

Exercise 2.13. Suppose someone gave you a computationally efficient algorithm that
can solve the lasso problem (2.13). Describe how you can modify it to also solve the
elastic net problem (2.14).

2.3.5 **Inference after model selection

After a model is selected (e.g. by any of the algorithms described in Section 2.3.3), a
common pitfall is to pretend that the selected regressors are determined a priori and
apply the standard inference procedures (e.g. those described in Section 1.4.3). This is
problematic because the selected subset of regressors is not fixed; in fact, it depends on
the realized Y and incurs selection bias.

There are two common solutions to inference after model-selection:

(i) One can split the sample and use some observations for model selection and the
others for statistical inference;

(ii) One can try to account for model selection, by excluding the information used by
model selection from statistical inference.

The second solution is indeed an active research area in statistics.
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2.4 Practical 3: Linear model diagnostics and selection

2.4.1 Model diagnostics

Applying the plot function to the output of lm gives four useful diagnostic plots (see
Section 2.1 and plot.lm for further details). Here we demonstrate these plots using the
palmerpenguins dataset, which contain measurements for 344 penguins. First, execute
the code below in R and comment on the output.

# install.packages("palmerpenguins") # uncomment if not installed yet
library(palmerpenguins)
summary(penguins)
table(penguins$species, penguins$sex)
boxplot(body_mass_g ~ species * sex, penguins)
plot(body_mass_g ~ flipper_length_mm, penguins)
summary(fit1 <- lm(body_mass_g ~ flipper_length_mm, penguins))
abline(fit1, col = "red")

The par function is used to set plotting parameters. Here we set up the display so that
four plots shown by plot.lm are produced on the same screen, saving the old parameters
in old_par. We then reinstate the old parameters after the plot has been produced.

> old_par <- par(mfrow = c(2, 2))
> plot(fit1)
> par(old_par)

The output can be found in Figure 2.6. There is nothing extraordinary in these plots.
The only noteworthy observations are a weak quadratic trend in the “Residual vs. Fitted”
plot and a weak decreasing trend in the “Scale-Location” plot. The first observation
might motivate us to include a quadratic term in the linear model. This can be done by
modifying the model formula as in the code below. Do you see an improvement using the
updated model?

fit2 <- lm(body_mass_g ~ flipper_length_mm + I(flipper_length_mm^2), penguins)
anova(fit, fit2)
plot(fit2)

2.4.2 Model selection and *regularization

Let us remove the rows with NA entries and split the dataset into two.

set.seed(42)
data <- na.omit(penguins)
n <- nrow(data)
training_index <- sample(n, 200)
training_data <- data[training_index, ]
test_data <- data[-training_index, ]

54



3000 4000 5000

−
10

00
0

50
0

15
00

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

40
170

315

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Theoretical Quantiles
S

ta
nd

ar
di

ze
d 

re
si

du
al

s

Q−Q Residuals

40
170

315

3000 4000 5000

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
40

170315

0.000 0.005 0.010 0.015

−
3

−
1

0
1

2
3

4

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

Residuals vs Leverage

40
170

32

Figure 2.6: Diagnostic plots for a linear model.

We will first fit a “full” linear model with all main effects and interaction terms.

formula <- body_mass_g ~ (species + island + bill_length_mm +
bill_depth_mm + flipper_length_mm)^2

fit_full <- lm(formula, training_data, x = TRUE)

The stepAIC function in the MASS package does forward/backward model selection
using AIC as the criterion. Run the code yourself and make sense of what it does from
the output.

library(MASS)
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fit_backward <- stepAIC(fit_full, direction = "backward")
coef(fit_backward)

We will use the glmnet package to demonstrate model regularization.

install.packages("glmnet")
library(glmnet)

fit_lasso <- cv.glmnet(fit_full$x[, -1],
training_data$body_mass_g,
alpha = 1)

plot(fit_lasso)
coef(fit_lasso, s = "lambda.min")

fit_ridge <- cv.glmnet(fit_full$x[, -1],
training_data$body_mass_g,
alpha = 0)

coef(fit_ridge, s = "lambda.min")

fit_elasticnet <- cv.glmnet(fit_full$x[, -1],
training_data$body_mass_g,
alpha = 0.2)

coef(fit_elasticnet, s = "lambda.min")

Which method returns the sparsest coefficients?
To compare the performance of these models, we can use the test_data that was

held out in training the models. For each model, we make the predictions and calculate
the root mean square error using test_data.

pred_full <- predict(fit_full, test_data)
RMSE_full <- sqrt(mean((pred_full - test_data$body_mass_g)^2))

pred_backward <- predict(fit_backward, test_data)
RMSE_backward <- sqrt(mean((pred_backward - test_data$body_mass_g)^2))

x_test <- model.matrix(formula, test_data)[, -1]

pred_ridge <- predict(fit_ridge, x_test, s = "lambda.min")
RMSE_ridge <- sqrt(mean((pred_ridge - test_data$body_mass_g)^2))

pred_lasso <- predict(fit_lasso, x_test, s = "lambda.min")
RMSE_lasso <- sqrt(mean((pred_lasso - test_data$body_mass_g)^2))

pred_elasticnet <- predict(fit_elasticnet, x_test, s = "lambda.min")
RMSE_elasticnet <- sqrt(mean((pred_elasticnet - test_data$body_mass_g)^2))
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> c(RMSE_full, RMSE_backward, RMSE_ridge, RMSE_lasso, RMSE_elasticnet)
[1] 340.3524 337.8536 337.0227 337.3427 336.7763

Which method gives the best predictions?

2.4.3 Exercises

Exercise 2.14. There are some NA (Not Available) entries in the penguins dataset. Find
out how lm handles the missing values.

Exercise 2.15. Color the body mass vs. flipper length scatterplot using species by

plot(body_mass_g ~ flipper_length_mm, penguins, col = species)

What do you observe? Given these observations, how would you update your linear
model? Discuss your choice with your partner.

Exercise 2.16. Consider Anscombe’s datasets, available in the R package datasets:

library(datasets)
anscombe

The next chunk of code shows four simple linear regression. The output can be found in
Figure 2.7. What do you notice from the plots?

par(mfrow = c(2, 2))
for (i in 1:4) {

x <- anscombe[[paste0("x", i)]]
y <- anscombe[[paste0("y", i)]]
fit <- lm(y~x)
plot(x, y, type = "p", pch = 16, xlim = c(3,20), ylim = c(3,13),

xlab = paste0("x", i), ylab = paste0("y", i))
title(paste("y ~ ",

signif(coef(fit)[1], 5), " + ",
signif(coef(fit)[2], 5), "*x"))

abline(fit, col = "red")
}

These synthetic datasets demonstrate some of the ways in which linear models can fail,
and why we might need the diagnostic plots above. Run these diagnostics on these
datasets and discuss what, if anything, can be done to fix these issues with your partner.

Exercise 2.17. Let us now briefly look at another dataset on house prices.

file_path <- "https://raw.githubusercontent.com/AJCoca/SM19/master/"
HousePrices <- read.csv(paste0(file_path, "HousePrices.csv"))

This data gives the sale prices (in US dollars) of houses in New York along with various
factors that are thought to be relevant for predicting sale price. To fit a model of
Sale.price against all other variables in HousePrices, we can do the following.

57



5 10 15 20

4
6

8
10

12

x1

y1
y = 3.0001 + 0.50009 * x

5 10 15 20

4
6

8
10

12

x2

y2

y = 3.0009 + 0.5 * x

5 10 15 20

4
6

8
10

12

x3

y3

y = 3.0025 + 0.49973 * x

5 10 15 20

4
6

8
10

12

x4

y4
y = 3.0017 + 0.49991 * x

Figure 2.7: Anscombe’s quartet.

HousePricesLM <- lm(Sale.price ~ ., data = HousePrices)

The predict function (try ?predict.lm) can be used to give x∗T β̂ for a new observation
x∗. The observation x∗ must be supplied as a data frame:

newdata <- data.frame("Bedrooms"=5, "Bathrooms"=2, "Living.area"=1400,
"Lot.size"=7000, "Year.built"=1950, "Property.tax"=9000)

(i) Apply the confint function to HousePricesLM to obtain confidence intervals for
the coefficients.

(ii) Use the interval option of the predict function to get confidence intervals for
x∗Tβ and a prediction interval for Y ∗ ∼ N(x∗Tβ, σ2).

(iii) Which model is selected using backward stepwise selection with the AIC?
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2.5 Confounding and causality

2.5.1 Omitted-variables bias and the Yule-Simpson paradox

Misspecified models may also arise if some covariates are omitted in the regression. Recall
the partial regression representation of the OLS estimator in Proposition 1.11. For the
partition X = (X0X1), let the correspoding OLS estimator be

β̂ =

(
β̂0

β̂1

)
= (XTX)−1XTY.

By Proposition 1.11, we have

β̂0 = (X̃T
0 X̃0)−1X̃T

0 Y,

where X̃0 = (I − P1)X0 where P1 is the orthogonal projection matrix onto X1. Now if
we ignore the predictors X1 and only use X0 in the “short” linear regression, we would
have obtained

β̂0,short = (XT
0 X0)−1XT

0 Y.

In general, β̂0 6= β̂0,short and this phenomenon is often known as omitted variable bias
or confounding. To understand why confounding occurs, let’s look at the following
decomposition of Y in our proof of Proposition 1.11:

Y = (X0β̂0 + P0X1β̂1︸ ︷︷ ︸
P0Y

) + (I − P0)X1β̂1︸ ︷︷ ︸
(P−P0)Y

+ R︸︷︷︸
(I−P )Y

.

We see that
X0β̂0,short = P0Y = X0β̂0 + P0X1β̂1 6= X0β̂0,

and the last inequality is true if P0X1 6= 0 and β̂1 6= 0 (what do these mean geometrically?).
In other words, confounding means that marginal and conditional associations are

generally different. In extreme cases, β̂0 and β̂0,short can have different signs. This is
known as the Yule-Simpson paradox. One of the best-known examples is the 1973 Berkeley
admission data; see Table 2.1. Examining the university-wide statistics, men appear to
be more likely to be admitted than women. However, if we use the department-level
statistics, for most departments women had a higher admission rate. This apparent
paradox can be explained by the observation that there appear to be more men applying
to departments with a higher admission rate.

Fundamentally, the reason behind Simpson’s paradox is that a regression coefficient
only measures (conditional) correlation and does not necessarily indicate causation; see
Figure 2.8 for an amusing illustration.8

2.5.2 Instrumental variables and two-stage least squares

Instrumental variables method is an approach to overcome unmeasured confounding
(the relevant predictors are not just omitted but cannot be observed). To introduce the
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Department Men Women
Applicants Admitted Applicants Admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%
...

...
...

...
...

Total 8442 44% 4321 35%

Table 2.1: Berkeley admission data.7

Figure 2.8: Correlation does not imply causation.

basic idea, we assume the observations (X1, Y1), . . . , (Xn, Yn) ∈ Rp×R are i.i.d.. We can
concisely write a confounded linear model as

Yi = XT
i β + εi, E(εiXi) 6= 0, i = 1, . . . , n, (2.15)

As discussed above, the OLS estimator will typically not estimate β.
To address this, we can use some instrument variables Zi ∈ Rq such that (Xi, Yi, Zi), i =

1, . . . , n are i.i.d. and E(Ziεi) = 0. Thus β satisfies

E{Zi(Yi −XT
i β)} = 0.

This gives us q linear equations with p unknowns. If q = p (this is called the just identified
case), we have

β = {E(ZiX
T
i )}−1 E(ZiYi),

which can be estimated using the data by

β̂ =

{
1

n

n∑
i=1

ZiX
T
i

}−1
1

n

n∑
i=1

ZiYi =

{
n∑
i=1

ZiX
T
i

}−1 n∑
i=1

ZiYi,
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provided that E(ZiX
T
i ) and

∑n
i=1 ZiX

T
i are non-singular. If q > p (this is called the

over-identified case), we can use a function g : Rq → Rp and solve

E{g(Zi)(Yi −XT
i β)} = 0.

The corresponding estimator is given by

β̂ =

{
n∑
i=1

g(Zi)X
T
i

}−1 n∑
i=1

g(Zi)Yi. (2.16)

Thus, the just identified case corresponds to using the identity function as g. Under mild
regularity conditions, it can be shown that β̂ is consistent (β̂ p→ β) and asymptotically
normal (

√
n(β̂−β) converges to a normal distribution with mean 0) as long as E(g(Zi)X

T
i )

is non-singular.
In practice one has to choose the function g. It can be shown that the limiting variance

of
√
n(β̂ − β) is minimized by choosing g(Zi) = E(Xi | Zi). This is unknown but can

be approximated using the data. A common choice is to use a linear working model for
E(Xi | Zi) and use

g(Zi) = γ̂TZi, where γ̂ = arg min
γ∈Rq×p

n∑
i=1

‖Xi − γ̂TZi‖2 = arg min
γ1,...,γp∈Rq

n∑
i=1

p∑
j=1

(Xij − γ̂Tj Zi)2.

In matrix form (X ∈ Rn×p, Z ∈ Rn×q), we can write this as

γ̂ = (ZTZ)−1ZTX,

assuming Z has rank q. Denote PZ = Z(ZTZ)−1Z as the projection matrix onto the
column space of Z (so PZ = P 2

Z = P TZ ) and X̂ = PZX as the fitted values in the X on Z
regression (so X̂i = γ̂TZi). We can write (2.16) with the above choice of g as

β̂TSLS =

(
n∑
i=1

X̂iX
T
i

)−1 n∑
i=1

X̂iYi

=(X̂T X̂)−1X̂TY (2.17)

=(XTPZX)−1XTPZY

=(X̂T X̂)−1X̂T Ŷ ,

where Ŷ = PZY . The expression in (2.17) is why this β̂TSLS is called the two-stage
least squares estimator: we first regress X on Z and then regress Y on the fitted values
of X from the first regression. This has a clear geometric interpretation: we project
X and Y onto the column space of Z before calculating the OLS estimator. From a
statistial standpoint, we obtain an (asymptotically) unbiased estimator of β by using the
randomness of X generated by the intrumental variable Z, which is not confounded with
Y . This can be contrasted with the partial regression characterization in Proposition 1.11:
in an linear regression of Y on X and Z, the OLS coefficient of X is given by

(X̃T X̃)−1X̃T Ỹ = (XT (I − PZ)X)−1XT (I − PZ)Y,
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where X̃ = (I − PZ)X and Ỹ = (I − PY )Y . So in ordinary regression analysis that
“adjusts for” Z (instead of using Z as instrumental variables), we project X and Y onto
the orthogonal complement of the column space of Z before calculating the OLS estimator.

Exercise 2.18. Prove the equivalent expressions of the two-stage least squares estimator
β̂TSLS above.

2.5.3 **Linear structural equation models

The confounded linear model in (2.15) can be confusing if you are not used to think about
causality. From a mathematical standpoint, (2.15) is satisfied with any choice of β. What
(2.15) is really meant to describe is a structural equation, that is, if we can manipulate
the system and set Xi to some value, then the response variable Yi will be generated
according to (2.15). To formally describe this, we need to think beyond the observations.
If we let Yi(xi) denote the potential outcome of Yi under an intervention that sets Xi to
xi, then by calling (2.15) a structural equation we mean

Yi(xi) = xTi β + εi for all xi, i = 1, . . . , n.

Again, the key point is that this equation needs to hold for all interventions.

Z X Y

Figure 2.9: Instrumental variable graph.

We may use several structural equations to describe the causal relationship between a
number of variables. In this case, it is useful to visualize the causal dependence using
a directed (mixed) graph. The standard instrumental variable graph can be found in
Figure 2.9. For simplicity, let us assume X and Z are univariate and mean 0 (so we do
not need to include an intercept term). The corresponding linear structural equation
model is given by

X(z) = γz + εX ,

Y (z, x) = βx+ εY ,
(2.18)

and εZ is independent of (εX , εY ). Directed edges in Figure 2.9 indicate direct causal
dependence, and the lack of the Z → Y edge means Z can only influence Y indirectly
through X (thus Y (z, x) does not depend on z). The bidirected edge X ↔ Y in Figure 2.9
means that X and Y are confounded by exogenous sources, possibly due to a unobserved
common cause. Mathematically speaking, this means that εX and εY may be correlated.

The equations in (2.18) describe the causal dependence between Z, X, and Y . To
obtain the equations, we first plug in a realization of Z to the first equation to obtain
the realized X, and then plug in the realized (Z,X) to the second equation to obtain Y .
This is called recursive substitution and results in the equations

X = γZ + εX ,

Y = βX + εY ,
(2.19)

62



which look like a regression model. It is clear that εY and X may be correlated because
εX and εY are allowed to be correlated (due to the X ↔ Y edge in Figure 2.9). This
motivates the confounded linear model in (2.15), in which β can be interpreted as the
causal effect of X on Y .
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2.6 Practical 4: Interpreting linear models

2.6.1 Yule-Simpson paradox

We first give a demonstration of the Yule-Simpson paradox using palmerpenguins dataset.
The correlation between body mass and bill depth is negative. This surprising phenomenon
disappears when we condition on species.

library(palmerpenguins)
plot(body_mass_g ~ bill_depth_mm, penguins, col = species)
abline(lm(body_mass_g ~ bill_depth_mm, penguins), col = "blue")
fit <- lm(body_mass_g ~ 0 + species + bill_depth_mm, penguins)
abline(fit$coef[1], fit$coef[4], col = "black")
abline(fit$coef[2], fit$coef[4], col = "red")
abline(fit$coef[3], fit$coef[4], col = "green")
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Figure 2.10: Yule-Simpson paradox.

2.6.2 Yule on the causes of poverty

Legendre (1805) and Gauss (1809) developed regression techniques to fit data on orbits
of astronomical objects. The relevant variables were known from Newtonian mechanics,
and so were the functional forms of the equations connecting them. Measurement could
be done with high precision. Much was known about the nature of the errors in the
measurements and equations. Furthermore, there was ample opportunity for comparing

64



predictions to reality. Later on, Quetelet (1835) wanted to uncover “social physics”—
the laws of human behaviour—by using statistical technique. Investigators were using
regression on social science data where the conditions of a normal linear model did not
hold, even to a rough approximation—with consequences that need to be explored.

Much of this example is taken from Freedman (Section 1.4), who re-investigated the
dataset and argument in the following paper.

• Yule, G. U. (1899). An investigation into the causes of changes in pauperism in
England, chiefly during the last two intercensal decades. (part i.) Journal of the
Royal Statistical Society, 62 (2), 249–286. doi:10.1111/j.2397-2335.1899.tb03709.x.

> path <- "https://www.statslab.cam.ac.uk/~qz280/teaching/modelling-2025/"
> data <- read.table(file.path(path, "yule.csv"))
> data

paup outrelief old pop
Kensington -73 -95 4 36
Paddington -53 -88 15 11
Fulham -69 -79 -15 74
Chelsea -36 -79 -19 24
St. George’s -54 -82 13 -4
Westminster -48 -73 5 -9
Marylebone -19 -64 0 -3
St. John, Hampstead -39 -61 3 41
St. Pancras -39 -65 1 7
Islington -41 -65 1 32
Hackney -67 -78 -9 50
St. Giles’ -24 -70 3 -15
Strand -36 -73 -3 -19
Holborn -21 -67 -5 -7
City -21 -36 13 -32
Shoreditch -48 -79 8 0
Bethnal Green -54 -81 2 6
Whitechapel -65 -94 -7 -7
St. George’s East -63 -94 -2 -2
Stepney -66 -90 -13 1
Mile End -57 -85 2 13
Poplar -63 -80 2 35
St. Saviour’s -48 -78 0 11
St. Olave’s -43 -68 2 10
Lambeth -43 -62 -1 22
Wandsworth -77 -82 -9 68
Camberwell -70 -86 -17 68
Greenwich -45 -63 -6 31
Lewisham -59 -76 0 42
Woolwich -24 -80 19 10
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Croydon -62 -71 1 42
West Ham -62 -51 -14 103

The columns represent percentage changes in pauperism (the state of being supported
at public expense), out-relief (supported outside “poorhouses”), population aged over 65,
and the population from 1871 to 1881 in different areas. Yule used a linear model to
explain the changes in pauperism and got the following equation from ordinary least
squares:

∆paup = 13.19 + 0.755∆outrelief− 0.022∆old− 0.322∆pop + error.

The coefficient of ∆outrelief being relatively large and positive, Yule concludes that
out-relief causes poverty.

The causal interpretation of the coefficient 0.755 is the following. Other things
being equal, if ∆outrelief increased by 1%—the adminstrative district supports more
people outside the poorhouses—then ∆paup will go up by 0.755%. This is a quantitative
inference. Out-relief causes an increase in pauperism—a qualitative inference. The point
of introducing ∆old and ∆pop into the quation is to control for possible confounders,
implementing the idea of “other things being equal”. For Yule’s argument, it is important
that the coefficient of ∆out be significantly positive. Qualitative inferences are often the
important ones; with regression, the two aspects are woven together.

The exact inference for normal linear models had not been developed in Yule’s time.9

Using modern software we can easily obtain, for example, confidence intervals of the
coefficients.

> fit <- lm(paup ~ outrelief + old + pop, data)
> summary(fit)

Call:
lm(formula = paup ~ outrelief + old + pop, data = data)

Residuals:
Min 1Q Median 3Q Max

-17.475 -5.311 -1.829 3.132 25.335

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.88356 10.36722 1.243 0.224
outrelief 0.75209 0.13499 5.572 5.83e-06 ***
old 0.05560 0.22336 0.249 0.805
pop -0.31074 0.06685 -4.648 7.25e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.547 on 28 degrees of freedom
Multiple R-squared: 0.6972, Adjusted R-squared: 0.6647
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F-statistic: 21.49 on 3 and 28 DF, p-value: 2.001e-07

> confint(fit)
2.5 % 97.5 %

(Intercept) -8.3527245 34.1198351
outrelief 0.4755856 1.0286034
old -0.4019236 0.5131276
pop -0.4476771 -0.1737995

Yule’s method has a number of potential pitfalls:

(i) Districts with more efficient administrations were building poorhouses and reducing
poverty. So efficiency of adminstration is then a confounder, influencing both the
presumed causes and its effect. Economics may be another confounder.

(ii) Yule’s results are not consistent across time and geography. For example, the same
equation for the 1881-1891 period is

∆paup = 1.36 + 0.324∆outrelief + 1.37∆old− 0.369∆pop + error.

(iii) Yule has established association: conditional on the covariates, there is a positive
association between ∆paup and ∆outrelief. Is this association causal? If so, which
way do the causal arrows point? For instance, a parish may choose not to build
poorhouses in response to a short-term increase in the number of paupers, in which
case pauperism causes out-relief. Likewise, the number of paupers in one area may
well be affected by relief policy in neighbouring areas.

Yule was aware of the problems and indeed withdrew all causal claims in a foonote:
“Strictly speaking, for ‘due to’ read ‘associated with” ’.

Statistical inference could have been made at different levels for this dataset:

(i) Descriptive inference tells us about the data that we happen to have. For example,
we can say pauperism on average reduced by 49.7% across the 32 areas from 1871
to 1881.

(ii) Predictive inference approximate the value of ∆paup. For example, we can use
Yule’s equation and the values of ∆outrelief, ∆old, ∆pop from 1891 to 1901 to
predict further changes in pauperism in these areas.

(iii) Causal inference claims to tell us what will happen to some of the numbers if
you intervene to change other numbers. For example, if Yule could have used his
findings to convince the administrators of Islington to build 10% more poorhouses,
how much would that change pauperism there?
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2.6.3 Economic return to schooling

Statistical methods for social science data have seen much development after Yule. We
next investigate a dataset in the following paper that was used to estimate the economic
effect of education. The dataset was compiled from the National Longitudinal Survey of
Young Men (NLSYM) and contains a sample of 3010 young men at the age of 14 to 24 in
1966 who were followed up until 1981.

• Card, D. (1995). Using geographic variations in college proximity to estimate
the return to schooling. In Christofides, L. N., Grant, E. K., and Swidinsky, R.,
editors, Aspects of Labor Market Behaviour: Essays in Honour of John Vanderkamp.
University of Toronto Press.

> # install.packages("ivmodel")
> library(ivmodel)
> vars <- c("lwage", "educ", "exper", "expersq", "black", "south", "smsa", "nearc4")
> data <- card.data[, vars]
> head(data)

lwage educ exper expersq black south smsa nearc4
1 6.306275 7 16 256 1 0 1 0
2 6.175867 12 9 81 0 0 1 0
3 6.580639 12 16 256 0 0 1 0
4 5.521461 11 10 100 0 0 1 1
5 6.591674 12 16 256 0 0 1 1
6 6.214608 12 8 64 0 0 1 1

We focus on the variables used in the original analysis by Card, including

• lwage: log wage in 1976.

• educ: years of education.

• exper: years of labor force experience in 1976.

• expersq: square of exper.

• black: race is black.

• south: lived in the South in 1976.

• smsa: lived in SMSA (Standard Metropolitan Statistical Area) in 1976.

• nearc4: grew up near a four-year college.

Other variables in the dataset can be found in ?card.data.
Worried about potential unmeasured confounders between education and income

(such as motivation of the young men), Card used proximity to a four-year college as an
instrumental variable. His main analysis can be reproduced by
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> fit <- ivmodelFormula(lwage ~ educ + exper + expersq + black + south + smsa |
nearc4 + exper + expersq + black + south + smsa, data)

> fit
First Stage Regression Result:

F=16.71759, df1=1, df2=3003, p-value is 4.4515e-05
R-squared=0.005536144, Adjusted R-squared=0.005204987
Residual standard error: 1.942531 on 3004 degrees of freedom
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Coefficients of k-Class Estimators:

k Estimate Std. Error t value Pr(>|t|)
OLS 0.000000 0.074009 0.003505 21.113 < 2e-16 ***
Fuller 0.999667 0.128981 0.047601 2.710 0.00677 **
TSLS 1.000000 0.132289 0.049233 2.687 0.00725 **
LIML 1.000000 0.132289 0.049233 2.687 0.00725 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Some of the output is truncated. The first thing to see is the F -statistic of the
first-stage regression, which indicates the “strength” of the instrumental variable (recall
that we require E(g(Zi)Xi) to be non-singular in Section 2.5.2). When the instrument is
too weak, the asymptotic inference can be inaccurate. The ivmodel package uses several
instrumental variables methods (Fuller, TSLS, LIML); they are asymptotically equivalent
in the standard regime (fixed p, fixed instrument strength, n → ∞). We see from the
output that Card’s instrumental variable analysis supports the hypothesis that more
education led to increased income in a causal way. In fact, in this case the TSLS estimate
is not too different from the OLS estimate.

We can also obtain the two-stage least squares estimate by solving two least-squares
problem as shown below. The estimated causal effect 0.1322888 (i.e. one more year of
education increases income by about 14%) is identical to that returned by the ivmodel
function.

> data$educ.fitted <-
fitted(lm(educ ~ nearc4 + exper + expersq + black + south + smsa))

> fit2 <- lm(lwage ~ educ.fitted + exper + expersq + black + south + smsa, data)
> summary(fit2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7527813 0.8495104 4.418 1.03e-05 ***
educ.fitted 0.1322888 0.0504306 2.623 0.00876 **
exper 0.1074980 0.0218186 4.927 8.81e-07 ***
expersq -0.0022841 0.0003423 -6.674 2.96e-11 ***
black -0.1308019 0.0541582 -2.415 0.01579 *
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south -0.1049005 0.0236342 -4.438 9.39e-06 ***
smsa 0.1313237 0.0308626 4.255 2.15e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4005 on 3003 degrees of freedom
Multiple R-squared: 0.1871, Adjusted R-squared: 0.1854
F-statistic: 115.2 on 6 and 3003 DF, p-value: < 2.2e-16

2.6.4 Exercises

Exercise 2.19. The green line in Figure 2.10 appears to provide a poor fit to the cloud
of green points. What happened and how can you fix it?

Exercise 2.20. Yule presented his paper at a meeting of the Royal Statistical Society
on 21 March 1899. There was a lively discussion.10

(i) According to Professor FY Edgeworth, if one diverged much from the law of normal
errors, “one was on an ocean without rudder or compass”; this normal law of error
“was perhaps more universal than the law of gravity.” Do you agree? Discuss briefly.

(ii) According to Sir Robert Griffen, practical men who were concerned with poor-law
administration knew that “if the strings were drawn tightly in the matter of out-door
relief, they could immediately observe a reduction of pauperism itself.” Yule replied,

“he was aware that the paper in general only bore out conclusions which
had been reached before... but he did not think that lessened the interest
of getting an independent test of the theories of practical men, purely
from statistics. It was an absolutely unbiased test, and it was always an
advantage in a method that it was unbiased.”

What do you think of this reply? Is Yule’s test “purely from statistics”? Is it Yule’s
methods that are “unbiased,” or his estimates of the parameters given his model?

Discuss the following questions further with your partner:

(iii) What are the real-world assumptions in using Yule’s equation for prediction?

(iv) How can you validate Yule’s equation as predictive inference and as causal inference?

(v) How can you use mathematics to formally distinguish a causal model from a
predictive model?

Exercise 2.21. Do you think proximity to four-year college is a good instrumental
variable for estimating the economic return to schooling? Discuss with your partner.

Exercise 2.22. In our analysis of Card’s dataset, the standard error of the causal effect
of education in fit2, obtained by using lm twice, is different from that in fit obtained by
using ivmodel. Can you give an explanation to this observation? [Hint: Try calculating
the variance of β̂TSLS by pretending ZTX is a constant.]
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Notes
1The LAD estimator is a robust regression method that tries to limit the influence of outliers.
2Some other texts define MSPE as E[{µ(x)− xT β̂}], which we shall refer to as the mean squared error.
3One simple instance is Stein’s paradox, which is discussed in the Principles of Statistics course in

detail.
4Taken from Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning

(2nd ed.). New York: Springer, Figure 7.2.
5In a Bayesian setup, it is not necessary to select a single model. An alternative and perhaps more

desirable approach is called Bayesian model averaging.
6The same idea is frequently used to solve ill-posed inverse problems in applied mathematics and

engineering, often under the name Tikhonov regularization.
7Freedman, D., Pisani, R., & Purves, R. (2007). Statistics. New York: W W Norton, p.18.
8https://xkcd.com/552.
9In fact, Yule calculated the least squares estimate with two slide rules and the “Brunsviga Arithmometer”—

a pin-wheel calculating machine that could add, substract, multiply, and divide.
10The discussion is published in Journal of the Royal Statistical Society, Volume 62, Issue 2, June

1899, Pages 287–295, https://doi.org/10.1111/j.2397-2335.1899.tb03710.x. The first two questions are
rephrased from Freedman Section 7.5, Question 20.
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Chapter 3

Exponential families

3.1 Definition and examples

This Chapter provides an introduction to the theory of expoential families, which expands
the classical statistical theory based on normality. Exponential families are basic building
blocks of the generalized linear models discussed in the next Chapters and more complex
statistical models.

3.1.1 Exponential tilting

Exponential families are obtained by exponentially “tilting” any density function. Suppose
f0(y), y ∈ Y ⊆ Rd is a density function with respect to a dominating measure m(dy). By
exponential tilting, we mean a collection of density functions given by

f(y; θ) ∝ eθTT (y)f0(y).

By normalizing the density functions, we obtain

f(y; θ) = eθ
TT (y)−K(θ)f0(y), (3.1)

where
K(θ) = log

∫
Y
eθ
TT (y)f0(y)m(dy).

Some terminologies for the terms in (3.1):

• θ ∈ Θ ⊆ Rp is called the natural parameter or canonical parameter.

• T (y) ∈ Rp is called the sufficient statistic.

• f0(y) is called the carrying density.

• K(θ) is called the cumulant function.

• Θ =
{
θ ∈ Rp |

∫
Y e

θTT (y)f0(y)m(dy) <∞
}

is called the natural parameter space.
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Obviously, f(y; 0) = f0(y), so 0 ∈ Θ. Furthermore, for any θ0 ∈ Θ, we may rewrite
the density function as

f(y; θ) = e(θ−θ0)TT (y)−{K(θ)−K(θ0)}f(y; θ0),

So comparing to (3.1), we see that the same exponential family can be obtained by
exponentially tilting any density function f(y; θ0) within it.

Exercise 3.1. Show that Θ is a convex set and K(θ) is a convex function on Θ. [Hint:
Use Hölder’s inequality.]

3.1.2 Examples

The first motivation to study exponential families is that they contain many important
probability distributions. Next we go through some examples.

Example 3.2 (Normal distribution). The density function of N(µ, 1) is given by

f(y;µ) =
1√
2π
e−(y−µ)2/2

= exp
(
µ︸︷︷︸
θ

y︸︷︷︸
T (y)

−µ2/2︸︷︷︸
K(θ)

) 1√
2π
e−y

2/2︸ ︷︷ ︸
f(y;0)

.

Example 3.3 (Poisson distribution). The Poisson distribution with rate λ can be obtained
by exponentially tilting the probability mass function of Poisson(1):

f0(y) = e−1 1

y!
, y = 0, 1, . . . .

We can first compute the cumulant function

K(θ) = log
∞∑
y=0

eθye−1 1

y!
= −1 + log

∞∑
y=0

(
eθ
)y 1

y!
= eθ − 1

The exponentially tilted density is then given by

f(y; θ) = eθy−K(θ)f0(y)

= eθy−e
θ 1

y!

= λye−λ
1

y!
, for λ = eθ.

Thus, the natural parameter θ is related to the mean parameter λ via θ = log λ.

Example 3.4 (Binomial distribution). The probability mass function of a Binomial(n, π)
with fixed n is given by

f(y;π) =

(
n

y

)
πy(1− π)n−y = ey log π

1−π+n log(1−π)

(
n

y

)
, y = 0, 1, . . . , n.
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So the natural parameter is the so-called logit function or log odds

θ(π) = log
π

1− π

that maps (0, 1) to R. By inversing this, we can obtain the usual parameter for binomial
by the expit function

π(θ) =
eθ

1 + eθ
.

The cumulant function is given by

K(θ) = −n log(1− π) = n log(1 + eθ).

More rigorously, we should further normalize the
(
n
y

)
term as it does not add up to 1.

But for all practical purposes, it is enough to obtain a cumulant function K(θ) up to a
constant difference.

Exercise 3.5. Show the following distributions are exponential families and find their
natural parameter, sufficient statistic, and cumulant function:

(i) The normal distribution

f(y;µ, σ2) =
1√

2πσ2
e−

(y−µ)2

2σ2 , y ∈ R .

(ii) The Gamma distribution

f(y;α, β) =
βα

Γ(α)
yα−1e−βy, y > 0.

(iii) The negative binomial distribution with fixed k

f(y;π) =

(
y + k − 1

y

)
πk(1− π)y, y = 0, 1, 2, . . . .

Exercise 3.6. Consider the multinomial distribution Multinomial(n, π) with probability
mass function given by

f(y;π) =
n!

y1! · · · yL!
πy1

1 · · ·π
yL
L .

Suppose n is known but π = (π1, . . . , πL) is unknown.

(i) Write this as an exponential family.

(ii) We say an exponential family is minimal if the sufficient statistics are linearly
independent. Is your answer in (i) minimal? If not, can you write it as an alternative
exponential family that is minimal and give its cumulant function? [Hint: Use the
natural parameters log(π1/πL), . . . , log(πL−1/πL).]
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3.2 Properties of exponential families

Next, we introduce some important properties about one-parameter exponential families.
Many of the results below can be readily extended to multi-parameter exponential families.

3.2.1 Cumulants

The moments of an exponential family distribution (3.1) can be easily computed by its
cumulant function. Recall that for a random variable Y , its moment generating function
is given by

M(t) = E
(
etY
)
,

and its cumulant generating function is defined as

K(t) = logM(t).

Suppose M(t) is infinitely differentiable at 0 (which requires M(t) to be well defined in a
neighbourhood of 0). Then we have the following Maclaurin expansions

M(t) =
∞∑
r=0

E(Y r)
tr

r!
,

K(t) =

∞∑
r=0

κr
tr

r!
,

where E(Y r) = M (r)(0) and κr = K(r)(0). The values κ1, κ2, . . . are called cumulants of
the probability distribution and are closely related to the moments. Cumulants are useful
because they are the only “summaries” of the probability distribution that are additive
(with respect to sum of i.i.d. variables). In particular, the first two cumulants are the
mean and variance respectively. The third and fourth cumulants, after normalization, are
the called the skewness and kurtosis of this distribution respectively.

Exercise 3.7. Verify that κ1 = E(Y ), κ2 = Var(Y ), κ3 = E(Y − κ1)3, and κ4 =
E(Y − κ1)4 − 3κ2

2.

The exponential family {f(y; θ) | θ ∈ Θ} is called regular if Θ is an open set. Nearly
all exponential families and certainly all the exponential families we will consider are
regular. For a regular exponential family with a one-parameter natural parameter θ, the
moment generating function (for small enough t) is given by

Mθ(t) = Eθ(e
tY )

=

∫
etyeθy−K(θ)f0(y)m(dy)

= eK(θ+t)−K(θ)

∫
e(t+θ)y−K(θ+t)f0(y)m(dy)

= eK(θ+t)−K(θ).
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So the cumulant generating function is given by

Kθ(t) = logMθ(t) = K(θ + t)−K(θ).

Therefore, the mean and variance are given by the first two derivates of the cumulant
function K(·) at θ:

µ(θ) = Eθ(Y ) =
d

dt
Kθ(t)

∣∣∣∣
t=0

= K ′(θ), (3.2)

V (θ) = Varθ(Y ) =
d2

dt2
Kθ(t)

∣∣∣∣
t=0

= K ′′(θ). (3.3)

This is why we often only need to determine K(θ) up to an additive constant. These
formulas can be readily generalized to multi-parameter families (with multi-variate
sufficient statistics), for which derivatives are simply replaced by gradients.

We refer to µ(θ) as the mean function and V (θ) the variance function. The above
derivation shows that they are related through the following key identity

µ′(θ) = K ′′(θ) = V (θ) ≥ 0. (3.4)

This shows that, apart from pathological cases with zero variance, the mean function µ(θ)
is strictly increasing and the cumulant function K(θ) is strictly convex.

3.2.2 Mean value parametrization

Because µ(θ) is strictly increasing in θ, we can also parameterize a univariate exponential
family by its mean value. Suppose the inverse function of µ(θ) is θ(µ). By the inverse
function theorem,

θ′(µ) =
1

V (θ)
.

The exponential family can be alternatively written as

f(y;µ) = eθ(µ)y−K(θ(µ))f0(y)

for µ ∈M = {µ(θ) | θ ∈ Θ}. The setM is usually referred to as the mean space. When
using the mean-value parameterization, we often write the variance function as V (µ).

Example 3.8. Continuing from Examples 3.2 to 3.4, the natural parameter of N(µ, 1)
is θ(µ) = µ and the cumulant function is K(θ) = θ2/2. Therefore, the mean and variance
functions are

µ(θ) = θ, V (θ) = 1.

For Poisson(λ), the natural parameter is θ = log λ and K(θ) = eθ − 1. Therefore, its
mean and variance functions are given by

µ(θ) = V (θ) = eθ = λ.
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For Bernoulli(π) = Binomial(1, π), the natural parameter is θ(µ) = log{π/(1− π)} and
the cumulant function is K(θ) = log(1 + eθ). Therefore, its mean and variance functions
are given by

µ(θ) =
eθ

1 + eθ
=

1

1 + e−θ
= π,

V (θ) =
eθ

(1 + eθ)2
= π(1− π).

Exercise 3.9. Derive the mean and variance of the negative binomial distribution.

3.2.3 *Bayesian posterior distribution

Because the exponential family density function (3.1) is symmetric in the natural parameter
and sufficient statistic, one can carefully choose a prior distribution so that the posterior
update is simple. We demonstrate this with an example.

Example 3.10. Suppose Y ∼ Binomial(n, π). We saw in Example 3.4 that

f(y; θ) ∝ πy(1− π)n−y = eθy−n log(1+eθ),

where θ = log{π/(1− π)} is the natural parameter. The key idea is keep the same form
in the prior:

π(θ) ∝ πα1(1− π)α2 = eα1θ−(α1+α2) log(1+eθ).

We recognize that this can be normalized if α1 > −1 and α2 > −1. In fact, π(θ) is the
Beta(α1 − 1, α2 − 1) distribution, and the posterior distribution is simply π(θ | Y ) =
Beta(α1 − 1 + Y, α2 − 1 + n− Y ).

The posterior update in this example is simple because the prior and posterior
distributions belong to the same exponential family (Beta distribution). family is the
primary example in which such conjugate priors exist.

Building further on this symmetry, we can get a simple formula for the posterior mean
of θ. Suppose we observe Y ∈ R from a one-parameter exponential family

f(y; θ) = eθy−K(θ)f0(y),

and θ ∈ Θ ⊆ R itself has a prior density θ ∼ π(θ). Let f(y) be the marginal density

f(y) =

∫
Θ
π(θ)f(y; θ) dθ.

By using the Bayes formula, the posterior distribution of θ is given by

π(θ | Y = y) =
π(θ)f(y; θ)

f(y)

=
π(θ)eθy−K(θ)f0(y)

f(y)

= eyθ−log{f(y)/f0(y)}π(θ)e−K(θ).
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This is an exponential family with natural parameter y, sufficient statistic θ, and cumulant
function log{f(y)/f0(y)} (up to a constant). Thus, the poterior mean of θ is given by

E(θ | Y = y) =
d

dy
log{f(y)/f0(y)} =

f ′(y)

f(y)
− f ′0(y)

f0(y)
.

As an application of this, suppose Y ∼ N(µ, σ2), where σ2 is known and µ has a prior
density π(µ). By plugging in the natural parameter θ = µ/σ2 and

f0(y) =
1√

2πσ2
e−

y2

2σ2 ,

we obtain Tweedie’s formula:

E(µ | Y ) = Y + σ2 f
′(Y )

f(Y )
. (3.5)

3.2.4 *Empirical Bayes

Suppose we observe independent variables Yi ∼ N(µi, σ
2), i = 1, . . . , n, where the mean

parameters are generated by µi
i.i.d.∼ π(µ), i = 1, . . . , n but the density π(µ) is unknown.

Suppose σ2 is known and let Y = (Y1, . . . , Yn) and µ = (µ1, . . . , µn). In this model, the
MLE of µ is given by µ̂ = Y , with risk

E
(
‖µ̂− µ‖2

)
= E

(
‖Y − µ‖2

)
= nσ2.

But we cannot apply the usual asymptotic efficiency theory for MLE here because the
dimension of the parameter is not fixed. In fact, the James-Stein estimator

µ̂JS =

(
1− (p− 2)σ2

‖Y ‖2

)
Y.

has a strictly smaller mean squared error than the MLE µ̂ for all values of µ, a result
that should be proved in Principles of Statistics.

This phenomenon can be best understood in the empirical Bayes framework. If the
prior π(µ) is known, the optimal estimator of µ under the mean squared error is given by
the posterior mean (the “Bayes estimator”):

µ̂Bayes,i = E(µi | Yi) = Yi + σ2 f
′(Yi)

f(Yi)
.

This is not a real (frequentist) estimator because f is unknown. Nonetheless, in this case
we can plug in an estimator of the marginal density f using the data:

µ̂EB,i = E(µi | Yi) = Yi + σ2 f̂
′(Yi)

f̂(Yi)
.

This is an instance of empirical Bayes estimator, which uses a “prior distribution” estimated
from the data. So empirical Bayes is a frequentist method motivated by Bayesian
considerations.
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Exercise 3.11. Show that the James-Stein estimator is the empirical Bayes estimator
that assumes a normal prior: µi

i.i.d.∼ N(0, τ2). [Hint: use the fact that E{(p−2)/χ2
p} = 1.]

What is remarkable about the James-Stein estimator is that it dominates the MLE
even though the normal prior on µ may be wrong. It also provides a motivation for
regularization (especially ridge regression, see Section 2.3.4).

Tweedie’s formula (3.5) demonstrates a statistical concept called shrinkage, which is
also closely related to regularization. The posterior mean E(µ | Y ) is given by the MLE
Y (the optimal unbiased estimator) plus a correction term σ2f ′(Y )/f(Y ) which increases
bias but decreases variance. When f(·) is unimodal, this correction term can be seen as a
kind of “regression toward the mean” or a correction to “winner’s curse”; see Figure 3.1
for an illustration.

Figure 3.1: Tweedie’s formula and shrinkage.

The James-Stein estimator and the idea of shrinkage were popularized by a baseball
dataset, which contain the batting averages of 18 Major League players have been observed
over the 1970 season. We would like to use the observed averages over the players’ first
90 at bats to predict the average over the remainder of the season (370 further at bats on
average). Figure 3.21 shows that the James-Stein estimator provides much more accurate
predictions than the MLE.
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Figure 3.2: Application of the James-Stein estimator to a baseball dataset.
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3.3 Likelihood inference

3.3.1 i.i.d. sampling

Suppose Y1, . . . , Yn
i.i.d.∼ f(y; θ) where f(y; θ) is a one-parameter exponential family with

sufficient statistic Y . Then their joint density is given by

f(y1, . . . , yn; θ) =

n∏
i=1

f(yi; θ)

=

n∏
i=1

eθyi−K(θ)f0(yi)

= en{θȳ−K(θ)}
n∏
i=1

f0(yi).

This is a new exponential family with

• Natural parameter θ(n) = nθ;

• Sufficient statistic Ȳ = 1
n

∑
i=1 Yi;

• Cumulant function K(n)(θ(n)) = nK(θ) = nK(θ(n)/n);

• Carrying density
∏n
i=1 f0(yi).

This property allows us to easily extend results for a single random variable from
exponential families to i.i.d. sampling. In fact, exponential families are the only statistical
models that have this “sufficient dimension reduction” property.2

Exercise 3.12. Use the cumulant function above to show that µ(n) = µ and V (n) = V/n.

3.3.2 Maximum likelihood estimator

Consider the setting of i.i.d. sampling above. The log-likelihood function is given by

l(θ) = n
{
θȲ −K(θ)

}
+ constant. (3.6)

The score is defined as the gradient of the log-likelihood, which in this case is given by

U(θ) = l′(θ) = n{Ȳ −K ′(θ)} = n{Ȳ − µ(θ)}. (3.7)

The last equality uses (3.2), i.e. the first cumulant of a distribution is its mean.
The MLE θ̂ = arg maxθ l(θ) should satisfy the first-order condition U(θ̂) = 0, which

means that
µ̂ = µ(θ̂) = Ȳ , or equivalent θ̂ = θ(Ȳ ).

In other words, the MLE simply matches the theoretical mean µ(θ) with the observed
mean Ȳ .

Example 3.13. For Poisson(µ), θ̂ = log(µ̂) = log(Ȳ ). For Binomial(n, π) with fixed n,
θ̂ = log{π̂/(1− π̂)} where π̂ = µ̂/n = Ȳ /n.
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3.3.3 Asymptotic inference

The large-sample distribution of θ̂ can be obtained by the standard asymptotic theory for
MLE. By (3.7), we obtain the following formula for the Fisher information

i(n)(θ) = Var(U(θ)) = nV (θ).

Thus in exponentialy families, the Fisher information is simply the variance times n.
Because V (θ) = K ′′(θ), the above equation implies

i(n)(θ) = Var{l′(θ)} = E{−l′′(θ)}, (3.8)

This is called the second Bartlett identity and is true for all regular parameteric models.

Exercise 3.14. Prove (3.8) by differentiating the identity
∫
f(y; θ) dy = 1 with respect

to θ and interchanging differentiation and integral.

By the general asymptotic theory for MLE (Theorem 1.24), we have

θ̂
·∼ N

(
θ,

1

i(n)(θ)

)
.

We sketch a proof of this result in exponential families. The standard approach is to take
the first-order Taylor expansion of the score equation at θ̂ = θ:

0 = U(θ̂) ≈ U(θ) + U ′(θ)(θ̂ − θ). (3.9)

By using (3.7) and the central limit theorem, we have

U(θ)√
n

=
√
n{Ȳ − µ(θ)} d→ N(0, V (θ)).

Moreover, (3.7) implies that U ′(θ) = nK ′′(θ) = nV (θ). Thus,

√
n(θ̂ − θ) ≈ −U(θ)/

√
n

U ′(θ)/n

d→ −N(0, V (θ))

V (θ)
= N

(
0,

1

V (θ)

)
. (3.10)

The calculations above are simplified by the fact that U ′(θ) is a constant for exponential
families. In the more general case, one can invoke the law of large numbers for U ′(θ) and
Slutsky’s lemma. A rigorous proof will require bounding the error term in (3.9). This
can be done through a “first-order analysis” that uses continuity of U ′ or a “higher-order
analysis” that consider higher-order derivatives of U which shows the accuracy of the
normal approximation depends on the skewness of the distribution (why?).

Exercise 3.15. Prove (3.10) by applying the delta method (Lemma 1.26) to θ̂ = θ(Ȳ ).
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3.3.4 Hypothesis testing

Consider testing a simple null hypothesis H0 : θ = θ0 against a simple alternative
hypothesis H1 : θ = θ1 for some θ1 > θ0. By (3.6), the likelihood-ratio statistic is given
by

l(θ1)− l(θ0) = n
{

(θ1 − θ0)Ȳ −K(θ1) +K(θ0)
}
,

which is increasing in Ȳ . Thus, by the Neyman-Pearson Lemma, the most powerful
level-α test rejects H0 if Ȳ > C1−α, where C1−α is the (1 − α)-quantile of Ȳ under
θ = θ0. Because this test does not depend on θ1 and controls the type I error for any
null parameter value smaller than θ0, it is indeed the uniformly most powerful test for
H0 : θ ≤ θ0 versus H1 : θ > θ0.

To test H0 : θ = θ0 against H1 : θ 6= θ0, one can resort to asymptotic arguments. The
likelihood-ratio statistic is given by l(θ̂)− l(θ0), which converges in distribution to χ2

1/2
as n → ∞ by Wilks’ theorem. It is not possible to obtain a uniformly most powerful
test for this problem because a test based on the likelihood ratio cannot be simultaneous
most powerful at θ1 > θ0 and θ2 < θ0. One solution is to restrict to unbiased tests, which
has power ≥ size at any parameter value in the alternative hypothesis. It can be shown
that the uniformly most powerful unbiased test exists for the one-parameter exponential
family problem and rejects H0 if Ȳ < c1 or Ȳ > c2, where c1 and c2 are determined by
the condition that the power function reaches its minimum α at θ0.

3.3.5 Deviance

Deviance is a measure of how one distribution in an exponential family differs from
another:

D(θ1, θ2) = 2Eθ1

{
log

f(Y ; θ1)

f(Y ; θ2)

}
= 2Eθ1{(θ1 − θ2)Y −K(θ1) +K(θ2)}
= 2{(θ1 − θ2)µ1 −K(θ1) +K(θ2)}.

(3.11)

If you are familiar with information theory, deviance is simply twice the Kullback-Leibler
divergence.

Example 3.16 (Continuing Example 3.2). For the family of normal distributions N(µ, 1),
the natural parameter is θ = µ and the cumulant function is K(θ) = θ2/2. Therefore,

D(µ1, µ2) = 2

{
(µ1 − µ2)µ1 −

µ2
1

2
+
µ2

2

2

}
= (µ1 − µ2)2

coincides with squared Euclidean distance.

Heuristically, deviance can be thought of as an extension of the Euclidean geometry
to exponential families, although generally it is not a distance metric (it is not symmetric
and does not obey the triangle inequality). By rewriting µ1 as K ′(θ1), we have

D(θ1, θ2)

2
= K(θ2)−K(θ1)− (θ2 − θ1)K ′(θ1).
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Recall that the cumulant function K(θ) is convex. Thus, the last identity can be
informatively represented by the picture in Figure 3.3, which is closely related to duality
theory in convex analysis. In particular, this picture shows that the deviance can be
locally approximated by the squared Euclidean distance times the Fisher information
i(θ1) = i(1)(θ1) = V (θ1), which is curvature of the cumulant function K(θ) at θ1:

D(θ1, θ2) ≈ i(θ1)(θ2 − θ1)2 for θ2 ≈ θ1. (3.12)

Figure 3.3: An informative picture about the deviance in exponential families.

Exercise 3.17. Verify the following formulae:

• For Poisson(λ), the deviance is given by

D(λ1, λ2) = 2

{
λ1 log

λ1

λ2
− λ1 + λ2

}
.

• For Binomial(n, π) with fixed n, the deviance is given by

D(π1, π2) = 2n

{
π1 log

π1

π2
+ (1− π1) log

1− π1

1− π2

}
.

Deviance also behaves nicely under i.i.d. sampling:

D(n)(θ1, θ2) = 2Eθ1

{
log

n∏
i=1

f(Yi; θ1)

f(Yi; θ2)

}

=
n∑
i=1

2Eθ1

{
log

f(Yi; θ1)

f(Yi; θ2)

}
= nD(θ1, θ2).

Exercise 3.18. Show that, for one-parameter exponential family, the likelihood-ratio
statistic for testing H0 : θ = θ0 versus H1 : θ 6= θ0 is given by D(n)(θ̂, θ). Show that this
statistic has a χ2

1 asymptotic distribution under the null by using (3.12).
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3.3.6 Deviance residual

Because deviance can be viewed as an extension to Euclidean distance, it allows us to
extend the definition of residuals to exponential families. With an abuse of notation, we
use D(µ1, µ2) to denote the deviance between two distributions in the exponential family
with mean µ1 and µ2.

In the normal linear model, D(y, µ) = (y − µ)2 is the squared residual. On the other
hand, the exponential family analogue of y − µ is given by

sign(y − µ)
√
D(y, µ).

With i.i.d. sampling, the total deviance is given by D(n)(µ̂, µ) = nD(Ȳ , µ). This motivates
us to define the deviance residual by

R = sign(Ȳ − µ)
√
D(n)(Ȳ , µ).

Exercise 3.19. Use Wilks’ theorem to show that R2 d→ χ2
1 as n→∞.

In practice, deviance residual R is generally preferred over the Pearson residual

RP =
Ȳ − µ√
V (µ)/n

,

because the distribution of R is much less skewed and closer to the standard normal
distribution.
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3.4 Practical 5: Exponential family

3.4.1 Overdispersion due to clustering

In practice, it is not unusual that the empirical variance of a variable Y is larger than
what is expected from a theoretical model. A common mechanism for overdispersion
and underdispersion is unaccounted structure in the sample, as illustrated by the next
example.

Example 3.20. Suppose a sample of size n has n/k clusters, each of size k. The
observations are distributed as Zij ∼ Bernoulli(πi), i = 1, . . . , n/k, j = 1, . . . , k. The
response Y is the total Y =

∑n/k
i=1

∑k
j=1 Zij , which is often modelled by a binomial

distribution. This is reasonable when πi = π for all i, as Y then follows a Binomial(n, π)
distribution with

E(Y ) = nπ, Var(Y ) = nπ(1− π).

However, if the probabilities πi themselves are IID and

E(πi) = π, Var(πi) = τ2π(1− π),

it can be shown by using the laws of total expectation and total variance that

E(Y ) = nπ, Var(Y ) = σ2nπ(1− π), where σ2 = 1 + τ2(k − 1).

That is, the mean of Y is unchanged but the variance is increased by a factor of σ2.

Here is some R code that demonstrates this example

set.seed(42)
n <- 10000
k <- 50
one.sim <- function() {

pi <- rbeta(n / k, 2, 2)
Z <- rbinom(n, 1, pi)
sum(Z)

}
Y <- replicate(1000, one.sim())

> c(mean(Y) / n, var(Y) / n)
[1] 0.499479 2.666703
> (sigma2.hat <- var(Y) / n / 0.5^2 - 1)
[1] 9.666813
> (sigma2.theory <- (k - 1) * 0.05 / 0.5^2)
[1] 9.8

To address the overdispersion problem, we may want to include a second parameter
to model the variance of the distribution. A potential solution to this is the exponential
dispersion family, with density function given by

f(y; θ, σ2) = e{θy−K(θ)}/σ2
f0(y;σ2), (3.13)

86



where f0(y;σ2) is some density function and σ2 > 0 is called the dispersion parameter.

Exercise 3.21. Suppose the distribution of Y is given by (3.13). Show that E(Y1) = K ′(θ)
and Var(Y1) = σ2K ′′(θ).

3.4.2 *Bartlett correction

It is possible to give a better approximation to the distribution of the deviance residual R.
The skewness and (excess) kurtosis of a probability distribution are defined as, respective,

γ = κ3/κ
3/2
2 =

E{(Y − E(Y ))3}
Var(Y )3/2

, δ = κ4/κ
2
2 =

E{(Y − E(Y ))4}
Var(Y )2

− 3,

where κr is the rth cumulant of the distribution and Y is a random variable that follows
that distribution. Bartlett’s correction refers to the following approximation of the
deviance residual3

R = N
(
−an, (1 + bn)2

)
+Op(n

−3/2),

where

an =
γ

6
√
n

and bn =
14γ2 − 9δ

72n
,

and γ and δ, just like µ in our notation, are the skewness and kurtosis of a single
observation, respectively. The Op(n−3/2) error term means that

P

(
R+ an
1 + bn

> zα

)
= α+O(n−3/2),

where zα is the upper-α quantile of N(0, 1). Therefore, it is possible to obtain inexact but
very accurate inference for small n by staying within the exponential family framework.

We demonstrate this correction using the Gamma family, with density function

f(y;α, λ) =
λα

Γ(α)
yα−1e−λy, y > 0.

Using properties of the exponential family or otherwise, it can be shown that

(i) If α > 0 is fixed, this is an exponential family with natural parameter θ = −λ and
cumulant function K(θ) = −α log(−θ).

(ii) The mean, variance, skewness, and kurtosis are given by

µ = κ1 = α/λ, κ2 = α/λ2, γ = 2/
√
α, δ = 6/α.

(iii) If α is a positive integer and Y1, . . . , Yα ∼ Gamma(1, λ) are i.i.d., then
∑α

i=1 Yi ∼
Gamma(α, λ).

(iv) The deviance between Gamma(α, λ1) and Gamma(α, λ2) is given by

D(µ1, µ2) = 2α{log(µ2/µ1) + (µ1/µ2 − 1)},

where µ1 = α/λ1 and µ2 = α/λ2.
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The next chunk of code computes the Pearson and deviance residuals for Gamma(5, 1):

alpha <- 5
lambda <- 1
mu <- alpha / lambda
deviance.gamma <- function(mu1, mu2, alpha) {

2 * alpha * (log(mu2 / mu1) + mu1 / mu2 - 1)
}
Y <- rgamma(1000000, alpha, 1)
dev <- deviance.gamma(Y, mu, alpha)
resid.dev <- sign(Y - mu) * sqrt(dev)
resid.pearson <- (Y - mu) / sqrt(alpha/lambda^2)

We now use the Bartlett correction and compare the residuals. The result can be
found in Figure 3.4.

gamma <- 2 / sqrt(alpha)
delta <- 6 / alpha
a <- 2 / sqrt(alpha) / 6
b <- (14 * gamma^2 - 9 * delta) / 72
resid.bartlett <- (resid.dev + a) / (1 + b)

s <- 1:1000 # too many points to show
pl <- qqnorm(resid.dev[s], col = scales::alpha("red", 0.4))
points(pl$x, resid.pearson[s], col = scales::alpha("blue", 0.4))
abline(0, 1, lty = "dashed")
points(pl$x, resid.bartlett[s], col = scales::alpha("green", 0.4))
legend("topleft", c("Pearson", "Deviance", "Bartlett"),

fill = c("blue", "red", "green"))

It is obvious from the Q-Q plot that the distribution of Pearson’s residuals is far from
normal. The deviance residuals have a distribution that is already quite close to the
standard normal, and Barlett’s correction mainly removes the small amount of bias.

> c(mean(resid.dev), -a)
[1] -0.1505926 -0.1490712
> c(sd(resid.dev) - 1, b)
[1] 0.005485308 0.005555556

3.4.3 Exercises

Exercise 3.22. Suppose we are given some data X1, . . . , Xn ∼ Gamma(α, λ), where
n = 30, α = 2, and λ is unknown.

(i) Write a function gammaMLE in R that returns the maximum likelihood estimator λ̂
of the rate parameter λ. Check your code by using simulations to verify that λ̂ is
consistent.
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Figure 3.4: Demonstration of different residuals.

(ii) What is the variance of
√
n(λ̂− λ) based on your simulations, and does it match

the theoretical value based on an asymptotic normal approximation? Augment your
gammaMLE function with an option interval=TRUE in which case it will also return
an 95% asymptotic confidence interval of λ. Calculate the proportion for which this
interval covers the true parameter in 1000 simulations.

(iii) Find the exact distribution of λ̂. Check your answer by comparing your simu-
lated MLEs with the theoretical distribution using a Q-Q plot. Hint: If X ∼
Gamma(α, λ), then 1/X ∼ InvGamma(α, λ).

(iv) Augment your gammaMLE function using the R function optim so it can return the
MLE of (α, λ) when α is unknown. Apply this to your simulated data from earlier
and plot these as pairs of points (α̂, λ̂).

(v) The optim function has an option to return the observed information matrix by
setting Hessian = TRUE. Use this to write a function that draws a confidence ellipse
for the parameters and test their empirical coverage. Hint: the R function eigen
may be helpful for this.
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Chapter 4

Generalized linear models

4.1 Canonical GLMs and extensions

As discussed in Section 1.4, the normal linear model assumes that Y given X has linear
conditional expectation and and is normally distributed. Several relaxations of this model
are introduced in Chapter 2. All of them assume the linear model is at least a reasonable
approximation to E(Y | X). In this Chapter we will introduce generalized linear models
(GLMs) that expand the classical normal linear models in a different way.

To simplify the exposition, we will adopt the same vector/matrix notation as in linear
models:

Y =

Y1
...
Yn

 , X =

X
T
1
...
XT
n

 , β =

β1
...
βp

 , µ =

µ1
...
µn

 .

Unless noted otherwise, we will assume the generalized linear model is correctly specified
and treat the regressors X as fixed. In other words, the inference for GLMs will be
conditioned on X.

4.1.1 The canonical form

Let {f(y; θ) | θ ∈ Θ} be a one-parameter exponential family. A canonical form GLM
assumes that the responses Y1, . . . , Yn are independent and

Yi | Xi ∼ f(y; θi), i = 1, . . . , n,

where the natural parameter is given by

θi = XT
i β.

In other words, this model simply sets the natural parameter to be a linear function of X.
An immediate consequence is that the mean parameter is given by

µi = E(Yi | Xi) = µ(θi).
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The joint density of Y is given by

f(y;β) =
n∏
i=1

f(yi; θi)

= e
∑n
i=1 θiyi−K(θi)

n∏
i=1

f0(yi)

= eβ
TXT y−

∑n
i=1K(XT

i β)
n∏
i=1

f0(yi).

This is a p-parameter exponential family, with

• Natural parameter β;

• Sufficient statistic Z = XTY ; and

• Cumulant function φ(β) =
∑n

i=1K(XT
i β).

Therefore, the canonical form GLMs can be studied using the theory for multi-
parameter exponential families and have many nice properties that generalize the theory
in Section 3.2. For example, it can be shown that the expectation and covariance matrix
of Z are given by the gradient and Hessian matrix of the cumulant function:

Eβ(Z) = ∇φ(β) =
n∑
i=1

K ′(XT
i β)Xi = XTµ(β),

Covβ(Z) = ∇2 φ(β) =
n∑
i=1

K ′′(XT
i β)XiX

T
i = XTV (β)X,

where µ(β) = (µ1(β), . . . , µn(β))T and

V (β) = diag(K ′′(XT
1 β), . . . ,K ′′(XT

n β)) = diag(Var(Y1), . . . ,Var(Yn)).

The log-likelihood function of β is given by

l(β) = βTXTY −
n∑
i=1

K(XT
i β) + constant .

The score function is given by

U(β) = ∇l(β) = XTY −
n∑
i=1

K ′(XT
i β)Xi = XT {Y − µ(β)}.

Thus, the MLE β̂ satisfies the normal equations

XT {Y − µ(β̂)} = 0. (4.1)
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Geometrically, the MLE is obtained by projecting Y onto {µ(β) | β ∈ Rp}, a p-dimensional
manifold in Rn. Of course, the GLM normal equations (4.1) reduce to the normal equations
(1.6) for the normal location family.

For asymptotic inference of GLMs, the one-dimensional theory in Section 3.3.3 can be
extended in a straightforward manner. The Fisher information matrix for β is defined as

I(n)(β) = Cov{U(β)} = E{−∇2 l(β)} =
n∑
i=1

K ′′(XT
i β)XiX

T
i = XTV (β)X.

The asymptotic theory for the MLE suggests that, under suitable regularity conditions,

β̂
·∼ N(β, I(n)(β)−1).

This is an informal way of writing the convergence in distribution

√
n(β̂ − β)

d→ N(0, I(β)−1), as n→∞,

where I(β) = limn→∞ I
(n)(β)/n is assumed to exist.

4.1.2 Analysis of deviance

The deviance extends the RSS/variance in normal linear models as a way to measure the
goodness-of-fit of a GLM. Recall that in a one-parameter exponential family {f(y; θ) |
θ ∈ Θ}, the deviance between f(y; θ1) and f(y; θ2) is defined as

D(θ1, θ2) = 2Eθ1 {log f(Y ; θ1)− log f(Y ; θ2)}
= 2 {(θ1 − θ2)µ1 −K(θ1) +K(θ2)} .

As discussed in Section 3.3.5, deviance extends the Euclidean geometry to exponential
families. With an abuse of notation, it is often convenient to parameterize an exponential
family distribution by its mean and write the deviance as D(µ1, µ2). For two n-vectors of
mean-value parameters µ1 and µ2, their total deviance is defined as

D(n)(µ1, µ2) =
n∑
i=1

D(µ1i, µ2i).

Nested models

The full model is given by
θ = η = Xβ,

where X ∈ Rn×p and β ∈ Rp. As in Section 1.4.2, suppose the design matrix X and
coefficient vector β are partitioned as

X = (X0 X1), β =

(
β0

β1

)
,
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where X0 ∈ Rn×p0 , X1 ∈ Rn×(p−p0), β0 ∈ Rp0×1, and β1 ∈ R(p−p0)×1. The submodel or
null model we consider is

θ = η = X0β0.

In other words, we are interested in testing the hypothesis H0 : β1 = 0 against H1 : β1 6= 0.
According to the GLM normal equations (4.1), the full model MLE β̂ ∈ Rp and

submodel MLE β̂ ∈ Rp0 satisfy

XT {Y − µ̂)} = 0, where µ̂ = µ(Xβ̂) =

µ(XT
1 β̂)
...

µ(XT
n β̂)

 ; and

XT
0 {Y − µ̂0)} = 0, where µ̂0 = µ(X0β̂0) =

µ(XT
1 β̂0)
...

µ(XT
n β̂0)

 .

See Figure 4.1 for an geometric illustration of nested GLM fits.

Figure 4.1: Illustration of nested GLMs. The full model space is given byM = {µ(Xβ) |
β ∈ Rp} and the submodel space is given byM0 = {µ(X0β0) | β0 ∈ Rp0}.

A GLM is called saturated if X has rank n (which implies p ≥ n). In this case, µ̂ = Y .
Assuming the intercept is also included in the model, the smallest GLM is given by p = 1
and X = 1n. In this case, µ̂ = Ȳ 1n.

Deviance additivity

The deviance additivity theorem says that the deviance between the observations (or
equivalently the saturated model) and the submodel can be decomposed as

D(n)(Y, µ̂0) = D(n)(Y, µ̂) +D(n)(µ̂, µ̂0). (4.2)
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This equation follows immediately from the following relation between the deviance and
log-likelihood:

D(n)(µ̂, µ̂0) = 2 {l(µ̂)− l(µ̂0)} , (4.3)

where l(µ) =
∑n

i=1 log f(Yi; θ(µi)) is the log-likelihood function. In Example 3.16, we saw
that in normal linear models with σ2 = 1, we have D(n)(µ1, µ2) = ‖µ1 − µ2‖2. So in this
case the deviance additivity theorem reduces to Pythagoras’ theorem.

Exercise 4.1. Show (4.3), then use it to prove (4.2).

By Wilks’ theorem and (4.3), we have D(n)(µ̂, µ̂0)
d→ χ2

p−p0
as n→∞ under the null

H0 : β1 = 0. So we reject H0 if

D(n)(µ̂, µ̂0) > χ2
p−p0

(α).

With a sequence of nested GLMs, one can further perform a chain of analyses of deviance.

4.1.3 Linkage and over-dispersion

The canonical form GLM can be extended in several ways:

(i) Use a dispersion parameter σ2 to model the variance of Y .

(ii) Use a different link function g to relate µi to the linear preidctor ηi = βTXi by
ηi = g(µi).

In this more general setup, it is assumed that Y1, . . . , Yn are independent and Yi ∼
f(y; θi, σ

2
i ) follows a distribution from a exponential dispersion family

f(y; θ, σ2) = e{θy−K(θ)}/σ2
f0(y;σ2),

with the natural and dispersion parameters modelled by

θi = θ(µi) = θ(g−1(ηi)) = θ(g−1(XT
i β)) and σ2

i = σ2/wi,

where g is a strictly increasing and twice differentiable function, σ2 > 0 is possibly
unknown, and wi, i = 1, . . . , n are some known weights.

Example 4.2. The familiar normal linear model corresponds to assuming Yi ∼ N(θi, σ
2
i ),

wi = 1, and θi = µi = ηi. So g is the identity function.

The canonical form GLM corresponds to equating θi with ηi, so it uses the canonical
link g(µ) = θ(µ). Non-canonical link functions can be useful in some latent variable
models. They break some useful geometrical properties of exponential families, but much
of the (first-order) asymptotic theory still goes through. It can be shown that the β-score
is given by

Uβ(β, σ2) = ∇β l(β, σ2) =
1

σ2
XTWR (4.4)
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where

W = W (β) = diag
(

wi
V (µi){g′(µi)}2

)
, R =

R1
...
Rn

 , Ri = (Yi − µi)g′(µi), (4.5)

and the Fisher information matrix for (β, σ2) is block-diagonal:

I(n)(β, σ2) =

(
I

(n)
ββ (β, σ2) 0

0 I
(n)
σ2σ2(β, σ2)

)
, (4.6)

where
I

(n)
ββ (β, σ2) =

1

σ2
XTWX. (4.7)

Exercise 4.3. Consider the general GLM introduced above.

(i) Derive (4.4), (4.6), and (4.7).

(ii) When σ2 is unknown, show that a consistent estimator is

σ̂2 =
1

n− p

n∑
i=1

wi
(Yi − µ̂i)2

V (µ̂i)
.

(iii) Use the results above to construct an asymptotic (1 − α) confidence interval for
βj , j ∈ {1, . . . , p}.
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4.2 Numerical computation and model selection

Up till now, we have not said anything about how the MLE β̂ can be computed. Unlike
in the normal linear model where β̂ can be found by solving some linear equations, the
score equations (4.1) for GLMs are not linear in β. Thus, some iterative algorithms are
needed.

4.2.1 Newton-Raphson

The Newton-Raphson algorithm is a general algorithm for optimization or root finding
problems. We illustrate this with a classical problem in statistics—finding the MLE.
Consider the optimization problem

maximize
β∈Rp

l(β),

where l(β) is the log-likelihood function for some statistics problem. Let U(β) and H(β)
be the gradient and Hessian matrix of l(β) at β. That is,

Uk(β) =
∂

∂βk
l(β), k = 1, . . . , p,

Hjk(β) =
∂2

∂βj∂βk
l(β), j, k = 1, . . . , p.

The key idea of the Netwon-Raphson algorithm is that the objective function l(β) can
be locally approximate near β∗ ∈ Rp by its second-order Taylor expansion (assuming the
function is sufficiently smooth):

l(β) ≈ l(β∗) + (β − β∗)TU(β∗) +
1

2
(β − β∗)TH(β∗)(β − β∗).

Because the local approximation is a quadratic function of β, we can easily find its
maximizer. By differentiating with respect to β, the maximizer should satisfy

U(β∗) +H(β∗)(β − β∗) = 0.

This motivates the following iterative algorithm (see Figure 4.2):

(i) Start at an initial parameter value β(0).

(ii) For t = 1, 2, . . . , update the parameter by

β(t) = β(t−1) −
{
H(β(t−1))

}−1
U(β(t−1)).

(iii) Stop the algorithm until the sequence β(t) converges in a numerical sense (e.g. if
l(β(t))− l(β(t−1)) < τ where τ is some tolerance level).
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Figure 4.2: An illustration of the Newton-Raphson algorithm.4

4.2.2 Fisher scoring

A drawback of the Newton-Raphson algorithm is that the Hessian matrix H(β(t−1)) is
sometimes close to singularity, making its inverse numerically unstable.

When the objective function l(β) is the log-likelihood of some IID data, the Fisher
information matrix is the expectation of the negative Hessian matrix (which is sometimes
called the observed information):

I(β) = Eβ{−H(β)}.

The Fisher information matrix is guaranteed to be positive definite. Fisher scoring refers
to the modification of the Newton-Raphson algorithm where −H(β(t−1)) is replaced by
I(β(t−1)). In machine learning, this technique is known as the natural gradient method.

4.2.3 Iteratively reweighted least squares

Let us now apply the general algorithms above to GLMs. For the most general form of
GLM described in Section 4.1.3, the log-likelihood function is given by

l(β, σ2) =

n∑
i=1

1

σ2
i

{θiYi −K(θi)}+ log f0(Yi;σ
2
i ),

where θi = θ(g−1(XT
i β)) and σ2

i = σ2/wi. The Hessian matrix can be obtained by
differentiating the β-score given in (4.4) and is rather complicated. The calculations
greatly simplify if g(µ) is the canonical link, i.e. g(µ) = θ(µ). In this case, the negative
Hessian matrix (a.k.a. the observed information matrix) is indeed equal to the Fisher
information matrix:

−Hβ,β(β, σ2) = I
(n)
β,β(β, σ2) =

1

σ2
XTWX, (4.8)

where W is defined in (4.5). So for GLMs using a canonical link function, the Newton-
Raphson algorithm coincides with the Fisher scoring algorithm.
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Exercise 4.4. Prove (4.8) when g(µ) is the canonical link function.

The Fisher scoring algorithm admits a nice representation in the GLM problem. Recall
that the β-score is given by

Uβ(β, σ2) =
1

σ2
XTWR,

where the “weights” W and “residuals” R depend on β. Let η(t)
i = XT

i β
(t), µ(t)

i = g−1(η
(t)
i ),

and similarly define W (t) and R(t). The Fisher scoring update is then given by

β(t) = β(t−1) + {I(n)
ββ (β(t−1), σ2)}−1Uβ(β(t−1), σ2)

= β(t−1) +
(
XTW (t−1)X

)−1
XTW (t−1)R(t−1)

=
(
XTW (t−1)X

)−1
XTW (t−1)

(
η(t−1) +R(t−1)

)
.

The last expression is the solution to a weighted least squares problem (Section 2.2.1).
Therefore, the Fisher scoring algorithm for GLMs is also known as the iteratively reweighted
least squares that updates the model parameters as follows

β(0) → η(0), µ(0) →W (0), R(0) WLS→ β(1) → η(1), µ(1) → · · ·

To initiate the algorithm, it is common to choose β(0) = 0 or µ(0) = Y .

4.2.4 Model diagnostics

The diagnosis of GLMs generalizes that of linear models and is built on the iteratively
reweighted least squares formulation of the MLE. The key idea is to define the pseudo-
response:

Z(t) = η(t) +R(t)

So the Fisher scoring update can be written as

β(t) =
(
XTW (t−1)X

)−1
XTW (t−1)Z(t−1).

By letting Ẑ = limt→∞ Z
(t) and R̂ = limt→∞R

(t), we obtain

Ẑ = Xβ̂ + R̂.

The GLM diagnosis basically proceeds by treating Ŵ 1/2Ẑ, Ŵ 1/2η̂, and Ŵ 1/2R̂ as the
“adjusted” responses, fitted values, and residuals. One can then apply the diagnostic plots
in Section 2.2.1 after suitably modifying the definitions of leverage, residual, etc.
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4.2.5 Model selection

To select a GLM, we cannot apply Mallows’ Cp criterion because it relies on mean squared
error. However, we can still use cross-validation by replacing the squared error with the
deviance. In other words, we seek a model that minimizes

CV(model) =
n∑
i=1

D(Yi, µ̂−i),

where µ̂−i is the leave-one-out fitted value for the ith observation. AIC and BIC can be
applied in the same way to GLMs by using the corresponding log-likelihood function.

Regarding algorithms for model selection, the stepwise methods and the best subset
method can be applied in the same way as before. Regularization can be achieved by
adding the same penalty on certain complexity measure of β as in the linear model.

99



4.3 Binomial regression

In the rest of this Chapter, we discuss two of the most widely used families of GLMs:
binomial regression and Poisson regression.

In a binomial regression, it is assumed that the responses Y1, . . . , Yn are independent
and

Yi ∼
1

ni
Binomial(ni, µi), i = 1, . . . , n,

where ni is known but µi is unknown. It is not difficult to shown that Binomial(n, µ) is
an exponential dispersion family:

f(y;n, µ) =

(
n

ny

)
µny(1− µ)n(1−y)

= exp

{
1

n−1

(
y log

µ

1− µ
+ log(1− µ)

)}(
n

ny

)
.

The natural parameter is θ = log{µ/(1 − µ)}, and the cumulant function is given by
K(θ) = log(1 + eθ). In the GLM context, we can fix dispersion parameter at σ2 = 1 and
use the dispersion weight w = n.

4.3.1 Common link functions

Recall that the link function relates the linear predictor with the mean value. Specifically,
g(µi) = ηi = XT

i β. The canonical link makes ηi equal to the natural parameter θi, so for
binomial regression the canonical link is given by the logit function

g(µ) = θ(µ) = log
µ

1− µ
.

More generally, we can choose g(µ) to be any strictly increasing function from (0, 1)
to R.5 In other words, we can let g to be the quantile function (inverse of the CDF) of
any continuous random variable ε. The logit link corresponds to the logistic distribution,
whose distribution function is simply the expit function:

F (η) =
eη

1 + eη
.

Another commonly used link is the probit link g(µ) = Φ−1(µ), which corresponds to
letting ε ∼ N(0, 1). Some less common link functions include the identity link g(µ) = µ
and the complementary log-log (cloglog) link g(µ) = log{− log(1− µ)}.

4.3.2 Latent variable interpretation

The above quantile function viewpoint provides an interesting interpretation of the link
functions for the binomial regression. To illustrate this, suppose ni = 1, i = 1, . . . , n. Let

Y ∗ = η + ε, ε ∼ F (·), Y = 1{Y ∗>0},
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where F (·) is the CDF of some continuous probability distribution. Then the mean value
of Y can be given by

µ = E(Y ) = P(Y ∗ > 0) = P(ε > η) = 1− F (−η).

Thus, if the distribution is symmetric about 0,

η = −F−1(1− µ) = F−1(µ).

This formulation is quite useful because it allows us to fit a linear model to the latent
variable Y ∗ using just the sign of Y ∗, as long as the noise distribution is known. For
example, this allows us to learn about some latent “disease liability” Y ∗ given just an
indicator of the diesease Y .

The cloglog link arises from a similar model in which the latent variable is distributed
as

Y ∗ ∼ Poisson(eη).

Note that µ = eη is in fact the canonical link for Poisson regression (see Section 4.4).
Suppose the observation is still given by Y = 1{Y ∗>0}, then

1− µ = P(Y = 0) = P(Y ∗ = 0) = e−e
η
,

which results in the cloglog link η = log(− log(1− µ)).

4.3.3 Logistic regression and odds ratio

The logit link (aka the logistic regression) is by far the most popular for binomial regression.
Beyond the fact that it enjoys some nice properties being the caonical link, it has some
other advanrages. First, in logistic regression the odds of an observation is given by

P(Yi = 1)

P(Yi = 0)
=

µi
1− µi

= eηi = eX
T
i β =

p∏
j=1

(
eβj
)Xij

.

Therefore, eβj represents a multiplicative change to the odds per nuit change of the jth
regressor.6

Moreover, when we just have a single binary regressor, consider the saturated model

log
µ

1− µ
= η = β0 + β1X,

where µ = E(Y | X) = P(Y = 1 | X). Then the difference in odds ratio for different levels
of X is given by

log
P(Y = 1 | X = 1)

P(Y = 0 | X = 1)
− log

P(Y = 1 | X = 0)

P(Y = 0 | X = 0)
= (β0 + β1)− β0 = β1.

Therefore, the odds ratio is given by

P(Y = 1 | X = 1)/P(Y = 0 | X = 1)

P(Y = 1 | X = 0)/P(Y = 0 | X = 0)
= eβ1 .

101



The odds ratio is a useful quantity because it enjoys a symmetry:

P(Y = 1 | X = 1)/P(Y = 0 | X = 1)

P(Y = 1 | X = 0)/P(Y = 0 | X = 0)
=

P(X = 1 | Y = 1)/P(X = 0 | Y = 1)

P(X = 1 | Y = 0)/P(X = 0 | Y = 0)
. (4.9)

This neat property implies that we can sample from a population according to Y (suppose
Y = 1 means a case), and it does not bias the odds ratio. For example, in case-control
studies for rare diseases, we can pair each case (e.g. a patient suffering from the disease)
with a control (e.g. a healthy individual). This is much more efficient than a random
sample from the population, which may contain very few cases. For rare diseases, the
odds ratio offers a good approximation to the more interpretable risk ratio, defined as
P(Y = 1 | X = 1)/P(Y = 1 | X = 0), because P(Y = 0) is very close to 1.
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4.4 Poisson regression

4.4.1 Models for count data

Poisson regression is used to model count data: Yi ∈ {0, 1, 2, . . . }, i = 1, . . . , n. It is
common to model counts by a Poisson distribution, Yi ∼ Poisson(µi). One rationale for
this is the following law of small numbers. Consider a triangular array {µn,j > 0 | 1 ≤ j ≤
n} such that

∑n
j=1 µn,j = µ. Then under the assumption that maxj µn,j → 0 as n→∞,

we have
n∑
j=1

Bernoulli(µn,j)→ Poisson(µ) as n→∞.

In words, if Y is the total count of many small probability events, then Y approximately
follows a Poisson distribution.

The Poisson distribution Y ∼ Poisson(µ) has the mean-variance relation (Example 3.8)

Var(Y ) = E(Y ) = µ.

In practice, the data are sometimes overdispersed compared to the theoretical relationship
above due to clustering or other reasons (Section 3.4.1).

4.4.2 *Variance stabilizing transform

To deal with overdispersion, one can use the variance stabilizing transform that maps Y
to g(Y ). By the delta method, Var(g(Y )) ≈ {g′(µ)}2 Var(Y ). Thus, if we take

g′(µ) =
1√

Var(Y )
,

then Var(g(Y )) ≈ 1. For Poisson, this is g(Y ) = 2
√
Y . We can then fit a linear

model for E(2
√
Y | X) and use the linear model noise variance to probe overdispersion.

The drawback of this approach is that
√
Y might not be the scale we would like to

investigate. We can also use a dispersion parameter σ2 in the (quasi-)Poisson GLM to
model overdispersion, which will be discussed in more detail next.7

4.4.3 Poisson regression

Recall that the probability mass function of Poisson(µi) is given by

f(yi;µi) = e−µi
µyi

yi!
= eyi logµi−µi 1

yi!
, yi = 0, 1, . . . .

With the expersion parameter σ2 included, the probability mass function bcomes

f(yi;µi, σ
2) = e

1
σ2 {yi log µi−µi}f0(yi;σ

2).

So the natural parameter is θi = log(µi) and the cumulant function is K(θ) = eθ.
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In Poisson regression, the most common choice of the link function is the canonical
log link g(µ) = θ(µ) = log(µ), so the model is

logµi = XT
i β.

This is often referred to as the log-linear model. This model is straightforward to interpret,
as

µi = eX
T
i β =

p∏
j=1

(eβj )Xij ,

So eβj represents a multiplicative change to the predicted mean value per nuit change of
the jth regressor.

Other common link functions for Poisson regression including the identity link and
the square root link.8 Notice that the square root link assumes that

√
E(Yi | Xi) = XT

i β,
which is different from fitting a linear model after the square root variance stabilizing
transform which assumes that E(

√
Yi | Xi) = XT

i β.
The deviance in Poisson regression (σ2 = 1) is given by (Exercise 3.17)

D(Yi, µ̂i) = 2

{
Yi log

Yi
µ̂i
− Yi + µ̂i

}
.

If X includes intercept (a column 1) and the canonical log link is used, the score equation
XT (Y − µ̂) = 0 implies that

n∑
i=1

µ̂i =
n∑
i=1

Yi.

Therefore, by letting δi = Yi − µ̂i and assuming |δi| � µ̂i, the total deviance for the
Poisson regression is approximately given by

D(n)(Y, µ̂) = 2
n∑
i=1

Yi log
Yi
µ̂i

= 2
n∑
i=1

(µ̂i + δi) log

(
1 +

δi
µ̂i

)

≈ 2
n∑
i=1

(µ̂i + δi)

(
δi
µ̂i
− 1

2

δ2
i

µ̂2
i

)

≈ 2
n∑
i=1

δi +
1

2

δ2
i

µ̂i

=
n∑
i=1

(Yi − µ̂i)2

µ̂i
.

The last expression is precisely the Pearson χ2-statistic from IB Statistics:

χ2 =
∑ (observed− fitted)2

fitted
.
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For Poisson regression, Pearson’s residual is given by

RP,i =
Yi − µ̂i√
V (µ̂i)

=
Yi − µ̂i
µ̂i

,

so Pearson’s χ2-statistic is given by χ2 =
∑n

i=1R
2
P,i and converges to χ2

n−p if the Poisson
regression is correctly specified. Note that this convergence does not require n to converge
to infinity; in fact, convergence to χ2

n−p would be ill-defined if n increases and p is fixed.
The crucial assumption is that mini µi → ∞ (which can be seen from the assumption
that δi � µ̂i). This is the so-called small dispersion asymptotics.

4.4.4 Multinomial models and the Poisson trick

Poisson regression can also be used to analyze multinomial data. Suppose (Y1, . . . , YL) ∼
Multinomial(n, π), where n is known but π = (π1, . . . , πL) is unknown. The probability
mass function is given by

f(y;π) =
n!

y1! · · · yL!
πy1

1 · · ·π
yL
L , for

L∑
i=1

Yi = n.

This is not a minimal exponential family because of the constraint on Y , which also
implies that Y1, . . . , YL are not independent. A potential solution is to set one level as
the reference and obtain a (L− 1)-parameter exponential family (Exercise 3.6). However,
the symmetry in the parameters is broken.

A more elegant solution is the Poisson trick, which refers to the following probabilistic
result. Suppose Yi ∼ Poisson(µi), i = 1, . . . , L independently. Let Y+ =

∑L
i=1 Yi, then

Y+ ∼ Poisson(µ+) and Y1, . . . , YL | Y+ ∼ Multinomial(Y+;π),

where πi = µi/µ+, i = 1, . . . , L and µ+ =
∑L

i=1 µi.
9

Exercise 4.5. Verify the Poisson trick.

Consider the log-linear Poisson model

Yi ∼ Poisson(µi) independently, and logµi = α+XT
i β,

where the intercept α is distinguished from the rest of the coefficients. Then by the
Poisson trick,

Y+ =

L∑
i=1

Yi ∼ Poisson(µ+) and Y | Y+ ∼ Multinomial(Y+, π),

where

µ+ =

n∑
i=1

µi = eα
n∑
i=1

eX
T
i β, and
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πi =
µi
µ+

=
eX

T
i β∑n

i=1 e
XT
i β
, i = 1, . . . , n. (4.10)

Importantly, π does not depend on the intercept α in the Poisson model. In consequence,
the likelihood function for the Poisson model factorizes as

LP (α, β) =

n∏
i=1

f(Yi;µi)

= f(Y1, . . . , YL | Y+;β)f(Y+;α, β)

= LM (β)f(Y+;α, β),

where LM (β) denotes the likelihood for the multinomial model (4.10). Alternatively,
because given β, µ+ is uniquely determined by α and vice versa, we can write this more
concisely as

LP (µ+, β) = LM (β)f(Y+;µ+).

The above likelihood factorization implies that we can fit the multinomial model (4.10)
using the Poisson log-linear model with an intercept, and the likelihood inference for β
in the two models will be equivalent. To see this, the MLE β̂ for the Poisson likelihood
LP (µ+, β) will also maximize the multinomial likelihood LM (β). The Fisher information
matrix for the Poisson model is block-diagonal:

I(n)(µ+, β) =

(
I

(n)
µ+µ+(µ+) 0T

0 I
(n)
ββ (β)

)
.

Deviance in the Poisson model is the same as deviance in the multinomial model, because
µ̂+ = Y+.
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4.5 Contingency tables

Next we apply the Poisson and multinomial models to analyze contingency tables that
display empirical frequencies of random variables.

4.5.1 Two-way contingency tables

Example 4.6. The following contingency table was constructed from a interim release
of a Phase-III trial for the Moderna COVID-19 vaccine in November, 2020.10 The *

Not a case Non-severe case Severe case

Placebo * 79 11
Vaccine * 5 0

cells were not reported, but they are presumably very large because the total number of
participants was about 30,000. The press release claims that the vaccine efficacy is about
1− (5 + 0)/(79 + 11) = 94.5% and the p-vlaue (for no efficacy) is less than 0.0001.

There are two ways to think about the data in contingency tables:

• We observe counts Yjk, j = 1, . . . , J, k = 1, . . . ,K. In the previous example, J = 2
and K = 3.

• The table is an aggregation of individual observations (Ai, Bi), i = 1, . . . , n. In
the previous example, Ai is the treatment received (placebo or vaccine), Bi is the
outcome (not a case, non-severe case, or severe case), and n ≈ 30, 000. The observed
counts are given by

Yjk =
n∑
i=1

1{Ai=j,Bi=k}, j = 1, . . . , J, k = 1, . . . ,K.

A common question in two-way contingency tables is testing the null hypothesis that
the rows and columns are independent, H0 : Ai ⊥⊥ Bi. In the vaccine trial example, this
amounts to testing the hypothesis that the vaccine has no effect at all.

Suppose (Ai, Bi), i = 1, . . . , n are IID. Let πjk = P(Ai = j, Bi = k), j = 1, . . . , J, k =
1, . . . ,K, so the counts follow a multinomial distribution Y ∼ Multinomial(n, π). The
null hypothesis can be expressed in terms of π as

H0 : πjk = πAj π
B
k , for all j, k,

where πAj =
∑K

k=1 πjk and πBk =
∑J

j=1 πjk are the marginal distributions of A and B. In
the surrogate Poisson model, this can be expressed as

H0 : µjk = µ+π
A
j π

B
k for all j, k,

which is equivalent to the log-linear model

H0 : log µjk = α+ βAj + βBk , for all j, k, (4.11)
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This is a submodel of the saturated model that places no restrictions on µjk:

H1 : log µjk = α+ βAj + βBk + βABjk , for all j, k. (4.12)

Therefore, testing independence in contingency tables is equivalent to testing nested
models in Poisson regression.

Notice that (4.11) and (4.12) are overparametrized. For identifiability, it is necessary
to set some levels as the reference. For example, we may set βA1 = βB1 = βAB1k = βABj1 = 0
for all j, k.

Example 4.7. For a 2× 2 table (J = K = 2), the null/independence log-linear model
assumes

logµ =


logµ11

logµ12

logµ21

logµ22

 =


1 0 0
1 0 1
1 1 0
1 1 1


︸ ︷︷ ︸

X0

 α
βA2
βB2

 =


α

α+ βB2
α+ βA2

α+ βA2 + βB2

 ,

and the saturated log-linear model assumes

logµ =


logµ11

logµ12

logµ21

logµ22

 =


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1


︸ ︷︷ ︸

X


α
βA2
βB2
βAB22

 =


α

α+ βB2
α+ βA2

α+ βA2 + βB2 + βAB22

 .

The degrees of freedom of the sub/independence model is 1+(J−1)+(K−1) = J+K−1
and the degrees of freedom of the saturated model is JK. By Wilks’ theorem, under H0

and as n→∞, the deviance between the two models or equivalently Pearson’s χ2-statistic
converges in distribution to χ2

JK−(J+K−1) = χ2
(J−1)(K−1). This provides an asymptotic

test for the independence hypothesis.

4.5.2 Three-way contingency tables

The discussion above can be extended to three-way contingency tables, although there
are more independence and conditional independene hypotheses that can be tested.
Individually, the observations come as IID triplets (Ai, Bi, Ci), i = 1, . . . , n, which can be
aggregated by a three-way table:

Yjkl =
n∑
i=1

1{Ai=j,Bi=k,Ci=l}, j = 1, . . . , J, k = 1, . . . ,K, l = 1, . . . , L.

There are several possible models for the joint probability mass πjkl = P(Ai = j, Bi =
k,Ci = l). The first model assumes

H1 : πjkl = πAj π
B
k π

C
l for all j, k, l,
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where πAj , π
B
k , π

C
l are the corresponding marginal probabilities (similar conventions are

used below). This is equivalent to assuming

H1 : Ai ⊥⊥ Bi ⊥⊥ Ci.

The second model assumes

H2 : πjkl = πAj π
BC
kl for all j, k, l,

which amounts to the independence

H2 : Ai ⊥⊥ (Bi, Ci).

The third model assumes

H3 : πjkl = πABjk π
BC
kl for all j, k, l.

It can be shown that this implies

P(Ai = j, Ci = l | Bi = k) = P(Ai = j | Bi = k)P(Ci = l | Bi = k). (4.13)

So this model amounts to the conditional independence

H3 : Ai ⊥⊥ Ci | Bi.

Exercise 4.8. Verify (4.13).

The fourth model assumes

H4 : πjkl = πABjk π
BC
kl π

AC
jl .

This model does not imply any independence or conditional independence, but it assumes
that there is no three-way interaction in the joint distribution.

Finally, the fifth and saturated model assumes

H5 : πjkl = πABCjkl ,

where πABCjkl is completely unrestricted besides the constraints that the marginals need
to sum up to 1. Of course, this model also makes no independence or conditional
independence assumptions.

The five models above for the three-way contingency table are nested and can be tested
using the deviance or Pearson’s χ2 of the corresponding surrogate Poisson models. These
Poisson log-linear models differ in whether certain two-way and three-way interaction
terms are included.
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glm formula Poisson log-linear model Joint distribution Independence

Y∼A+B+C logµabc = α+ βa + βb + βc πabc = πaπbπc A ⊥⊥ B ⊥⊥ C
Y∼A+B*C logµabc = α+ βa + βbc πabc = πaπbc A ⊥⊥ (B,C)

Y∼A*B+B*C logµabc = α+ βab + βbc πabc = πabπbc A ⊥⊥ C | B
Y∼A*B+B*C+C*A logµabc = α+ βab + βbc + βac πabc = πabπbcπac No (but no

three-way
interaction)

Y∼A*B*C logµabc = α+ βabc πabc = πabc No

Table 4.1: Different models for three-way contigency tables.

A

B C

(a) H1 : A ⊥⊥ B ⊥⊥ C.

A

B C

(b) H2 : A ⊥⊥ (B,C).

A

B C

(c) H3 : A ⊥⊥ C | B.

A

B C

(d) H4 and H5: no independence or
conditional independence.

Figure 4.3: Graphical models for three-way contingency tables.

4.5.3 *Graphical models

With more variables, it is more convenient to represent independence and conditional
independence relationship using a graph.

Consider an undirected graph (V, E) where V = (V1, . . . , Vp) is a discrete random
vector and E ⊆ {V1, . . . , Vp}2 is the edge set. We say the distribution of V factorizes
according to this graph if the probability mass function of V can be written as

P(V = v) =
∏

C ⊆ {V1, . . . , Vp}
(A1, A2) ∈ E for all A1, A2 ∈ C

πC(vC).

Such subset of vertices C is called a clique or complete subgraph. Thus, graphical
factorization means that the distribution can be decomposed according to the cliques in
the graph.
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See Figure 4.3 for the graphical models corresponding to the five models for the three-
way contingency table. There is a deep connection between graph theory and conditional
independence: in an undirected graphical model, if the probability distribution factorizes
according to the graph and a subset of variables B “blocks” all paths between two other
non-overlapping subsets A and C, then A ⊥⊥ C | B.11
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Notes
1Efron and Hastie. Computer-Age Statistical Inference. Figure 7.1.
2This is known as the Pitman–Koopman–Darmois theorem and is in fact how exponential families

were originally motivated.
3See McCullagh and Nelder (1989). Generalized Linear Models, Chapman & Hall, Appendix C.
4Taken from Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley &

Sons, Figure 4.2.
5We may need g(µ) to be sufficiently smooth (e.g. twice differentiable) for the asymptotic theory to

go through.
6This is not necessarily a causal effect. See Section 2.5.1.
7One can also use GLMs with other discrete distributions such as the negative binomial. However,

this is beyond the scope of this course.
8See ?family in R.
9This is in fact a special instance of a more general result for exponential families. See Brown, L. D.

(1986). Fundamentals of statistical exponential families: With applications in statistical decision theory.
Institute of Mathematical Statistics, Theorem 1.15.

10https://investors.modernatx.com/news-releases/news-release-details/
modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy.

11This is one direction of the Hammersley-Clifford theorem.
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