
STATISTICAL MODELLING Part IIC / Michaelmas 2025
Example Sheet 2 (of 4)

In questions that follow, by normal linear model we mean Y = Xβ + ε, ε | X ∼ N(0, σ2I),
where Y ∈ Rn, X ∈ Rn×p, β ∈ Rp. Let β̂ = (XTX)−1XTY be the ordinary least squares
estimator of β and P = X(XTX)−1XT be the orthogonal projection matrix on to the column
space of X.

1. Suppose Y | X ∼ N(Xβ, σ2Σ) where Σ = diag(w−1
1 , . . . , w−1

n ) and w1, . . . , wn are known.
Show that the maximum likelihood estimator of β solves the following weighted least
squares problem:

β̂ = argmin
β

n∑
i=1

wi(Yi −XT
i β)

2.

Describe how you would modify your mylm function from Example Sheet 1 to solve this
problem by transforming the input X and Y.

2. Show that the AIC in a normal linear model (up to additive constants) is

n{1 + log(2πσ̂2
MLE)}+ 2(p+ 1),

where σ̂2
MLE = ∥(I−P )Y ∥2/n is the maximum likelihood estimator of σ2. When the noise

variance σ2 is known, re-derive the AIC and show that it is equivalent to Mallows’ Cp.

3. Suppose Y, Y ∗ ∼ N(µ, σ2I) are i.i.d., where µ ∈ Rn is a unknown non-random vector. Let
X ∈ Rn×p be fixed. Consider the following definition of mean-squared prediction error:

MSPE =
1

n
E(∥Y ∗ − µ̂∥2).

(a) Let µ̂ = Xβ̂. Show that

MSPE = σ2 +
1

n
∥(I − P )µ∥2 + σ2p

n
.

Compare this to the bias-variance tradeoff in the lectures and identify the “bias2”
and “variance” terms.

(b) Consider any linear estimator of the form µ̂ = MY where M ∈ Rn×n can depend on
X. Show that

CM = ∥Y − µ̂∥2 + 2σ2 · trace(M)

is an unbiased estimator of n ·MSPE. Show that this reduces to Mallows’ Cp when
M = P .

4. Consider the normal linear model with fixed X ∈ Rn×p and some 1 ≤ i ≤ n. Let XT
i

denote the ith row of X and X(−i) denote the (n− 1)× p matrix obtained by deleting the

ith row. Suppose Pii < 1 and X(−i) has full column rank. Let β̂(−i) be the OLS estimator
of β when the i-th observation has been removed.

(a) Let A be a p × p non-singular matrix and let b ∈ Rp. Prove that if vTA−1u ̸= −1,
then A+ uvT is invertible with inverse given by the Sherman-Morrison formula

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

1



(b) Prove that the difference
Var(β̂(−i))− Var(β̂)

is positive semi-definite. Hint: Use XTX =
∑n

i=1XiX
T
i and Pii = XT

i (X
TX)−1Xi.

(c) Show that

β̂ − β̂(−i) =
1

1− Pii
(XTX)−1Xi(Yi −XT

i β̂).

Use this to deduce the identity

µ̂i = PiiYi + (1− Pii)µ̂(−i),

where µ̂i = XT
i β̂ and µ̂(−i) = XT

i β̂(−i).

(d) Show that Cook’s distance Di of the observation (Yi, Xi) can be expressed as

Di :=
∥X(β̂ − β̂(−i))∥2

pσ̂2
=

1

p

( Pii

1− Pii

)
R̃2

i ,

where
R̃i = (Yi −XT

i β̂)/(σ̂
√
1− Pii)

is the ith studentised residual.

5. Return to the house prices data studied in practical 3.

> file_path <- "https://raw.githubusercontent.com/AJCoca/SM19/master/"

> HousePrices <- read.csv(paste0(file_path, "HousePrices.csv"))

> HousePricesLM2 <- lm(Sale.price ~ Living.area + Property.tax, data = HousePrices)

In this question we will plot a confidence ellipse for the coefficients for living area and
property tax. To do this, first install the ellipse package using

> install.packages("ellipse")

and select a mirror of your choice (if prompted). Next load the package with library(ellipse).
Look at ?ellipse.lm and plot a 95% confidence ellipse for the coefficients with

> plot(ellipse(HousePricesLM2, c(4, 7)), type = "l")

Use confint and abline to add to the plot the end points of 95% confidence intervals for
each of the coefficients in red, and also add in blue the sides of the confidence rectangle
in Question 2 of Example sheet 1. Save your output by using the pdf command (if you
are using Rstudio, you can also click on “Export” above the plot window). Now look at
the correlation between the estimates of these coefficients using

> summary(HousePricesLM2, correlation = TRUE)$correlation

and compare this to the correlation between the corresponding variables

> cor(HousePrices$Living.area, HousePrices$Property.tax)

What do you notice? Explain.
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6. One of the data sets in the Modern Applied Statistics in S-Plus (MASS) library is hills.
You can find out about the data with

> library(MASS)

> ?hills

> pairs(hills)

The data contain one known error in the winning time. Identify this error (think carefully!)
and subtract an hour from the winning time. Hint: You can examine the plots and identify
observations for which the response and covariates satisfy certain inequalities e.g.

> subset(hills, time > 50 & dist < 20)

Can you see any reason why we might want to consider taking logarithms of the variables?
Explain why we should include an intercept term if we do choose to take logarithms.
Explore at least two linear models for the transformed data, and give estimates with
standard errors for your preferred model. Predict the record time for a hypothetical 5.3
mile race with a 1100ft climb, give a 95% prediction interval for both models and explain
how and why they differ.

7. Consider the setup in question 4.

(a) Discuss how you can use the studentised residual R̃i to test whether the i-th obser-
vation is an outlier by replacing σ̂ in the definition of R̃i with another estimator of
σ so that R̃i ∼ tn−p−1. Hint: Recall that Var(Yi −XT

i β̂) = σ2(1−Pii) from Example
Sheet 1.

(b) Another dataset in the MASS package is mammals which gives the body and brain
masses of 68 mammals. Log transform both variables and then fit a linear model
with log(brain) as the response. Then apply your hypothesis test to check whether
the observation corresponding to humans is an outlier. The function rstudent that
calculates externally studentised residuals may be of help. What is the p-value you
obtain? (You can also discuss whether a one- or two-sided t-test is most appropriate
here).

8. Consider a random vector (X,Y ) ∈ Rp × R.

(a) Assuming that all expressions below are well defined and you can interchange deriva-
tive and expectation, show that the solution to the population least squares problem
is given by

arg min
β∈Rp

E{(Y − βTX)2} = {E(XXT )}−1E(XY ).

(b) Consider the partition X = (X0, X1) ∈ Rp0 × Rp−p0 , and suppose E(Y | X) =
βT
0 X0 + βT

1 X1 for some β0 ∈ Rp0 and β1 ∈ Rp−p0 . Let

β̃0 = arg min
β0∈Rp

E{(Y − βT
0 X0)

2}.

Show that β0 = β̃0 is generally true only if E(X0X
T
1 ) = 0.

9. Let Z ∈ Rn×q be the data matrix for a collection of instrumental variables. Let PZ =
Z(ZTZ)−1ZT be the projection matrix onto the column space of Z. The two-stage least
squares estimator is defined as

β̂TSLS = (X̂T X̂)−1X̂TY,

where X̂ = PZX is the fitted-value of the first-stage regression of X on Z.
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(a) This definition assumes that X̂T X̂ is invertible. Show that this implies q ≥ p.

(b) Now show that
β̂TSLS = (XTPZX)−1(XTPZY ).

How is this different from the OLS estimator for regressing Y on X? And from the
estimated coefficients of X from the OLS estimator for regressing Y on X and Z?

(c) Modify your mylm function from Example Sheet 1 so it can also take Z (n×q matrix)
as input and return β̂TSLS. Design a simulation example in R that demonstrates the
TSLS estimator is consistent (converges to the true β) but the (single-stage) OLS
estimators in part (b) are not.

(d) Do you thnk you can still use mylm to calculate or approximate the standard errors
of β̂TSLS? Check your answer by designing a simulation study in R. Hint: Try
calculating the variance of β̂TSLS by pretending ZTX is a constant.

10. (a) Show that the solution to the ridge regression problem

β̂λ = argmin
β

∥Y −Xβ∥2 + λ∥β∥2

is given by β̂λ = (XTX + λI)−1XTY .

(b) Suppose you have access to a numerical solver of the so-called “lasso” problem

minimize ∥Y −Xβ∥2 + λ∥β∥1

for any λ ≥ 0. Describe how you can use it to solve the so-called “elastic net”
problem

minimize ∥Y −Xβ∥2 + λ1∥β∥1 + λ2∥β∥2

for any λ1, λ2 ≥ 0. Hint: Augment X and Y with some additional rows.

11. Consider the linear model with heteroscedastic noise: (Xi, Yi) ∈ R × R, i = 1, . . . , n are
i.i.d. and satisfy

Yi | Xi ∼ N(α+ βXi, σ
2(Xi)).

We saw in lectures that the OLS estimator of (α, β) is still consistent and asymptotically
normal. Suppose we know

σ2(Xi) = τ2(1 + ηX2
i )

for some unknown τ2, η > 0. Could you find an estimator of (α, β) that is more efficient
(is consistent but has smaller variance asymptotically) than the OLS estimator? Compare
the asymptotic variances of your estimator and the OLS estimator in a simulation study
using R. Hint: Find an estimator of (τ2, η) using the OLS estimator of β, then solve a
weighted least squares problem.
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