
STATISTICAL MODELLING Part IIC / Michaelmas 2025
Example Sheet 1 (of 4)

In all the questions that follow, X is an n by p design/model matrix with full column rank and P is the
orthogonal projection on to the column space of X. Also, let X0 be the matrix formed from the first
p0 < p columns of X and let P0 be the orthogonal projection on to the column space of X0. The vector
Y ∈ Rn will be a vector of responses and we will define β̂ := (XTX)−1XTY , β̂0 := (XT

0 X0)−1XT
0 Y and

σ̂2 := ‖(I−P )Y ‖2/(n−p). By normal linear model, we mean the model Y = Xβ+ε, ε | X ∼ Nn(0, σ2I).

1. Show that the maximum likelihood estimator of σ2 in the normal linear model is

σ̂2
MLE = ‖(I − P )Y ‖2/n.

Find the distribution of σ̂2
MLE and conclude that σ̂2

MLE is a biased estimator of σ2 but σ̂2 is unbiased.
Construct a confidence interval of σ2 with level 1− α.

2. Let the cuboid C be defined C :=
∏p
j=1 Cj(α/p), where

Cj(α) =

[
β̂j −

√
σ̂2(XTX)−1

jj tn−p(α/2), β̂j +
√
σ̂2(XTX)−1

jj tn−p(α/2)

]
.

Assuming the normal linear model, show that P(β ∈ C) ≥ 1− α.

3. Show that ‖(P − P0)Y ‖2 = ‖(I − P0)Y ‖2 − ‖(I − P )Y ‖2 = ‖PY ‖2 − ‖P0Y ‖2. Use this to show
that the size-α generalised likelihood ratio test in the normal linear model for H0 : β1 = 0 versus
H1 : β1 6= 0 rejects H0 when

‖(P − P0)Y ‖2/(p− p0)

‖(I − P )Y ‖2/(n− p)
> Fp−p0,n−p(α),

where Fp−p0,n−p(α) is the upper-α quantle of Fp−p0,n−p.

4. Suppose we observe data (X,Y ) generated from a normal linear model. Let x∗ ∈ Rp be a fixed
vector and ε∗ ∼ N(0, σ2) be independent of (X,Y ). Denote Y ∗ = (x∗)Tβ + ε∗. Construct (1− α)-
confidence intervals for (x∗)Tβ and Y ∗. Which interval is shorter in length? Can you give an
intuitive explanation to your answer?

5. Suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d. and Y1 | X1 ∼ N(XT
1 β, σ

2). Denote Σ = E(X1X
T
1 ). Find

the asymptotic distribution of the MLE of θ = (βT , σ2)T by calculating the Fisher information
matrix I(θ) = Varθ(∇θl(θ)) where l(θ) is the log-likelihood function. Comment on how that is
related to the exact distribution of the MLE given X.

6. Consider a random variable F ∼ Fd1,d2 .

(a) When d1 = 1, show that the distribution of F is the same as that of T 2 where T ∼ td2 .

(b) What can you say about the distribution of F when d2 →∞?

(c) Check the conclusion in part (a) and your answer to part (b) using R.

7. Data are available on weights of two groups of three rats at the beginning of a fortnight and at its
end. During the fortnight, one group was fed normally, and the other was given a growth inhibitor.
The weights of the kth rat in the jth group before and after the fortnight are denoted by Xjk and
Yjk, respectively. It is assumed that Yjk = αj + βjXjk + εjk where εjk, j = 1, 2, k = 1, 2, 3 are
independent normally distributed noise with mean 0 and unknown variance.

(a) Let W be the vector of responses, so W = (Y11, Y12, Y13, Y21, Y22, Y23)T , and similarly let δ
be the vector of random errors. Write down the model above in the form W = Aθ + δ with
θ = (α1, α2, β1, β2)T ; you should give the design matrix A and noise vector δ explicitly.
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(b) The model is to be reparametrised in such a way that it can be specialised to (i) two parallel
lines for the two groups, (ii) two lines with the same intercept, (iii) one common line for
both groups, just by setting parameters to zero. Give one design matrix that can be made to
correspond to (i), (ii) and (iii), just by dropping columns, specifying which columns are to be
dropped for which cases.

(c) The data have been imported into R using the code below.

X <- c(184, 204, 211, 190, 195, 203)

Y <- c(213, 228, 226, 197, 190, 206)

data <- data.frame(before = X, after = Y,

group = gl(2, 3, labels = c("Normal", "Inhibitor")))

Find out how R constructs the design matrix by calling model.matrix(formula, data) with
the following formulas:

• formula <- after ~ 0 + group + group:before

• formula <- after ~ group * before

Write down the R formulas for constructing the three specialisations in part (b) and check
your answers using plot(data$before, fitted(lm(formula, data))).

8. (Tripos 2022/II/13J) Consider the following R code:

> n <- 1000000

> sigma_z <- 1; sigma_x1 <- 0.5; sigma_x2 <- 1; sigma_y <- 2; beta <- 2

> Z <- sigma_z * rnorm(n)

> X1 <- Z + sigma_x1 * rnorm(n)

> X2 <- Z + sigma_x2 * rnorm(n)

> Y <- beta * Z + sigma_y * rnorm(n)

> lm(Y ~ Z)

Coefficients:

(Intercept) Z

-0.003089 1.999780

> lm(Y ~ X1)

Coefficients:

(Intercept) X1

-0.002904 1.600521

> lm(Y ~ X2)

Coefficients:

(Intercept) X2

-0.002672 0.997499

Describe the phenomenon you observe from the output above, then give a mathematical explanation
to this phenomenon. Do you expect the slope coefficient in the second model to be generally smaller
than that in the first model? Do you think modifying (for example, doubling) the value of sigma y

will substantially alter the slope coefficient in the second model? Justify your answer.

9. In the second practical session, you were asked to write a function called mylm in R with arguments X
(n×p model matrix) and Y (n-vector) that outputs all the numbers reported by summary.lm without
calling lm or using an LLM. The function should also accept a logical vector S0 of length p and per-
forms the analysis of variance test for the sub-model that only uses the regressors X0 <- X[, S0].
If you have not done so already, finish writing your function and test it using an example.

10. In this question, we explore the leverage of the i-th data point (Xi, Yi), defined as Pii (the i-th
diagonal element of P ).

(a) In the normal linear model, show that Var(Yi − XT
i β̂ | X) = σ2(1 − Pii). [Hint: Write the

residual Yi −XT
i β̂ as a linear transformation of Y .]
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(b) Suppose the design matrix X consists of just a single variable and a column of 1’s representing
an intercept term (as the first column). Show that the leverage, Pii, of the ith observation
satisfies

Pii =
1

n
+

(Xi2 − X̄2)2∑n
k=1(Xk2 − X̄2)2

,

where X̄2 := 1
n

∑n
k=1Xk2. Describe what kind of observations may have a large leverage.

[Hint: Why can we assume that the ith component of the second column is Xi2 − X̄2 rather
than Xi2? ]

11. Consider the normal linear model with fixed X. Suppose only the first p0 components of β are
non-zero. Show that

Var(β̂0,j) ≤ Var(β̂j) for j = 1, . . . , p0.

Here β̂j and β̂0,j denote the jth component of β̂ and β̂0, respectively. [Hint: Use the partial

regression characterisation of β̂j.]

12. This question is about understanding what can happen to the F -test when the linearity assumption
does not hold. Consider the model Y ∼ N(µ, σ2I) where µ ∈ Rn is non-random. Define β ∈ Rp by
Xβ = Pµ, so Y = Xβ + (I − P )µ+ ε, and partition β = (βT0 , β

T
1 )T as before.

(a) Show that the numerator and denominator of the F -statistic in Question 3 are independent
regardless of the value of β1.

(b) What is the distribution of ‖(P − P0)Y ‖2 under the null hypothesis (i.e. when Y = X0β0 +
(I − P )µ+ ε)?

(c) By considering the eigendecomposition of I − P , show that ‖(I − P )Y ‖2 has the same distri-
bution as

Z2
1 + · · ·+ Z2

n−p,

where the Zi are independent and Zi ∼ N(λi, σ
2) for some λi such that

n−p∑
i=1

λ2i = ‖(I − P )µ‖2.

(d) For any two real-valued random variables A and B, let us write A � B (and say A is stochas-
tically less than B) if

P(A > x) ≤ P(B > x), for all x ∈ R.

Now prove that if A1, . . . , Am and B1, . . . , Bm are all independent real-valued random variables
and A1 � B1, . . . , Am � Bm, then A1 + · · ·+ Am � B1 + · · ·+ Bm. [Hint: Use induction on
m and the law of total expectation.]

(e) Let Z ∼ σ2χ2
n−p. Show that

Z � ‖(I − P )Y ‖2.

Conclude that the size of the F -test in Question 3 is at most α.
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