
STATISTICAL MODELLING Part IIC, Michaelmas 2024

Practical 8: Contingency tables and Cross Validation

Contingency tables

Fisman et al. conducted a study on dating behaviour using data from a Speed Dating experiment at
Columbia University. Pairs of men and women students interacted for four minutes and then each filled
out a form which recorded whether or not they wanted to receive the other’s email address, and also
various details about themselves including their chosen subject of study, what motivated them to sign
up for the speed dating experiment, how often they go out and how often then go on dates. If both
individuals wanted each others email addresses, it is considered a match. The original data are
available at http://andrewgelman.com/2008/01/21/the_speeddating_1/. Download an edited
version of the data from the course webpage with

> path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> SD_data <- read.csv(file.path(path, "SD_match.csv"), stringsAsFactors=T)

> SD_data[1:3, ]

match subject_m goal_m date_m go_out_m subject_f goal_f date_f go_out_f

1 0 Econ fun several/yr > 2/week Law meet ppl almost never > 2/week

2 0 Econ fun 1/month 2/month Law meet ppl almost never > 2/week

3 1 Econ date > 2/week > 2/week Law meet ppl almost never > 2/week

The first row records the meeting of a male Economics student and a female Law student, which did
not result in a match (match is 0). The goals of the man and woman were to have fun and to meet
people, respectively. We also have the frequencies with which the individuals go out and go out on
dates. Let us first focus on the relationship between match and the subjects of the individuals.

> SD_subj <- table(SD_data[, c("subject_m", "subject_f", "match")])

> SD_subj

The table function converts the data into contingency table format (3-way in this case). The order in
which the factors are given matters when we call SD subj so some combinations will be easier to
interpret; e.g., try

> table(SD_data[, c("match", "subject_m", "subject_f")])

In order to fit models to the data, we apply as.data.frame to the contingency table SD subj. This
produces a data frame where each each row gives the number of original observations (Freq) that fall
into each of the possible categories given by each pair of subject types and match category.

> SD_subj_df <- as.data.frame( SD_subj )

> SD_subj_df

subject_m subject_f match Freq

1 Arts+Humanities Arts+Humanities 0 357

2 Econ Arts+Humanities 0 683

3 Law Arts+Humanities 0 126

4 Sciences Arts+Humanities 0 518

The xtabs function gives a contingency table for data frames (the other affects the output again):

> xtabs(Freq ~ subject_m + subject_f + match, data=SD_subj_df)

Since the numbers of Law students are fairly low, we could consider combining them with the
Economics students. One way of doing this is as follows (the vcd package has a dedicated function to
do this, but we will not use this here). Note that typically we wouldn’t modify the actual data object
SD_data but create a copy and then modify the copy.

> levels(SD_data$subject_m)

[1] "Arts+Humanities" "Econ" "Law" "Sciences"

> levels(SD_data$subject_m) <- c("Arts+Humanities", "Econ+Law", "Econ+Law", "Sciences")

> levels(SD_data$subject_f) <- c("Arts+Humanities", "Econ+Law", "Econ+Law", "Sciences")
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(note that the read.csv function really does need the StringsAsFactors argument as otherwise this
level merging would give an error). Now we create the contingency table again, and coerce it to a Data
Frame, which will allow us to fit a GLM.

> SD_subj <- table(SD_data[, c("match", "subject_m", "subject_f")])

> SD_subj <- as.data.frame(xtabs(Freq ~ subject_m + subject_f + match, data=SD_subj))

Cross validation

Recall that during Practical 4 we studied a high dimensional model which only depended on a few of
the parameters. Specifically, we examined models for the data generated via:

Yi = 50(Xi − 0.1)(Xi − 0.7)(Xi − 1) + ϵi (1)

with Xi
iid∼ U([0, 1]) and ϵi

iid∼ N(0, 1). We avoided the problem of over-fitting a degree 10 polynomial
by regularising the least squares minimisation problem. I.e., we added a term λ∥β∥22 to the usual loss
function ∥Y −Xβ∥22 and used the new minimiser over β as our estimate of the coefficients in the
polynomial regression. For any particular λ > 0, we know that this minimiser has a closed form
solution given by:

β̂λ = argmin
β∈Rp

∥Y −Xβ∥22 + λ∥β∥22 (2)

= (XTX + λIp)
−1XTY. (3)

where Ip is the identity matrix on p dimensions. Recall that we saw that the estimate, and thus the
predictive performance, depend on this parameter λ chosen. If it is too big we over-smooth our
estimated regression function, if it is too small we instead over-fit to the noise in the data. How should
we choose λ in practice? We would like to select the λ that minimises the mean squared error
∥Ỹ − X̃β̂λ∥22 for some new data point (X̃, Ỹ ). But how can we find this minimiser without being able
to calculate this quantity to minimise?

The technique of cross-validation comes to the answer. Suppose that we consider the estimate β̂λ,−i

given the solution above with the ith data point omitted from the design matrix and responses. We can
use the performance of this estimator on this omitted data-point, i.e., (Yi −Xiβ̂λ,−i)

2, as an unbiased

estimate of the true mean squared error of Xβ̂λ,−i. Averaging these estimates over all i ∈ {1, . . . , n}
leads to a (reasonable1) estimate of the mean squared error of β̂λ. This leads to the selection of λ via
the minimisation of the leave-one-out cross-validation error:

λ̂CV = argmin
λ∈R>0

1

n

n∑
i=1

(Yi −Xiβ̂λ,−i)
2 (4)

which we call the leave-one-out cross validation estimator of λ. In practice it can be
computationally expensive to compute n estimators per λ, so instead we group the data into K folds
of roughly equal numbers of datapoints. We then perform the same procedure: compute the estimator
on the data excluding one of the folds and then compute its error on the fold not used in the
estimation. Specifically, let Ik be disjoint subsets of {1, . . . , n} for k = 1, . . . ,K and let β̂λ,−Ik be the
estimator computed with the data excluding the rows with indicies in Ik. Then we can select λ via:

λ̂CV
K = argmin

λ∈R>0

K∑
k=1

∑
i∈Ik

(Yi −Xiβ̂λ,−Ik)
2 (5)

which we call the K-fold cross validation estimator of λ. We will fit cross validated regularised
GLMs in the exercises using the package glmnet. This package can be installed and loaded using the
following code:

1Note that these estimates are not quite comparable—one uses one more data point than the others. There is a lot of
work required to fully justify that this estimate is reasonable but we omit this here.
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install.packages("glmnet")

library(glmnet)

This package can handle generalised linear regression too (hence the GLM in the name), so can be
applied in the logistic and Poisson regression examples we have exampled previously. It can also handle
a more general class of regularisation penalties than just the ridge penalty λ∥β∥22, called elastic net
penalties:

λ
(
α∥β∥1 + (1− α)∥β∥22/2

)
(6)

for α ∈ [0, 1]. When α = 0 this just becomes the ridge penalty and when α = 1 this becomes the
LASSO penalty.

Exercises

1. Let us fit a simple independence model to the speed dating contingency table using a surrogate
Poisson model.

> mod1 <- glm(Freq ~., data=SD_subj, family=poisson)

> mod1$dev

[1] 63.78329

The final line gives the deviance of the model. Which of the asymptotic results from lectures can
be used for testing using this quantity and what is the limiting distribution? Explain and conduct
the test at the 5% level.

2. Consider the following model to test the hypothesis that the joint distribution of subject pairs are
the same for the matched and non-matched groups.

> mod2 <- glm(Freq ~ subject_m*subject_f + match, data=SD_subj, family=poisson)

> anova(mod1, mod2, test="LR")

What does the * mean? (You may wish to look at the ?formula documentation). Would you
select this model over mod1? Does this model suggest rejecting the hypothesis above?

3. Download the data in the prostate dataset available here:

website <- "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"

prostate <- read.table(website, header=T)

This dataset contains a clinical indicator of prostate cancer, lspa, as well as several patient
characteristics (age, weight) and levels of various antigens. There is also a column of train which
helpfully splits this dataset into a set we will use for model building and a separate set we will use
to evaluate this model. We will fit a ridge regression model to the training data using:

train <- subset(prostate, train == TRUE)[,1:9]

test <- subset(prostate, train == FALSE)[,1:9]

X <- data.matrix(train[,1:8])

Y <- train$lpsa

prostate.ridge <- glmnet(X,Y,family = "gaussian",

alpha=0, lambda.min.ratio=1e-6,nlambda=1000)

plot(prostate.ridge, xvar="lambda", label=TRUE)

What does this plot show? Now let us select the cross validated ridge regressor using the glmnet
package.
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set.seed(2018) # for reproducible random partitions into V folds

prostate.cvridge <- cv.glmnet(X, Y, family = "gaussian", alpha=0,

lambda=prostate.ridge$lambda, nfolds=10)

prostate.cvridge$lambda.min # optimal regularisation parameter

plot(prostate.cvridge)

ind <- prostate.ridge$lambda==prostate.cvridge$lambda.min

round(prostate.ridge$a0[ind], 3) # intercept

round(prostate.ridge$beta[,ind], 3)

The GLM object (in glmnet) deliberately does not give us standard errors for these coefficients:
why not?

4. Use the glm fitted in the previous question to compute the training and test errors for each value
of λ. Hint: the predict function works for these models too, and considers all λ. Plot these
errors against log(λ). How does the cross-validated choice of λ compare to the choice that
minimises the test error?

5. Repeat this for the elastic net parameter α = 1. What do you notice about the coefficient vs.
log(λ) plot that did not occur for the ridge regression plot?
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