
STATISTICAL MODELLING Part IIC, Michaelmas 2024
Practical 4: Model Selection

Model selection

Reload the house prices data from Practical 3.

file_path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

HousePrices <- read.csv(paste0(file_path, "HousePrices.csv"))

HousePricesLM1 <- lm(Sale.price ~ ., data = HousePrices)

summary(HousePricesLM1)

The results of this analysis on the houses data is not totally satisfactory. The p-values for the null
hypotheses that exclude each of the variables Bedrooms, Lot.size and Property.tax are rather large
so we do not have confidence that these variables have a meaningful impact on the response conditioned
on the other covariates. This suggests that a simpler model might be preferred when predicting the sales
prices. The coefficient estimates in such a simpler model will have greater precision and predictions will
be more accurate. Suppose that another student had fitted a model without them.

attach(HousePrices)

HousePricesLM2 <- lm(Sale.price ~ Bathrooms + Living.area + Year.built)

summary(HousePricesLM2)

In this model each of the variables appears to be indispensable to the model fit (in one-by-one t-tests;
see next paragraph). For example, if we consider an even smaller model without Year.built, the chance
of observing data as extreme as ours (in terms of carrying evidence against the validity of the even
simpler model and in favour of the model S0) is a rather remote 3.7%. Note however, that this is dif-
ferent from the p-value corresponding to Year.built observed in the full model (HousePricesLM1). Of
course, these different p-values correspond to different null hypotheses, so this is certainly to be expected.

Because of these difference between these models we have to be careful about how we conduct out
model selection; particularly when considering how a post hoc model selection can impact confidence
regions for parameters are predictions. For now we will concern ourselves with the question—which
model should we trust? We could consider testing the hypothesis:

H0 : Y = X0β0 + ϵ (1)

where X0 and β0 correspond to the simpler model. We will come back to this test in a moment, but first
we will consider one way in which simply removing seemingly insignificant variables can fail.

The second student only omitted variables that to us seemed insignificant, but the t-tests we performed
only consider the individual contribution of each variable to the model fit. It may well be the case that
a group of individually insignificant variables are very significant as a group. A rather extreme case of
this arises in the following artificial scenario.

> set.seed(1)

> X1 <- rnorm(50)

> X2 <- X1 + 0.05 * rnorm(50)

> y <- 1 + X1 + X2 + rnorm(50)

> summary(lm(y ~ X1 + X2))

Neither of the variables above appear significant, though the result of the F -test in the final line of the
summary output suggests that the model that omits both variables is not consistent with the data. Note
X1 and X2 are very highly correlated (try cor(X1, X2)). We have seen in lectures and the example
sheets that this high correlation causes the coefficient estimates for X1 and X2 to have very high variance,
which explains why individually none is seen to be significant when the other is in the null model.

Now to check whether in simplifying our model for house prices we have not omitted any important
variables, we can perform an F -test to test the null hypothesis that the simpler model S0 is correct,

1

against the alternative of the full model. We do this by supplying both lm outputs to the anova func-
tion, with the smaller model first; we also supply the intercept-only model for pedagogical reasons.

> anova(lm(Sale.price ~ 1), HousePricesLM2, HousePricesLM1)

Analysis of Variance Table

Model 1: Sale.price ~ 1

Model 2: Sale.price ~ Bathrooms + Living.area + Year.built

Model 3: Sale.price ~ Bedrooms + Bathrooms + Living.area + Lot.size +

Year.built + Property.tax

Res.Df RSS Df Sum of Sq F Pr(>F)

1 84 3.5481e+11

2 81 1.7963e+11 3 1.7518e+11 26.0111 9.187e-12 ***

3 78 1.7511e+11 3 4.5203e+09 0.6712 0.5723

The p-value of the test is 0.5723 so this gives no reason to reject the null hypothesis that our simpler
model is correct. Note that we supplied the models in order of nestedness, and so the anova function
performs F-tests between adjacent models. The first test is nearly the same as that shown in the last
line of summary(HousePricesLM2) with the difference that the estimate of σ2 does not come from model
HousePricesLM2 but from HousePricesLM1 (convince yourself that this is still a valid F-test).

The function model.matrix applied to output from lm gives the design matrix used in the regression
fit (try it out, and note the first column of 1’s representing an intercept term). Let X and X0 be the
outputs from model.matrix applied to HousePricesLM1 and HousePricesLM2 respectively, XI := 1n,
and let P, P0 and PI be the orthogonal projections on to the column spaces of X,X0 and XI respectively
(so e.g. P = X(XTX)−1XT or PI = n−11n×n, where 1n×n is the n-by-n matrix with all ones). Further
let y be the response Sale.price, let n be the number of observations and let p and p0 be the number
of columns of X and X0 respectively. Lastly, let Z1 ∼ Fp0−1,n−p and Z2 ∼ Fp−p0,n−p. The following
table gives the formulae for the numbers in the output of the anova function.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 n− 1 ∥I − PI)y∥2

2 n− p0 ∥(I − P0)y∥2 p0 − 1 ∥(P0 − PI)y∥2
1

p0−1∥(P0 − PI)y∥2
1

n−p∥(I − P)y∥2
P(Z1 ≥ F)

3 n− p ∥(I − P)y∥2 p− p0 ∥(P − P0)y∥2
1

p−p0
∥(P − P0)y∥2

1
n−p∥(I − P)y∥2

P(Z2 ≥ F)

Lecturer’s note: The reasoning above is common in practice, but as I mentioned in the lectures, the
purpose of such ad hoc model selection procedure is unclear. If the goal is to test the significance of
some coefficients, post model-selection inference is needed to control statistical errors. If the goal is
making better predictions by achieving a better bias-variance tradeoof, criteria like Mallows’ Cp or cross-
validation should be used. If the goal is to pick the “correct” model, BIC could be used. We will consider
these methods in the exercises below.

Variable transformations

Now let us look at predicting the earnings of films based on their opening weekend takings, the number
of screens they opened to, their production budgets and their rating from the review aggregator Rotten
Tomatoes (rottentomatoes.com). Note that this prediction task is rather important for film studios,
who would want to get an idea of how well their film will do at the box office soon after it has opened.
It is also relevant for cinemas, who would want to know how often they should be showing the films in
order to maximise their profits. Although the Rotten Tomatoes rating would not be available at that
time, there would be some initial reviews, so our version of the prediction task is not too unrealistic.
The dataset we will study looks at the US takings (in millions of dollars) of films released in 2009 that
opened on more than 500 screens in the US. We only look at those films for which the production budget
is available.

2

rottentomatoes.com

> detach(HousePrices)

> Movies <- read.csv(paste(file_path, "Movies.csv", sep =""))

> Movies

> attach(Movies)

Plot the response Total.Gross against the explanatory variables. You can use par(mfrow = c(2, 2))

to get them all in one view; par(mfrow = c(1, 1)) will reset the plotting parameters to just show one
plot per view. We see that the plots of the response against the opening weekend takings and production
budget show the points are very bunched near the origin, with the points spreading out as we move away
to the top right-hand corner.
Let us log transform the response and the variables for the opening weekend takings and production
budget, and repeat the same plots. Now a linear model looks more appropriate for the data. We can
check that, indeed, λ = 0 in the Box–Cox family of transformations is a reasonable choice giving an
interpretable model: recall that we fit the parameters (λ, β, σ2) by MLE; we can start by maximising the
log-likelihood with respect to (β, σ2) so that we obtain a function of λ (Lecturer’s note: This is called
the profile likelihood function); then, it is common to plot this function to find its or to check that our
proposed choice of λ is not far from it (our case). The R function boxcox from the MASS package returns
this plot. We load the package first.

> library(MASS)

> boxcox(lm(Total.Gross ~ log(Opening) + Screens + RT + log(Budget)))

Let us fit a linear model to the transformed data.

> MoviesLM <- lm(log(Total.Gross) ~ log(Opening) + Screens + RT + log(Budget))

> summary(MoviesLM)

The high R2 value shows we have a good fit, and the large F -statistic in the bottom row of the summary
output shows that the simple intercept-only model is not at all adequate. The number of opening screens,
however, does not appear to be significant, and indeed its coefficient estimate is quite close to 0.
We can try to improve the model by omitting the Screens variable.

> MoviesLM2 <- lm(log(Total.Gross) ~ log(Opening) + RT + log(Budget))

> summary(MoviesLM2)

Why is there no point in doing anova(MoviesLM2, MoviesLM)? Examining the diagnostic plots for
MoviesLM2 shows there is little heteroscedasticity. By contrast, if we hadn’t log-transformed the predic-
tors and the response, the variance of the errors would increase with the mean response. In that case,
we shouldn’t trust our p-values too much. The exercises below continue the analysis of this data.

Exercises

1. There is one high leverage observation in the movies dataset. Fit a new linear model omitting this
observation and also omitting the Screens variable. (Recall the functions hatvalues and which,
and the subset option of lm).

2. Download the data for film earnings in 2010.

> Movies2010 <- read.csv(paste(file_path, "Movies2010.csv", sep =""))

Compute 95% prediction intervals (see ?predict.lm) for each of the earnings of these films. Re-
member that you will need to transform prediction intervals you get (though you will not need
to transform the data). What proportion of the actual film earnings fall within the prediction
intervals you have calculated? Repeat the procedure with 50% prediction intervals.

3. Write a function ForwardSelection that takes as input an n× p covariate matrix and a response
vector, and returns a linear model object based on a subset of s of the p covariates determined in
the following way:

(a) Start with the empty set of covariate indices , call this Î.

3

(b) Find the covariate i that minimises the Mallows Cp given by ∥Y −XβÎ∪{i}∥22/σ̃2+2|Î|, where
βI are the coefficients from the linear regression model using only the covariates in I, and σ̃
is the MLE of the standard deviation using all p covariates.

(c) Compare the Cp of this minimiser with Cp from just using Î. If the new minimum improves

the Cp, then update Î by adding in the variate index i from the previous step.

(d) Continue this until no new covariate improves the Cp, then return the linear model using only

the covariates in Î.

Apply this function to the house price data from the start of this exercise sheet. Which variables
are selected in your predictive model?

4. Consider the regression model:

Yi = 50(Xi − 0.1)(Xi − 0.7)(Xi − 1) + ϵi (2)

where Xi ∼ U [0, 1] and ϵi ∼ N(0, 1) independently. Generate 30 samples from this model, and
store these in a dataframe. Add columns corresponding to the variables Xj

i for j = 2, . . . , 10.
Construct a predictive linear model using: just the linear and intercept terms; up to cubic terms;
and all 10 explanatory variables, and plot the fitted values on the same chart.

To avoid over fitting using all of the variables, we will instead consider adding regularisation
term to our loss function. Recall that linear models minimise the sum of square errors ∥Y −Xβ∥22.
Instead we will use the loss function ∥Y −Xβ∥22 + λ∥β∥22. This minimisation problem has a closed
form solution:

β̂λ = argmin
β∈Rp

∥Y −Xβ∥22 + λ∥β∥22 (3)

= (XTX + λIp)
−1XTY. (4)

Using your LinMod function from Practical 2, create a function RidgeMod that also accepts the
argument λ ∈ (0,∞) and returns the model with these regularised parameters. How does the
model using all covariates fitted by RidgeMod with a small choice of λ (e.g., λ = 0.1) compare to
the linear models above? What happens as we vary lambda?

Forward and backward selection

Alongside the forward selection above, we can also employ backward selection methods to guide our
model choice in the house prices example. Implementations of both of these algorithms are not part of
the standard R functions but are contained in the package MASS.

> library(MASS)

> stepAIC(lm(Sale.price ~ 1, data = HousePrices), scope =

+ Sale.price ~ Bedrooms + Bathrooms + Living.area + Lot.size + Year.built + Property.tax,

+ direction = "forward") # forward selection

> stepAIC(HousePricesLM1, direction = "backward") # backward selection

Note that the plus signs on the left-hand side simply indicate that the command spans more than one
line: they are not part of the command itself. In both of the algorithms, variables are added or deleted
until no addition or deletion of a variable decreases the AIC. Do these methods give the same results as
your forward selection method earlier?

Post model selection inference

As discussed in lectures, confidence intervals formed after model selection has been performed can have
less coverage than their nominal value. Let us explore this with the house prices data. We start by
detaching the Movies dataset and attaching HousePrices again.

detach(Movies)

attach(HousePrices)

4

First we create a matrix of artificial responses based on the fitted values from HousePricesLM2 with
Gaussian noise whose standard deviation is set to the estimate of σ from the same model. Recall that
this model has predictors Bathrooms, Living.area, and Year.built.

set.seed(2)

n <- nrow(HousePrices)

n_reps <- 1000

Sale.price_mat <- fitted.values(HousePricesLM2) +

summary(HousePricesLM2)$sigma * matrix(rnorm(n*n_reps), n, n_reps)

Here is a function that takes as input a vector of responses y and returns the confidence interval for
Bedrooms.

confint_Bdrm <- function(y) {

LinMod <- lm(y ~ Bedrooms + Bathrooms + Living.area + Lot.size + Year.built + Property.tax)

return(confint(LinMod)["Bedrooms",])

}

You can verify that this confidence interval has the correct coverage. For every artificial response simu-
lated from the linear model, compute the confidence interval and evaluate how often the true coefficient
for Bedrooms, which is equal to 0 as this variable is not in the model, is inside the interval.

ConfInts <- apply(Sale.price_mat, 2, confint_Bdrm)

mean((ConfInts[1,] < 0) * (0 < ConfInts[2,]))

Here, the function apply passes every column of Sale.price_mat to confint_Bdrm, and returns a
matrix containing the confidence interval for every realisation of the response. Let’s examine what
happens when we derive confidence intervals after doing backward selection. The following function
takes as input a vector of responses and returns a confidence interval for Bedrooms after model selection
has been performed using backward selection. Note that for each response y, there is a chance that
Bedrooms will not be in the selected model, and so a confidence interval cannot be computed. In this
case we return a vector of NA values: these represent missing values in R.

confint_bkwd_Bdrm <- function(y) {

LinMod1 <- lm(y ~ Bedrooms + Bathrooms + Living.area + Lot.size + Year.built + Property.tax)

LinMod2 <- stepAIC(LinMod1, direction = "backward", trace = 0)

ConfInt2 <- confint(LinMod2)

if ("Bedrooms" %in% row.names(ConfInt2)) {

return(ConfInt2["Bedrooms",])

} else {

return(c(NA, NA))

}

}

Next we compute the coverage probabilities of the confidence intervals returned. The na.rm option of
mean allows us to compute the mean ignoring NA values.

ConfInts_bkwd <- apply(Sale.price_mat, 2, confint_bkwd_Bdrm)

mean((ConfInts_bkwd[1,] < 0) * (0 < ConfInts_bkwd[2,]), na.rm = TRUE)

We can query the proportion of times Bedrooms is not selected by backward selection using

mean(is.na(ConfInts_bkwd[1,]))

5

