
STATISTICAL MODELLING Part IIC, Michaelmas 2024
Practical 3: Linear regression using R

Data.frame

We have already met lists as a very flexible data structure in R. A data frame is a special type of list
where each variable has a name and has the same length. Thus it takes the form of a two-dimensional
array, but it differs from a matrix in R as different variables (columns) can be of different types. The
read.csv function creates data frames from comma-separated value files. Download the students’ brain
size data from my website and store it in the data frame BrainSize

> file_path <- "https://raw.githubusercontent.com/AJCoca/SM19/master/"

> BrainSize <- read.csv(paste0(file_path, "BrainSize.csv"))

The paste0 command joins strings together and is used here simply for convenience. We can view the
first 5 rows of the data by issuing

> BrainSize[1:5,]

and the full dataset can be viewed by simply typing in

> BrainSize

(not advisable for large datasets). The data contains various measures of IQ (Intelligence Quotient) and
brain size measurements for 38 psychology students, along with their height, weight and gender. Note
how the first column consists of the categories Male and Female, whereas the other columns are numbers.
The summary function can be applied to a variety of different objects in R to produce helpful summaries.
Try applying it to the the data frame BrainSize. We can get a correlation matrix of the numerical
variables by performing

> cor(BrainSize[, -1])

the -1 serving to omit the first column.
Individual variables of a data frame can be accessed in the following way:

> BrainSize$PIQ

> BrainSize$Height

It can be a bit laborious prepending BrainSize$ to every variable. The attach function adds the
variables of given data frame to the R search path so that they can be accessed by simply giving their
names. The opposite of attach is detach. Note it is not advisable to use attach when working with
several datasets at once due to potential name conflicts.

> search()

[1] ".GlobalEnv" "tools:rstudio" "package:stats" "package:graphics"

[5] "package:grDevices" "package:utils" "package:datasets" "package:methods"

[9] "Autoloads" "package:base"

> attach(BrainSize)

> search()

[1] ".GlobalEnv" "BrainSize" "tools:rstudio" "package:stats"

[5] "package:graphics" "package:grDevices" "package:utils" "package:datasets"

[9] "package:methods" "Autoloads" "package:base"

> Height

The lm function

So far, we have manually created projection matrices in R from given design matrices, and written out
code to calculate t-statistics etc. As you might expect, R has ready-made functions to do all this for you
and much more. The lm function is used to fit linear models.

1

> BrainSizeLM1 <- lm(PIQ ~ MRI_Count)

> BrainSizeLM2 <- lm(PIQ ~ MRI_Count + Height)

If BrainSize were not attached, it can be supplied as a data argument to the lm function,

> BrainSizeLM1 <- lm(PIQ ~ MRI_Count, data = BrainSize)

For both of the linear models fitted above, the response is PIQ (performance IQ). The first linear model
uses as predictors MRI Count and an intercept term, which is included by default. The second fits a
model that also includes Height as a predictor. Typing ?formula provides more information on the
syntax.

Output from lm

Examining the output of str(BrainSizeLM1) shows that the function lm creates a list with many
components. The easiest way to access the most important information is via the summary function. We
have annotated the slightly abbreviated output below, using the same notation as in the lecture notes.

> summary(BrainSizeLM1)

Residuals:

Min 1Q Median 3Q Max

-40.079 -17.508 -2.096 17.100 41.574

These are the main empirical quantiles of the residuals. The output continues as

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.660e+00 4.371e+01 0.107 0.9157

MRI_Count 1.177e-04 4.806e-05 2.448 0.0194 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The columns of this table contain the following information, respectively: the estimates for the coeffi-
cients, i.e. the components of β̂; the standard errors of the estimates, i.e., σ̂

√
{(XTX)−1}jj ; the values

of the t-statistic β̂j/(σ̂
√

{(XTX)−1}jj); the probability that a random variable T ∼ tn−p is such that
|T | exceeds the absolute value of the t-statistic. These latter probabilities are thus p-values for testing
the null hypotheses βj = 0 against the alternatives βj ̸= 0 in the normal linear model. The last line
above shows the symbols that are displayed on the right of the p-values to easily identify between what
significance values each of them is. There is more output:

Residual standard error: 21.21 on 36 degrees of freedom

This is σ̂; the degrees of freedom is n− p since σ̂2 ∼ σ2

n−pχ
2
n−p in the normal linear model.

Multiple R-squared: 0.1427, Adjusted R-squared: 0.1189

The R2 and adjusted R2 values. Lastly,

F-statistic: 5.993 on 1 and 36 DF, p-value: 0.01937

This is the F -statistic
1

p−1∥HY − Ȳ 1n∥2
1

n−p∥(I −H)Y ∥2
,

where H is the ”hat matrix”, and the corresponding p-value for testing the null hypothesis of the
intercept-only model against the alternative of the full model. If we set the significance level at 5%, we
should reject the null hypothesis.
Try ?summary.lm for more details about lm. How would we print the correlations between the coefficient
estimates?
Various other functions extract specific information from the lm output e.g. coef, residuals, fitted.values,
hatvalues (leverage), cooks.distance etc. We can visualise our linear model fit with

> plot(PIQ ~ MRI_Count)

> abline(BrainSizeLM1)

2

Diagnostic plots

Applying the plot function to the output of lm gives four useful diagnostic plots (see plot.lm for further
details, though the titles and axes labels are fairly self-explanatory). The par function is used to set
plotting parameters. Here we set up the display so that four plots are produced on the same screen,
saving the old parameters in old par. We then reinstate the old parameters after the plot has been
produced.

> old_par <- par(mfrow = c(2, 2))

> plot(BrainSizeLM1)

> par(old_par)

What should we expect these plots to look like if all the assumptions for the normal linear model held?
One thing we can do is the following

> old_par <- par(mfrow = c(2, 2))

> plot(lm(rnorm(length(MRI_Count)) + fitted.values(BrainSizeLM1) ~ MRI_Count))

> par(old_par)

The plots produced will have almost exactly the same “distributions” as those from BrainSizeLM1 if the
normal linear model is correct—make sure you understand why. The only slight difference is that the
scale on the y-axis of the first plot will be different. We can repeat the final plot above as many times
as we like to get a better idea of what to expect when the assumptions hold.
In our case, it appears there is some trend in the residuals to suggest non-linearity; the Q–Q plot indicates
that the tails of the studentised residuals (called the “standardized residuals” by R) are slightly lighter
than we’d expect and the “scale–location” plot suggests a slight decrease in the error variance as the
fitted values increase.
Let us see if adding a predictor to our model can alleviate the issue of non-linearity.

> plot(residuals(BrainSizeLM1) ~ Height)

There appears to be a negative relationship between height and the residuals, so we should try adding
the variable Height to our model. Happily we have already done this in BrainSizeLM2. Examine the
diagnostic plots for BrainSizeLM2 to convince yourself that the non-linearity and heteroscedasticity don’t
appear to be as serious as before. The “Residuals vs Leverage” plot does however show that there is at
least one observation with a rather high leverage score that we could consider omitting.

Cook’s distance and leverage

To further understand the ideas behind Cook’s distance and leverage, let us look at some artificial
datasets.

> set.seed(1) # sets the seed for the random number generator

> x <- c(rnorm(24), 4)

> y <- 1 + x + rnorm(25)

> plot(y ~ x)

> LinMod1 <- lm(y~x)

> abline(LinMod1)

> (lev1 <- hatvalues(LinMod1))

> which(lev1 > 3*2/25) # do ?which to understand what it does

We see that the last observation has a high leverage score according to our rule of thumb threshold of
3p/n. Compare the values of the F -statistics for the null hypothesis of the intercept-only model against
the alternative of the full model, and the R2 values, for LinMod1 and a model that excludes the final
observation (use the subset option of lm).
Examining

> pf(cooks.distance(LinMod1), 2, 23, lower.tail = FALSE)

3

shows that the Cook’s distance of the observation is rather small. The value of α for which Fp,n−p(α)
(the upper α point of an Fp,n−p distribution) equals this Cook’s distance is roughly 0.77: this is above
0.5, the rule of thumb threshold discussed in lectures. Omitting the last observation pushes the estimates
for the coefficients almost to the edge of their 23% confidence ellipsoid—not necessarily a big cause for
concern.
Now create a new response y2 as follows:

> y2 <- y

> y2[25] <- y[25] - 5

Plot the data and add the least squares fit line. Further add a dashed line for the least squares fit without
the final observation (setting the lty argument of abline to 2). Examine the Cook’s distances of the
observations as above.

Exercises

1. Consider Anscombe’s datasets, available in the R package datasets:

library(datasets)

datasets::anscombe

Fit linear models to each of the variable pairs (xi, yi) using the lm function, e.g.,

summary(lm(y1 ~ x1, data = anscombe))

What do you notice about the summaries of these linear models?

Now plot each of these datasets using the following code:

par(mfrow = c(2,2))

plot(anscombe$x1, anscombe$y1, type = "p", pch = 16,

xlab = "X_1", ylab = "Y_1", xlim = c(3,20), ylim = c(3,13))

abline(lm(y1~x1, data = anscombe), col = "red")

plot(anscombe$x2, anscombe$y2, type = "p", pch = 16,

xlab = "X_2", ylab = "Y_2", xlim = c(3,20), ylim = c(3,13))

abline(lm(y2~x2, data = anscombe), col = "red")

plot(anscombe$x3, anscombe$y3, type = "p", pch = 16,

xlab = "X_3", ylab = "Y_3", xlim = c(3,20), ylim = c(3,13))

abline(lm(y3~x3, data = anscombe), col = "red")

plot(anscombe$x4, anscombe$y4, type = "p", pch = 16,

xlab = "X_4", ylab = "Y_4", xlim = c(3,20), ylim = c(3,13))

abline(lm(y4~x4, data = anscombe), col = "red")

These datasets demonstrate some of the ways in which linear models can fail, and why we might
need the diagnostic plots above. Run these diagnostics on these datasets and determine what, if
anything, can be done to fix these issues.

2. Consider a polynomial regression problem, where Xi
iid∼ U([100, 101]) and:

Yi = (x− 100.5)/5 + (x− 100.5)2 + ϵi (1)

where ϵi
iid∼ N(0, 0.12). Construct the appropriate design matrix X (with the knowledge that the

regression function is a quadratic) to use with your LinMod function from the previous practical.
Do you get an error message? If you run the code:

4

solve(t(X)%*%X, t(X)%*%y)

where y is your response vector, do you get the same error? Compare this to calling lm directly:

my_model <- lm(y~X+I(X^2))

plot(X,y)

lines(X,fitted(my_model),lwd=2)

Now shift your predictors further from the origin:

x1 <- x+1000

plot(x1,y)

my_model_2 <- lm(y~x1+I(x1^2))

lines(x1,fitted(my_model_2),lwd=2)

The linear model should still in theory capture the true relationship between x and y, but fails to
do so. Can you explain why? Consider reading the R documentation in ?kappa.

3. Let us now briefly look at another dataset on house prices.

> detach(BrainSize)

> (HousePrices <- read.csv(paste0(file_path, "HousePrices.csv")))

This data gives the sale prices (in dollars) of various houses in New York along with various factors
that are thought to be relevant for predicting sale price. To fit a model of Sale.price against all
other variables in the data frame HousePrices, we can do the following.

> HousePricesLM <- lm(Sale.price ~ ., data = HousePrices)

Apply the confint function to HousePricesLM gives confidence intervals for the coefficients.

The predict function (try ?predict.lm) can be used to give x∗T β̂ for a new observation x∗.
The observation x∗ must be supplied as a data frame:

newdata <- data.frame("Bedrooms" = 5, "Bathrooms" = 2, "Living.area" = 1400,

+ "Lot.size" = 7000, "Year.built" = 1950, "Property.tax"=9000)

Use the interval option of the predict function to get confidence intervals for x∗Tβ and a
prediction interval for Y ∗ ∼ N(x∗Tβ, σ2).

4. The summary information of BrainSizeLM2,

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.113e+02 5.587e+01 1.992 0.054243 .

MRI_Count 2.061e-04 5.467e-05 3.769 0.000605 ***

Height -2.730e+00 9.932e-01 -2.748 0.009403 **

Residual standard error: 19.51 on 35 degrees of freedom

Multiple R-squared: 0.2949, Adjusted R-squared: 0.2546

F-statistic: 7.319 on 2 and 35 DF, p-value: 0.00221

shows that Height has a negative coefficient: should taller people be worried that their height will
lead to lower IQ score? Explain why or why not.

5

Extra Reading

Base R is still widely used, but many modern practitioners use some very versatile packages that build
in a lot of desired features. It is worth reading the documentation on the tidyverse package (https:
//tidyverse.tidyverse.org/articles/paper.html), which includes a collection of many very useful
packages.

6

https://tidyverse.tidyverse.org/articles/paper.html
https://tidyverse.tidyverse.org/articles/paper.html

