STATISTICAL MODELLING Part IIC, Michaelmas 2024
Practical 1: Introduction to R

A more comprehensive introduction to R can be found at https://cran.r-project.org/doc/manuals/
r-release/R-intro.pdf. The best way to learn R is through making errors and reading the manual/help
page. You should try to solve all the exercises before the next practical session.

Installing R and RStudio

Please ensure that you have downloaded and installed the appropriate distribution of R and RStudio
from https://posit.co/download /rstudio-desktop /.

R as a calculator

R can be used as a calculator:

> (9.173)*sqrt(14)*exp(-5) /log(4)

Help on any R function can be found by typing a question mark followed by the function, e.g.

> 7exp > help(exp) > 77exp

You will need to use this help facility extensively (and get used to skim-reading to find the relevant bit!).
Note that R is case-sensitive.

The <- symbol is the usual assignment operator in R (symbol = can also be used, but it has slightly
different purposes so I recommend sticking to <-). For instance, we can assign the value 3 to the variable
%, and then perform operations on x. Anything which appears after the hash symbol # is a comment
and need not be typed.

> x <- 3

> round(x"2 + loglO(x), 3) # try 7round to see what it does
[1] 9.477

> 37 %W/h 3 # try TW/N

[1] 12

> 37 %h 3

(11 1

Creating vectors
The ¢ function (for ‘concatenate’) combines values into a vector.

> x <- c(3, 6, 4, 2)
> X

[1] 36 42

> length(x)

[1] 4

There is no such thing as a scalar in R; what one might think of as a scalar is treated as a vector of
length 1. Note that R does not distinguish between row and column vectors unlike MATLAB.

You can create a vector y with the same entries using y <- scan(). Enter one component per line and
leave a blank line after the last.

A sequence of equally spaced numbers can be created using the seq function. The rep function provides
different ways of repeating vectors.

Operations on vectors
Operations on vectors in R are performed component by component. For example

> X + X

[1] 612 8 4
> X*X

[1] 9 36 16 4


https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://posit.co/download/rstudio-desktop/

> exp(x)
[1] 20.085537 403.428793 54.598150 7.389056

When operations are performed on vectors of different lengths, the shorter vector is cycled until it is the
same length as the longer vector.

> x <- c(3, 6, 4, 2)

>y <- c(1, 2)

>x +y

[1]1 485 4

> xX*xy

[1] 312 4 4

> x7y

[1] 336 4 4

>y <= 1:3 # same as y <- c(1, 2, 3)
>xXx +ty

[1] 4873

Warning message:

In x + y : longer object length is not a multiple of shorter object length

What are the values of x + 2, 3*x and (2 + x)~37

Indexing vectors

> x <- c(3, 6, 4, 2)

> x[2] # 2nd component of x

(1] 6

> x[c(1, 3)] # 1st and 3rd components of x

[1] 3 4

> x[-1] # All of x except the 1st component

[1] 6 4 2

> x[-(1:2)] # All of x except the 1st two components
[1] 4 2

> x[1:2] <= c(7.1, 3.4) # We can assign values to components
> X

[1] 7.1 3.4 4.0 2.0

Note that after the final command, x has automatically transformed from a vector of integers to a vector
of floating point numbers (these are a way of representing real numbers on computers, though of course
only to a certain degree of accuracy).

We can also index components of a vector using a TRUE / FALSE (logical) vector.

> index_vec <- c(TRUE, TRUE, FALSE, TRUE)
> x[index_vec]
[1] 7.1 3.4 2.0

Logical vectors can also be created using the binary operator < which performs componentwise compar-
isons.

> X

[1] 7.1 3.4 4.0 2.0

>x > 3.6

[1] TRUE FALSE TRUE FALSE
> x[x > 3.6]

[1] 7.1 4.0



Matrices
We can create a matrix using the matrix function.

> A <- matrix(1:8, 2, 4)
> A

[,11 [,2]1 [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

Can you enter the terms by row instead? Rows and columns of matrices can be extracted in the following
way:

> A1, 1]
[11 1357
> A[, 3]
[1] 5 6

Note that the rows and columns thus formed are now vectors. We can check this using the very helpful
str (for ‘structure’) function.

> str(All, 1)
int [1:4] 1 357

Here we see that A[1, ] is an integer vector of length 4. To keep the 2-by-1-matrix structure-type, we
use

> A[, 2, drop = FALSE]

[,1]
[1,] 3
[2,] 4

An alternative is to do

> matrix(A[, 2])

[,1]
[1,1] 3
[2,1] 4

Submatrices can be formed by e.g. A[, 1:3]. The diagonal can be extracted using diag. We can perform
many standard operations on matrices.

> A Yx% x # matrix vector multiplication
[,1]

[1,] 51.3

(2,1 67.8

> AxA # componentwise multiplication
(.11 [,21 [,3] [,4]

[1,] 1 9 256 49

[2,] 4 16 36 64

> t(A)
[,11 [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

> A Yx% t(A) # matrix matrix multiplication
[,11 [,2]

[1,] 84 100
[2,] 100 120



The solve function can be used to invert matrices and, thus, to solve linear systems:

> solve(A %*% t(A))
[,11 [,2]

[1,] 1.50 -1.25

[2,] -1.25 1.05

A few important functions

> x <- c(3, 6, 4, 2)

> sum(x)

[1] 15

> sum(x > 3) # TRUE is treated as 1 and FALSE, 0
[1]1 2

> mean (x)

[1] 3.75

> sort (x)

[11 2 3 4 6

> sd(x) # standard deviation
[1] 1.707825

How is the standard deviation being calculated? Functions for matrices:

> mean(A) # mean treats A as a vector
[1] 4.5

> colMeans (A)

[1] 1.5 3.5 5.5 7.5

> rowSums (A)

[1] 16 20

The function cbind ‘glues’ columns of matrices together.

> cbind(1, A)

[,11 [,2]1 (,3]1 [,4] [,5]
[1,] 1 1 3 5 7
2,1 1 2 4 6 8

Writing functions

When writing anything but a short algorithm, it is often easiest to edit the commands from a text file.
In Rstudio create a new R script using Ctrl4+-Shift+N. Write out the following code:

f <- function (x, y) {
z <- x"2 + y°2
return(c(cos(z), sin(z)))

}

Once you have written the algorithm and saved the file as Rubbish.R, say, in the current working
directory, you can execute the commands by typing

> source("Rubbish.R")

in the console. Typing f in the console will now echo the code of your function, and you can run your
function by giving it the right arguments e.g. £ (2, 3).



Generating (pseudo) random numbers

(Pseudo) independent and identically distributed sequences of random numbers are generated with com-
mands like rnorm, runif, rchisq etc. (normal, uniform, x2?). The corresponding density, cumulative
distribution and quantile functions are, e.g. dnorm, pnorm, qnorm.

> x <- rnorm(1000)

> hist(x, freq = FALSE)

> x_vec <- seq(-3, 3, by = 0.1)

> lines(x_vec, dnorm(x_vec), col = "red") # adds lines to an existing plot

What does the following code do?

> X <- matrix(runif (50%1000, min=-1, max=1), 50, 1000)
> hist(sqrt(50) * colMeans(X) / sd(X), freq = FALSE) # sd treats X as a vector
> lines(x_vec, dnorm(x_vec), col = "red")

lines plots on top of the current plot, but if you wish to use superposition to histograms (or plots) you
can use the following instruction (equivalent to to “hold on” in Matlab).

> par (new=TRUE)

Experiment with other distributions and other sample sizes.

Exercises
1. Let Z ~ N(0,1). Estimate E(Z|{Z > 1}) and E(Z5).
2. What is the upper 5% point of a x2 distribution?

3. Use R to solve

3a+4b—2c+d=9

2a —b+T7c—2d =13
6a+2b—c+d=11
a+ 6b — 2¢c + bd = 27.

4. Two lecturers mark the same Tripos question for two randomly selected, disjoint sets of students.
To make sure that neither of them is more lenient than the other, they want to test whether their
average marks are equal. But they are afraid the sample size is too small to apply the Central
Limit Theorem, so one of them writes the following code.

> grades_1 <- c(10,11,14.5,15,15,18,12,19,18.5,19,20,13)
> grades_2 <- c(12,11,14.5,13,12,11,12,14.5,20,17)

> mean(grades_1)

> mean(grades_2)

> tstat <- mean(grades_1)-mean(grades_2)

> all_grades <- c(grades_1,grades_2)

> edtstat = rep(0, 10000)

> for (i in 1:10000) {

> perm <- sample(all_grades)

> edtstat[i] <- mean(perm[l:length(grades_1)])-

> mean (perm[-(1:length(grades_1))])
>3

> p_value <- mean(abs(tstat) <= abs(edtstat))

> p_value

How can you interpret the output of the last line? Search for the documentation of any function
you have not encountered before.



5. Consider a real valued random variable X with distribution function given by:
Fx(z) = Larctan(z) + 3.

Write a function rmydist(n) that generates n independent samples of X. Use this function to
estimate Var(X).
Hint: consider the distribution of Fx(X) and invert Fx to find samples of X.



