
STATISTICAL MODELLING Part IIC / Michaelmas 2024
Example Sheet 4 (of 4)

1. Show that the log-likelihood for binomial regression with data (y1, x1), . . . , (yn, xn) ∈ {0, 1} × Rp

when the response is binary and the canonical link function is used can be written as

−
n∑

i=1

log(1 + exp(−ỸiX
T
i β)),

where Ỹi = 2Yi − 1.

2. Let Y1, . . . , Yn be independent with Yi ∼ N(µi, σ
2) and µi = XT

i β, for i = 1, . . . , n. Show that only
one iteration of the Fisher scoring method is required to attain the maximum likelihood estimator
β̂, regardless of the initial values for the algorithm. What feature of the log-likelihood function
ensures that this is the case?

3. Let the design matrix X have ith row XT
i for i = 1, . . . , n. Consider the generalized linear model

for data (XT
1 , Y1), . . . , (X

T
n , Yn) with link function g(·) and dispersion parameter σ2

i = σ2/wi for
observation i, where w1, . . . , wn are given data weights.

(a) Use the chain rule to show that the score equations for β may be written as

n∑
i=1

(Yi − µi)Xir

Varβ,σ2(Yi) · g′(µi)
= 0, r = 1, . . . , p,

where Varβ,σ2(Yi) is the variance of Yi in the exponential dispersion family with mean param-
eter µi = g−1(XT

i β) and dispersion parameter σ2
i .

(b) Show that the Fisher information matrix for the parameters (β, σ2) takes the block-diagonal
form

I(β, σ2) =

(
Iββ(β, σ

2) 0
0 Iσ2σ2(β, σ2)

)
,

where Iββ(β, σ
2) is a p × p matrix. Show that Iββ(β, σ

2) can be expressed as σ−2XTWX
where W is a diagonal matrix in which the i-th diagonal entry of W depends on wi and µi.
(You need not specify Iσ2σ2(β, σ2), and you may assume ∂2ℓ/∂βj∂σ

2 = ∂2ℓ/∂σ2∂βj for all j).

(c) Suppose the link function g is canonical. How do the expressions in (a) and (b) simplify in
this case? Show that the observed information matrix of β (the (β, β)-block in the Hessian
matrix of the log-likelihood function) is non-random given X, and use this to conclude that
the Newton-Raphson algorithm is equivalent to the Fisher scoring algorithm when the link
function is canonical.

4. Suppose that for some strictly increasing function f , we have

Y ∗
i = f(XT

i β
∗ + εi), i = 1, . . . , n,

where ε ∼ Nn(0, σ
2I), and the Xi are covariates in Rp with first component equal to 1. Suppose

that for some constant c, we observe
Yi := 1{Y ∗

i >c}.

Show that Y1, . . . , Yn are independent and

E(Yi) = Φ(XT
i β)

for some β that you should specify, where Φ is the c.d.f. of the standard normal distribution. This
is often called the probit regression model.

5. Load the Cycling dataset using the R code below:
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> file_path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> Cycling <- read.csv(paste(file_path, "Cycling.csv", sep =""))

> str(Cycling) # You can see which variables are factors and how many levels they have

These data were collected by Prof. Ian Walker from the University of Bath. He used an instru-
mented bicycle to gather proximity data from overtaking motorists when cycling. Recorded in the
data is the distance from kerb when a car passed, the type of road that he was cycling on, which
city he was in, whether or not a helmet was being worn and other variables. The goal of this data
collection was to determine whether wearing a cycle helmet affects how close motorists pass by
cyclists.

(a) Fit a normal linear model to the data with passing.distance as the response and all other
variables as explanatory variables. Under what conditions on the distribution of the data
will this model be correct? Probe these conditions by examining the diagnostic plots using
plot.lm.

(b) Now fit a probit regression where the response is 1 if the passing distance is less than 1 metre, 0
otherwise (the family argument of glm will need to be given as binomial(link = probit)—
this is how non-canonical links are specified). Under what conditions on the distribution of
the original data will the probit model be correct? Compare them to your answer in part (a).

6. For an exponential family of distributions {f(·; θ) | θ ∈ Θ ⊆ R}, the deviance of θ1 ∈ Θ from
θ2 ∈ Θ is defined as D(θ1, θ2) = 2Eθ1{log f(Y ; θ1)− log f(Y ; θ2)}, where Eθ1 means the expectation
is taken over Y ∼ f(·; θ1). With an abuse of notation, we often use the mean value parametrisation
µ1 = Eθ1(Y ), µ2 = Eθ2(Y ) and write D(θ1, θ2) as D(µ1, µ2).

(a) Show that D(θ1, θ2) = 2{(θ1−θ2)µ1−K(θ1)+K(θ2)}, where K(·) is the cumulant function of
the exponential family. How does this formula change when we include a dispersion parameter
in the distribution?

(b) When µ = (µ1, . . . , µn) and µ̃ = (µ̃1, . . . , µ̃n) are vectors, the total deviance of µ from µ̃ is
defined as D(n)(µ, µ̃) =

∑n
i=1 D(µi, µ̃i). Consider the normal linear model: let Y1, . . . , Yn be

independent with Yi ∼ N(µi, 1) and µi = XT
i β, for i = 1, . . . , n. Show that the total deviance

of Y from the maximum likelihood estimator of µ is equal to the residual sum of squares.

(c) Consider a generalized linear model as set up in Question 3 with the canonical link function.

Show that the maximum likelihood estimator of β is given by β̂ = argminβ D
(n)(Y, µ) where

µi is the mean parameter corresponding to the natural parameter θi = XT
i β.

(d) In the same setting, consider a partitioning X = (X0, X1), β = (βT
0 , β

T
1 )

T where X0 ∈ Rn×p0 ,
X1 ∈ Rn×(p−p0), β0 ∈ Rp0 , and β1 ∈ Rp−p0 . Let µ̂ and µ̂0 be the maximum likelihood
estimator of µ under the model θ = Xβ and θ = X0β. Show that D+(Y, µ̂0) = D+(Y, µ̂) +
D+(µ̂, µ̂0).

Hint: By using the score equation for β̂, show that D+(µ̂, µ̂0) = 2{l(µ̂)− l(µ̂0)} where l(µ) is
the log-likelihood function for mean µ. Then consider a special choice of X.

(e) Do the conclusions in (c) and (d) still hold if we use a non-canonical link function?

7. You see below the results of using glm to analyse data from Agresti (1996) on tennis matches
between 5 top women tennis players (1989–90). We let Yij be the number of wins of player i
against player j, and let nij be the total number of matches of i against j, for 1 ≤ i < j ≤ 5. Thus
we have 10 observations, which we will assume are realisations of independent binomial random
variables Yij with

Yij ∼ Bin(nij , µij)

and

log

(
µij

1− µij

)
= αi − αj .

This is known as the Bradley-Terry model and the parameter αi represents the quality of player i.
The data are tabulated in R as follows
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wins tot sel graf saba navr sanc

2 5 1 -1 0 0 0

1 1 1 0 -1 0 0

3 6 1 0 0 -1 0

2 2 1 0 0 0 -1

6 9 0 1 -1 0 0

3 3 0 1 0 -1 0

7 8 0 1 0 0 -1

1 3 0 0 1 -1 0

3 5 0 0 1 0 -1

3 4 0 0 0 1 -1

Thus for example, the first row tells us that Seles played Graf five times and won on two occasions.
We perform the following R commands (the output has been slightly abbreviated).

> fit <- glm(wins/tot ~ sel + graf + saba + navr - 1, binomial, weights=tot)

> summary(fit, correlation=TRUE)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

sel 1.5331 0.7871 1.948 0.05142 .

graf 1.9328 0.6784 2.849 0.00438 **

saba 0.7309 0.6771 1.079 0.28042

navr 1.0875 0.7237 1.503 0.13289

---

Null deviance: 16.1882 on 10 degrees of freedom

Residual deviance: 4.6493 on 6 degrees of freedom

Correlation of Coefficients:

sel graf saba

graf 0.59

saba 0.46 0.60

navr 0.63 0.54 0.49

(a) What is the meaning of the -1 in the model formula and why do you think it was included?

(b) Why is Sánchez (sanc) not included in the model formula?

(c) Can we confidently (at the 5% level) say that Graf is better than Sánchez?

(d) Can we confidently (at the 5% level) say that Graf is better than Seles? [Use the correlation
matrix and a calculator or R, writing out your calculations. P(Z ≤ 1.64) ≈ 0.95 when
Z ∼ N(0, 1).]

(e) What is your estimate of the probability that Sabatini (saba) beats Sánchez, in a single match?
Give a 95% confidence interval for this probability. [Use a calculator or R. P(Z ≤ 1.96) ≈ 0.975
when Z ∼ N(0, 1)]

8. (Long Tripos 2005/4/13I)

(a) Suppose that Y1, . . . , Yn are independent random variables, and that Y1 has probability density
function

f(yi|β, ν) =
(
νyi
µi

)ν

e−yiν/µi
1

Γ(ν)

1

yi
for yi > 0

where
1/µi = βTXi , for 1 ≤ i ≤ n,

and x1, . . . , xn are given p-dimensional vectors, and ν is known.

Show that E(Yi) = µi and that var(Yi) = µ2
i /ν.
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(b) Find the score equation for β̂, the maximum likelihood estimator of β, and suggest an iterative
scheme for its solution.

(c) If p = 2, and Xi =

(
1
zi

)
, find the large-sample distribution of β̂2. Write your answer in terms

of a, b, c and ν, where a, b, c are defined by

a =
∑

µ2
i , b =

∑
ziµ

2
i , c =

∑
z2i µ

2
i .

9. We wish to study how various explanatory variables may contribute to the development of asthma
in children. One way to do this would be to randomly select n newborn babies and then study
them for the first 5 years, measuring the values of the relevant covariates and noting down whether
they develop asthma or not within the study period. However, this sort of experiment may be too
expensive to carry out, and instead, we acquire the medical records of some children who developed
asthma within the first five years of their life, and some children who did not. Luckily the medical
records contain all the covariates we intended to measure.

We can imagine that the records we obtain are a sample from a large collection of data

(Y1, X1), . . . , (YN , XN ) ∈ {0, 1} × Rp,

where each Yi indicates the development of asthma and can be considered as a realisation of a
Bernoulli random variable Yi with πi := P(Yi = 1) ∈ (0, 1),

log

(
πi

1− πi

)
= α+XT

i β,

and all the Yi are independent. Let Zi indicate whether (Yi, Xi) is in our sample: 1 if it is, 0 if
not. Suppose that for all i = 1, . . . , N ,

P(Zi = 1 | Yi = 1) = p1, and P(Zi = 1 | Yi = 0) = p0,

where p1, p0 > 0 are unknown, and further that the (Yi, Zi) are all independent. Show that

P(Yi = 1 | Zi = 1)

1− P(Yi = 1 | Zi = 1)
=

p1
p0

exp(α+XT
i β).

Conclude that it is possible to estimate β from our medical records data, but not α.

10. Agresti (1990) gives the table below, relating mothers’ education to fathers’ education for a sample
of eminent black Americans (defined as persons having a biographical sketch in the publication
Who’s Who Among Black Americans).

Mother’s Father’s education
education 1 2 3 4

1 81 3 9 11
2 14 8 9 6
3 43 7 43 18
4 21 6 24 87

The categories 1–4 indicate increasing levels of education. We wish to model the entries Yij as
components of a multinomial random vector with corresponding probabilities pij where

pij =

{
ηϕi + (1− η)αiβj , for i = j

(1− η)αiβj , for i ̸= j,

and

0 ≤ η < 1,

αi, βj > 0, ϕi ≥ 0,∑
i

ϕi =
∑
i

αi =
∑
j

βj = 1.
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Give an interpretation of this model. Why might we expect that η > 0 for our data?

Now model the Yij as independent Poisson random variables with means µij = exp(α + xT
ijθ).

We wish to choose the covariates xij such that if we maximise the Poisson likelihood, with non-

negativity constraints on some components of θ, we obtain an estimate θ̂ which yields fitted values
µ̂ij = exp(α̂ + xT

ij θ̂) equal to those from the multinomial model above. Describe how the xij can
be chosen, and what non-negativity constrains should be applied.
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