
STATISTICAL MODELLING Part IIC / Michaelmas 2023
Example Sheet 3 (of 4)

1. Look at the cabbages data in the library(MASS) package (use ?cabbages to find out about the
dataset). Investigate whether the planting date has a significant effect on the weight of the cabbage
head. Write out the models you have fitted and explain any conclusions you come to.

2. Download the Cambridge Colleges data with

> path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> Colleges <- read.csv(file.path(path, "Colleges.csv"))

Fit a linear model with the percentage of firsts as the response and the logarithm of the wine
budget as a covariate. Pick a college (possibly your own) and test whether it is an outlier. Looking
at a plot of the data, what appears to be the most outlying college? Note you can add the names
of the colleges to the plot by issuing

text(log(WineBudget), PercFirsts, rownames(Colleges), cex=0.6, pos=3)

after plotting the data (provided the data frame Colleges is attached). What is the issue with
using your test to now determine whether this college is an outlier?

3. Suppose Y1, . . . , Yn is an i.i.d. sample from N(µ, 1). What is the asymptotic distribution of the
maximum likelihood estimator of P(Y1 < 0)?

4. Show the following families of distributions are (possibly multi-parameter) exponential families; all
parameters are unknown unless noted otherwise. Then find the corresponding natural parameters,
sufficient statistics, and cumulant functions.

(a) The normal distribution, N(µ, σ2):

f(y;µ, σ2) =
1√

2πσ2
e−

(y−µ)2

2σ2 , y ∈ R.

(b) The negative binomial distribution (number of failures until k successes are reached in Bernoulli
trials), NegBin(k, p) with fixed k:

f(y; p) =

(
y + k − 1

y

)
pk(1− p)y, y = 0, 1, 2, . . .

5. Let Y be a real-valued random variable whose moment generating function is finite on an open
interval containing zero. Show that the first three cumulants are κ1 = E(Y ), κ2 = Var(Y ),
κ3 = E(Y − κ1)3, respectively. Use these to find the mean and variance of the negative binomial
distribution NegBin(k, p) (in terms of k and p).

6. Suppose µ ∼ π(·) where π(·) is an unknown density function on R. Suppose Y | µ ∼ N(µ, σ2) and
σ2 is known. Derive Tweedie’s formula

E(µ | Y ) = Y + σ2 · f
′(Y )

f(Y )
,

where f(y) =
∫
π(µ)f(y;µ, σ2)dµ is the marginal density of Y , and f(y;µ, σ2) is the density of

N(µ, σ2). Hint: The posterior distribution of θ given Y is an exponential family.

7. Suppose Y1, . . . , Yn is an i.i.d. sample from a regular exponential family with natural parameter
θ ∈ Θ ⊆ R (regular means Θ is open), sufficient statistic T (y) = y, cumulant function K(θ), mean
parameter µ = µ(θ), and variance V (θ) > 0.

1



(a) Show that the distribution of Ȳ =
∑n
i=1 Yi/n is in an exponential family with natural pa-

rameter θ(n) = nθ and cumulant function K(n)(θ(n)) = nK(θ(n)/n). What is the mean and
variance of Ȳ ? Hint: What is the joint density of Y1, . . . , Yn?

(b) The deviance of θ1 from θ2 is defined as

D(θ1, θ2) = 2Eθ1
{

log
f(Y ; θ1)

f(Y ; θ2)

}
.

Show that the deviance in the exponential family for Ȳ of natural parameter θ
(n)
1 = nθ1 from

θ
(n)
2 = nθ2 is nD(θ1, θ2). Denote this as D(n)(θ1, θ2).

(c) Show likelihood ratio statistic for testing H0 : θ = θ0 versus H1 : θ 6= θ0, after a monotone

transformation, is given by D(n)(θ̂, θ0). What is the limiting distribution of this statistic when
n → ∞? Justify your answer using the approximation D(θ1, θ2) ≈ I(1)(θ2)(θ1 − θ2)2 when
θ1 ≈ θ2, where I(1)(θ2) is the Fisher information of one observation from the the distribution
f(·; θ2).

(d) With an abuse of notation, we also denote D(θ1, θ2) as D(µ1, µ2) where µ1 and µ2 are the mean
parameters corresponding to θ1 and θ2 in the exponential family. Similarly, D(n)(µ1, µ2) =
nD(µ1, µ2). The deviance residual is defined as

R = sign(Ȳ − µ) ·
√
D(n)(Ȳ , µ).

What is the limiting distribution of R when n→∞?

8. Suppose Y1, . . . , Yn is an i.i.d. sample from an exponential dispersion family:

f(y; θ, σ2) = e{θy−K(θ)}/σ2

f0(y;σ2),

where θ, σ ∈ R and f0(y;σ2) is some density function. Suppose the distribution is non-degenerate
in the sense that Var(Y1) > 0.

(a) Compute the cumulant generating function of Y1 and use it to show that E(Y1) = K ′(θ) and
Var(Y1) = σ2K ′′(θ).

(b) Show that the MLE of E(Y1) is given by the sample mean Ȳ =
∑n
i=1 Yi/n.

9. The probability density function of the Gamma distribution with shape parameter α > 0 and rate
parameter β > 0 is given by

f(y;α, β) =
βαyα−1e−βy

Γ(α)
, y > 0.

Show that this is an exponential dispersion family by finding the natural and dispersion parameters.
Hint: It may be useful to know that the mean and variance of the Gamma distribution are α/β and
α/β2, respectively.

10. Let Y1, . . . , Yn be independent Poisson random variables with mean µ. Compute the maximum
likelihood estimator µ̂. By considering nµ̂, write down the distribution of µ̂ and deduce its asymp-
totic distribution directly. Verify that this asymptotic distribution agrees with that predicted by
the general asymptotic theory for maximum likelihood estimators.

11. Consider a generalised linear model with vector of responses Y = (Y1, . . . , Yn)T and design matrix

X with ith row XT
i . Write µ̂i = g−1(XT

i β̂) where β̂ is the maximum likelihood estimate of the
vector of regression coefficients. Show that if the link function g is the canonical link, the dispersion
parameter σ2 = 1, and the weight wi = 1, then

XTY = XT µ̂.

Conclude that if an intercept term is included in X, then

n∑
i=1

µ̂i =

n∑
i=1

Yi.
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12. In this question, we will compare deviance residuals with Pearson’s residuals and explore Bartlett’s
correction (Bartlett’s correction is not examinable but provides useful motivation to consider ex-
ponential families). Consider the distribution Gamma(α, β) in Question 9.

(a) Show that if α > 0 is fixed, this is an exponential family with natural parameter θ = −β and
mean parameter µ = α/β.

(b) Suppose α is a positive integer. Let Y1, . . . , Yα ∼ Gamma(1, β) be independent. Show that∑α
i=1 Yi ∼ Gamma(α, β). Hint: A probability distribution is uniquely determined by its mo-

ment generating function.

(c) Read the next chunk of R code and explain what it does. Execute the code in your R console
and plot the histogram of Y. What do you see from the histogram?

alpha <- 5

beta <- 1

mu <- alpha / beta

deviance.gamma <- function(mu1, mu2, alpha) {

2 * alpha * (log(mu2 / mu1) + mu1 / mu2 - 1)

}

Y <- rgamma(10000, alpha, 1)

dev <- deviance.gamma(Y, mu, alpha)

resid.dev <- sign(Y - mu) * sqrt(dev)

resid.pearson <- (Y - mu) / sqrt(alpha/beta^2)

(d) Compare the distribution of resid.dev and resid.pearson. Which one is closer to N(0, 1)?
You may find the function qqnorm useful.

(e) The skewness and kurtosis of a probability distribution are defined as, respective,

γ = κ3/κ
3/2
2 =

E{(Y − E(Y ))3}
Var(Y )3/2

, δ = κ4/κ
2
2 =

E{(Y − E(Y ))4}
Var(Y )2

,

where κr is the rth cumulant of the distribution and Y is a random variable that follows that
distribution. It is known that the skewness of kurtosis of the Gamma(α, β) distribution is
given by

γα = 2/
√
α, δα = 6/α+ 3.

Estimate γ and δ using your Y and compare your estimates with the above theoretical values.

(f) It is noted in the lectures that the deviance residual approximately follows a normal distribu-
tion even when the sample size α is relatively small. The mean of this normal distribution is
roughly −γ1/(6

√
α) (see Theorem 1.4 in Bradley Efron, Exponential Families in Theory and

Practice, CUP). Is this similar to what your resid.dev shows?
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