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Lecture 1: Directed mixed graphs and linear systems
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» Sewall Green Wright (December 21, 1889 — March 3, 1988) was an American
geneticist known for his influential work on evolutionary theory and also for his
work on path analysis. He was a founder of population genetics alongside Ronald
Fisher and J. B. S. Haldane, which was a major step in the development of the
modern synthesis combining genetics with evolution.



Directed mixed graphs

We will consider graphs with two types of edges: directed (—>) and bidirected («—).

Definition

A directed mixed graph (DMG) G = (V, D, B) consists of a finite vertex set V, a
directed edge set D C V x V that contains ordered pairs of vertices, and a bidirected
edge set B C V x V that contains unordered pairs of vertices (so (j, k) € B implies
(k,j) € B) such that

(,k) e B=(j,j) € B,(k,k) € B, forall jkeV.

Let G(V) denote the collection of all directed mixed graphs with vertex set V.

We say the directed edge “j — k" is contained in G if (j, k) € D, and in this case we
say this is an incoming edge for k, an outgoing edge for j, the vertex j is a parent of k,
and k is a child of j in G. Likewise, we say the bidirected edge “j «— k" is contained
in Gif (j, k) € B.



Causal interpretation

» Directed edges mean direct causal effects.

> Bidirected edges mean unspecified, residual/exogenous correlations.

Why directed edges?
» Causality is transitive (A causes B and B causes C = A causes C). This defines a
pre-order.
» This can be described by the reachability relationship of a directed graph.

» Often we think causality is irreflexive (A does not cause itself) and asymmetric (A
and B cannot be causes of each other). This defines a partial order.

» This can be described by the reachability relationship of a directed acyclic graph.

Why bidirected edges?

» In statistics and causal inference we are often concerned with latent variables.



Canonical graphs

Definition
> We say the directed mixed graph is canonical if it contains all bidirected loops.
» The full collection with vertex set V is denoted by G*( V).

» \We say the graph is canonically directed if it is canonical and contains no other
bidirected edges.

» The full collection with vertex set V is denoted by Gj5(V).

For such graphs, it is usually more convenient to use the trimmed graph obtained by

trim : (V,D,B) — (V,D,B\{(,j) : j € V}).



Walk, path, cycle

Definition

>

>
>
>

A walk is an ordered sequence of connected edges ignoring edge direction.
A path is a walk with no repeated vertices.
A cycle is a walk with the same starting and ending vertices.

Vertices at the two ends of a walk are called its endpoints, and the other vertices
are called non-endpoints.

» A walk is directed if all its edges have the same direction, like j — --- — k.

» The graph G (or its direct subgraph) is acyclic if it contains no directed cycles.
Notation

» GR(V): the collection of acyclic, canonical DMGs with vertex set V.

>

Gpa(V): the collection acyclic, canonically directed DMGs (basically DAGs).



Demonstration of trimming
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Is the directed mixed graph on the left
» canonical?
» canonically directed?

> acyclic?



Gaussian linear system on a graph

We will not distinguish a random vector V = (V4,..., V) (probability theory) with a
vertex set of random variables V = {V4,..., V4} (graph theory).
Definition

We say a random vector V follows a Gaussian linear system wrt G € G(V) if
V =BTV + E for some E ~ N(0, )

where
> 3 e R respects the directed subgraph: Vi Vi in G = B = 0.
> A e R9*? respects the bidirected subgraph: Vj </ Vi in G = Ay = 0.

Gaussian model
» Let N(G) denote the collection of probability distributions of such V.
» Let N*(G) denote the subclass where A is positive definite (so G € G*(V)).



Roadmap: Basic questions

Let V be a random vector and J = V7, K = Vi, L = V. be sub-vectors of V.
1. What is the probability distribution of J?
2. Is J 1L K true?
3. IsJ 1 K| L true?

Answer
If V ~N(0,X) and X is positive definite, then

1. J~N(0,%7.7).
2. JU Kifandonly if X7 =0.
3. VJ AL V) ’ V[d]\{j,k} if and only if (zfl)jk =0.

Lecture 1-3
Let P € N(G) be the distribution of V. Can we answer these questions using just G?



Roadmap: From linear algebra to graphs

Basic combinatoric result
Let A be the adjacency matrix of a directed graph G. Then

(A")jk = |{directed walks from j to k of length r}|, r > 1,

[(ld — A jx = [Id + A+ A% + ... ] = djx + |{directed walks from j to k}|.

So matrix multiplication is similar to walking on a graph.

» Thinking abstractly, edges in a graph encode certain local relations. By
composing ("multiplying") those edges, we can obtain new global relations.



Matrices of walks

Basic matrices

Edges in G = (V,D,B) € G(V) can be rearranged into:
{j — k}, if(j,k)eD,
0, otherwise,
{j <=k}, if(j,k) €B,
0, otherwise.

WU—>kinG]_{
WUHkinG]:{

» Examples (on blackboard).



Basic operations

On sets of walks
1. Addition 4+ means set union.
» Example: {Vo — V5} +{Vo — V3 — W5} =7.
2. Multiplication - means concatenation.
> Example: {Vo <= Vo} - {Vo — V5, Vo — V53— V5} =7.
3. Transpose | means reversing direction.

> Example: {Vo — V5, Vo — V3 — W5} =7

On matrices
Examples (on blackboard).
(W + W)V}, i] = W[V}, Vi] + W[V}, Vi,
(W-WH[V;, Vil = Y W[V, Vi]- WV, Vi,
Viev
(WD), Vil = (Wi, V)T = (" w e W[V, Vil}.



Further definitions

> Right-directed walks: W[V ~s V] =302, (W[V — V])9.
> Left-directed walks: W[V ¢~ V] = (W[V ~ V])T.

» |dentity matrix (for multiplication): |d = diag(id, ..., id), where id is the trivial
walk with length 0 such that

id-w=w-id=w and ld-W=W.Ild=W

» Let () also denote the matrix with empty sets of walks. This is the identity
element for matrix addition (set union).



Weight function

» Recall that P € N(G) means V = 87V + E where E ~ N(0, A).
» So V = (Id — B)"TE ~ N(0,X) where

Y =(ld—B3)"TA(ld - 8)7L.

How can we represent this graphically?

> Let o be the weight function on all walks in G generated by
B=c(W[V—V]) and A=o(W[V < V]).
> Example: 0’({\/1 <> V4, V1 Sad V1 — V3 — V4}) = /\14 + /\11613634.

Lemma
If 5 is stable (spectral radius < 1), then

(Id = B)"t=Id + a(W[V ~ V]).



Outline

Lecture 2: Path analysis and graph marginalization



Trek rule
This motivates us to define treks or t-connected walks in G as (expand on blackboard)
WIV évs V] =(1d + W[V v V]) - WIV < V] - (Id + W[V ~s V]).

Theorem
Suppose G € G(V) and P € N(G) with weight function o, then

Covp(V) = a(W[V ¢ V in G]).
Examples

» Var(V3) =7
> COV(V3, V4) =7



Arcs

Definitions
» We say a walk is an arc or m-connected if it has no collider (like — j «—).
» We say a walk is d-connected if it is an arc and contains no bidirected edge, so

Proposition
An arc has exactly zero or one bidirected edge.

Notation
A squiggly line (~~) means no collider, and we use no/half/full arrowheads at both

ends.
WIV <% V] = W]V e V] + W[V~ V] + WV e~ V s V],
WLV 2 V] = W[V 655 V] + W[V <% V],



From treks to paths

» Notation: P[---] = W[---] NP where Pg contains all paths on G and N is
applied entry-wise.

Lemma
For any G € G*(V) and any j, k € V, j # k, we have
jéws kin G <= P[j « k in G] £ 0 <= P[j ~~ k in trim(G)] # 0.

» Proof on blackboard (assuming G is acyclic).
» Key definition:

P[j ~~ k], if r =4,
d
P[j «~ k via root r] = ¢ P[j «~ K], if r =k,
(P[j ¢~~r] - P[r ~~ k])N'Pg, otherwise.



Wright's path analysis

Theorem
Suppose G € Ga(V) and P € N(G) with weight function o, then for any V;, V. € V,
j # k, we have

Covp(Vj, Vi) =o(P[V] 4~ Vj in G])

d
+ Y o(P[Vj 4~ Vi via root V, in G]) - Varp(V;).
V,eVv

» Proof on blackboard.
» Example: Cov(V3, V) =7



Blocking arcs

Definition
We say an arc is blocked by L C V if the arc has an non-endpoint in L.

Examples

1. Which of the following are blocked by 37

> 1—3—4
> 4¢+—3¢—>53—5
> 1—3«—2

2. Define W[V -~ V| L] and W[V s V | L] using the matrix algebra.

Lemma
If 8 =o(W[V — V]) is principally stable, then for any L C V/, we have

(Id = Brere) ™t = Id + o(W[LE ~~ LC | L]).



Marginalization of graphs

» Notation: Write W[--- in G] #( as --- in G.

» For G € G(V) and V C V, the marginal graph margin; (G) is obtained by
j—kinGe=j-~k|VinG, jkeV,
j(—)kiné<:>_jéftw>k’ VinG, jkeV.

> If V is ancestral (meaning V contains an(V) ={V,eV:Vj~ V1), then

marging,(G) is the subgraph of G restricted to V.
> It is often useful to view margin;, as a map of walks in G to walks in G.

Proposition: Marginalization preserves unblocked directed walks and treks
For any G € G(V) and L C vVcv,

~~ ~~
marging, | W VitV LinG| | =W [V{¢~3 V| Lin marging, (G)
t t

A aad A aad



Marginalization of linear systems

Theorem
For G € G(V) and P € N(G), if 3 is principally stable, then

marging,(P) € N(margin (G))
with weight function generated by
F(W[V — Vin G]) = a(W[V ~s V | Vin G]),
FW[V < V in G]) = o(W[V & V| V in G]).
» Proof of blackboard.

Example
> Find the marginal graph and linear system with V = {V1, Vo, Vi, V5 }.



Marginalization of canonical graphs

Definition (marginalization of trimmed graphs)

Con5|der G € G*(V) and G* = trim(G). For V C V, the marginal trimmed graph
G = margin, (G*) is obtained by

j—kinG = P[j~ k| Vin G*] £0,
jeskinG = P[j ¢ k| Vin G*] £0.

» This is the usual definition in the literature and is justified by the following
commutative diagram (proof omitted; example on blackboard).

G*(V) ™ trim(G*(V)) G Uim, G
marginvl lmargin’\f/ margin(/l Imargmv
G*(V) H1™y trim(G*(V)) G Him, G



Outline

Lecture 3: m-separation and conditional independence



Conditional independence in multivariate normal

Suppose V ~ N(u,X) and X is positive definite.
Proposition
1. For J C [d] and £ =[d] \ J, we have
Vg | Ve =ve ~N(pg +E7c50(ve =), 77 — L7c5,1%0 )
2. For any j, k € [d], j # k, we have

VJ' A Vk | V[d]\{j,k} < COV(\/J', Vk | V[d]\{j,k}) =0 «<— (Zil)jk =0.

Proof sketch
1. Vs — zﬂ;z;lcvﬁ is independent of V.

2. Use J = {J, k}, then use the block matrix inverse formula.



Collider-connected walks
Suppose P € NT(G) and (Id — 3) is non-singular.
» From Lecture 2: ¥ = (Id — 3)~TA(ld — 3)~L.
> Soxr 1= (Id BYA"L(Id — B)T. More specifically
E =N = D Bim AN D= D AN iBu+ Y Bim(AN ) miBua

me[d] le[d] m,l€[d]

> A sufficient condition for (£71); = 0 is that every RHS term vanishes.

Lemma
For any V; # Vi, we have

W[V, = x < Vi in Gl =0 = V; IL Vi | V\ {V;, Vi} under P.

» V; = * <— V) means a walk from V; to V| where every non-endpoint is a
collider.

» Proof on blackboard. (Hint: First assume 8 = 0.)



Towards the general case

» Notation: Write W[---] =0 as not ---

Goal
We would like to establish a graphical condition for J 1L K | L.

» Because V is Gaussian, it suffices to consider V; 1L Vi | L for all V; € J, V) € K.
> Using the last Lemma, we have (let V = {V;, V,} U L)
not V; < x <— V in margin;,(G) = V; 1L V| | L under P.

Main problem
Can we conclude not V; <= % <— V/ in margin,(G) using G directly?



General blocking
Definition
» We say a walk in G € G(V) is (ancestrally) blocked by L C V/, if
1. the walk contains a collider m such that m ¢ L (and m ~4 L), or

2. the walk contains a non-colliding non-endpoint m such that m € L.
» Let W[V «~ % ¢~ V| L in G] collect all walks that are not blocked by L.
» We say J, K C V are m-separated given L if not J 4~ x ¢~ K | L in G.

Remarks
P All walks are separated by 0, 1, or more colliders.
> W[V 4w % ¢ V] £ W[V 4o 5 6v V[ ] = W[V« V]

» The literature usually uses ancestral blocking with paths (see next Proposition).

Example

» Find all m-separations in the running example. (Hint: There are 2 in total.)



Graph separation

t t
> t-separation: only consider ¢~ % 4~ (one or more treks).
» d-separation: only consider walks consisting of directed edges only.

Lemma y
For any Ge G(V) and J,K,L C V C V, we have

JéAtA—)*éAt»K\LinmarginV(G)<:>J<~fA>*<jw>K|LinG.

Lemma
Consider G € G(V) and {j},{k},L C V. If G is canonical, then

(i) j 4o % 6o k | L= (ii) j 4 6o k | L = (iii) P[j “~s % ¢ k |5 L] # 0.
Furthermore, if G is canonically directed, then

(), (i), (ii]) <= (V) ] % % < k | L= (v) Pj 4% % <% k |2 L] # 0.



General result

Theorem
Suppose P € NT(G) for some G € G*(V) and (Id — 3) is principally non-singular.
Then for all disjoint J, K, L C V, we have

not J 4w x ¢~ K| Lin G= J 1 K| L under P.

» Proof on blackboard using the results above.



Outline

Lecture 4: Linear structural equation model and identifiability



Potential outcome

Motivation
We can represent Hooke's law by (X force, Y compression distance, /3 elasticity):

X—Y and Y =3X.

» But equations have no direction: Y = X is equivalent to X = Y/f.
» To emphasize "force causes compression", we can write Y(x) = x for all x.

Definition
» Let V(Vz = vr) (often abbreviated as V/(vz)) denote the potential outcome of
the entire system under an intervention that sets V7 to vz.
» A causal model is a collection of probability distributions P on the potential
outcomes schedule V(-) = (V(vz) : Z € [d]) such that

P(V(vz,vs) = V(vz) | Vz(vz) = vs) =1, for all disjoint Z,J C [d], v € V.



Linear structural equation model (Linear SEM)

Definition
We say V/(-) follows a linear SEM with respect to G € G(V), if there exist  and A
compatible with G such that

Viv)) = Y Bgw+ Y. ByVi(vz) + Ej, for all j € [d] and T C [d],
kepa(j)nZ kepa(/)\T
for some E = (Ey, ..., Eq) with Cov(E) = A and pag(j) = {/ € [d] : V} — V; in G}.

» In words, every equation still "holds" (thus is "structural") under any intervention.

Example
In the running example, how do the structural equations look like under the
intervention (V2, V3) = (v, v3)?



Single-world intervention graphs

We can rewrite the structural equations for V/(vz) in matrix form:

VT % 0 0 0 %4 0
VI(VI) = 0 + 6}:1 0 617_671 VZ(VI) + EZ
VIC(VI) O /B:Z-{':IC 0 ,8}-(:7zc VIC(VI) EIC

So (v, V(vr)) follows a linear system with respect to the single-world intervention
graph (SWIG) G(vz) obtained by modifying G as follows:

1. each intervened vertex i € Z is split into two vertices, V;(vz) and v;, and each
non-intervened vertex j ¢ Z is relabeled as V;(vz).

2. the “random” vertex V;(vz) inherits all “incoming” edges of V; (edges like
*x — Vj or x <= V;) in G;
3. the “fixed” vertex v; inherits all “outgoing” edges of V; (edges like V; — %) in G.
(Example on blackboard.)



Causal effects in linear SEM
Due to linearity, we can define the (joint) causal effect of V7 on V as the matrix

0

Dr = {V,,V(vr)}" with entries D; = Em
vi

Vi(vr), i €T,j € [d].

Theorem

Suppose P is a linear SEM with respect to G € G(V) and § is principally stable. Then
{(V,,V(v2)}T = o(W[Vz ~ V| V7 in G]).

Thus if G is acyclic, the total causal effect of V; on V; is

dV;(vi)
dV,'

= o(P[Vi ~ V]]).

» Proof on blackboard.



Correlation is not causation

» Statistical dependence: <— (local), o~ (global), t/m-connection (conditional).

» Causal dependence: — (local), ~~ (global).
Examples
X A Y
SN NS

A— X —Y

(a) X is a confounder. (b) X is a mediator. (c) X is a collider.
— y g
/ X \ X \
4 A / \ Al
A Y A Y
(d) M-bias. (e) Butterfly bias.

Assuming all variables are Gaussian and have unit variance, find Cov(A, Y),
Cov(A, Y | X) and the causal effect of Aon Y.



|dentifiability

A central question of causal inference is identifiability. In linear models, this is asking
whether the following map is injective:

Y (B,A) — (Id—B)"TA(d — B) L.

We say NT(G) is
» globally identifiable if ¥~*(X(3,/)) is a singleton for all (3,A);
» generically identifiable if ¥~1(X(,/)) is a singleton for almost all (3, A);
» locally identifiable if ¥~(X(,)) does not contain an open neighborhood of

(8,A) for all (8,N).



Examples

1. Instrumental variables.

7— AT 3y

2. Factor analysis (U is not observed).

’ % U\ "

3. Double negative controls (U is not observed).
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Lecture 5: Conditional independence and undirected graphical models



Conditional independence
Let P(V) denote all absolutely continuous probability distributions wrt V (usually R).
Let p denote the density function of P € P(V). Consider disjoint V.7, Vic, V; C V.
Definition
» The conditional density function of V7 given Vi is given by

p(Vy = vz, Vk = v)
p(Vk = vk)

p(Vg=vgy| Vk=vw)=

which is well defined at any value vi such that p(Vi = vi) > 0. We often
abbreviate this as p(v7 | vk).
» We write V7 1L Vi | V. under P if one of the next equivalent conditions hold:
L p(vg, vic [ ve) = p(va | ve) p(vic | ve).
2. p(Vj | Ve, V}C) = p(Vj ‘ VL).
3. logp(v, vic, ve) = 87.x(vr, vic) + 8x,c(vic, v) for some g7 x and g,z



Graphoid axioms

Proposition
Consider P € P(V) and disjoint subvectors J, K, L, M C V. We have
Symmetry (J 1L K| L)<= (K1 J|L);
Chain rule (J ALK | L,M) and (J 1L M| L) <= (J 1L K, M| L).
If p(v) > 0 for all v, then we also have
Intersection (J L K |L,M)and (JILM|K,L)=— (JILK,M]|L).
(Proof is left as an exercise.)

P> A ternary relation that satisfy these axioms is called a graphoid. The terminology
is justified by the following visualization.




Separation in undirected graphs

Definition
» Let UG(V) denote the collection of all simple undirected graphs with vertex set V.

» Given G € UG(V) and disjoint subsets J, K, L C V, we say L separate J and K in
G and write
not /J—xx—K|LinG

if every path from a vertex in J to a vertex in K in G contains a non-endpoint in L.

Interpretation
This is "dual" to separation in bidirected graphs:
» J— L —K, J<> M+ K are blocked given L;
» J— M — K, J+— L+ K are not blocked given L.



Undirected graphical models

> Let Pou(G) collects all P € P(V) that satisfies the global Markov property wrt
G € UG(V): for all disjoint J,K,L C V,

not /J—*x—K|LinG= J I K|Lunder P

» Let Pr(G) collects all P € P(V) that factorizes wrt G € UG(V):

= ] fr(va),
V7eC(G)

for some f7, J C [d], where C(G) collects all "cliques" (complete subgraphs) of G.

Theorem (Hammersley-Clifford)
For any G € UG(V), we have Pg(G) C Pem(G) and P{ (G) = P&y, (G).
» Proof of the first part. (P means positive density functions.)



Graph augmentation

Graph separations in undirected and directed graphs are closely related via the
augmentation map aug : G*(V) — UG(V) defined by

Vi — Vi in aug(G) <= Vj «= x <« V, in G, for all V; # V,.

» When restricted to Gy, (V/), this is called moralization in the literature because it
connects any two parents of the same child.

» For J C V, define an(J) = {Vx € V : Vi ~» Jin G} and an(J) = an(J) U J (the
smallest ancestral set containing J).

Proposition

For any G € G*(V) and disjoint J, K, L C V, we have, with V =an(J UK U L),
J ot K| Lin G <= J— x— K| Linaugo marging(G).

» Proof on blackboard.



Outline

Lecture 6: DAG models and ADMG models



DAG models

Definition
» Let PF(G) collects all P € P(V) that factorizes wrt G € Gj,(V):

p

p(v) = [ ] P(v | voag()-

j=1
» Let Pom(G) collects all P € P(V) that satisfies the global Markov property wrt
G € GjA(V): for any disjoint subsets J, K, L C V,

not J <% <~ K | Lin G = J I K | L under P.

Theorem
For any G € G, (V), we have Pr(G) = Pgm(G).
» Proof on blackboard.



ADMG models

» Let Pem(G) collects all P € P(V) that satisfies the global Markov property wrt
G € GA(V): for any disjoint subsets J,K,L C V,

not J«wsx e~ K|LinG= J I K|LunderP.
> Alternatively, we can define ADMG models by using simpler expanded graphs.
Graph expansion

» We say G’ is an expansion of G € G*(V) if it is in

expand(G) = margin},}(G) = U {G' € G*(V') : margin, (G) = G}.
vVIoV
» Often, bidirected edges in G correspond to certain latent variables in G’.

> If we are satisfied with an expansion G’ of G, we can use margin, (Pgm(G’)) as
the model for G.



ADMG models

» Pairwise expansion: replace every V;<— V| with Vj<«— Uy — V.
» Clique expansion: replace every bidirected clique V.7 (complete bidirected
subgraph) with directed edges U7 —V;, j € J.
» Noise expansion: add U;— V; such that U; inherits all bidirected edges of V.
» Example on blackboard.
Let the corresponding models be denoted as Ppg(G), Pce(G), Pne(G).
Proposition
For any G € GL(V), we have

Ppe(G) € Pce(G) € Pne(G) € Pem(G),

and C in above cannot be replaced by = in general.

» The latent variable models (PE/CE/NE) have additional equality and inequality
constraints.



Additional equality constraints
Consider the following (trimmed) ADMG and its expansion (U is latent).

e T v
ST SN

A L Ao Y

~_

Suppose P € Ppg(G) (PE,CE,NE are actually equivalent in this example). Then

/p(y | a1,/,a2) p(/ | a1) d/ does not depend on aj.

» Proof on blackboard.
» This can be understood as a "hidden" independence Y 1L A; in the kernel

p(al7/7327y) _

p(a1,/,y [ do(a2)) = oo o) p(ar) p(/ | a1) p(y | a1, /; a2).



Additional inequality constraints

Consider the following bidirected clique and its pairwise expansion.

Vi Ur2 Vi Uis
V2 V3 V2 Uzs V3
If P € Ppe(G) and V = {—1,1}3, the following "perfect correlation" is impossible:
1
P(V1:V2:V3:1):P(V1:V2:V3:—1):§.

» Heuristically, if V3 = V5, then Vj cannot depend on Uss.
» Pce(G) or Pne(G) have no such constraints.

» Other related examples: Bell's inequality in quantum mechanics; Balke-Pearl
bound for instrumental variable graph.



Advantages of the noise expansion model

1. It is equivalent to a natural nonparametric generalization of the linear SEM: if
P € Pne(G), then V satisfies

Vi = 6i(Voag(): E5)
for some functions fi, ..., fy and noise variables Eq, ..., E4 that satisfy
VjﬁL) Vi inG:>EJJ_LE;C.

2. Let G{ja(V) collects all unconfounded ADMGs (Vj <= Vi in G, V; # V| implies
paG(J) () with vertex set V. Then

» For all G € G{ja(V), we have Pne(G) = Pem(G).
> For all G € GA(V), we have

Pne(G) = U Umargan(PNE ).

VoV G

(The second union is over G € expand(G) N G{jA(V').)
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Causal Markov model

Recall that a causal model is a collection of consistent probability distributions on the
potential outcomes schedule V/(-).

Definition
Let CP(G) collect all distributions P on V/(-) that is causal Markov wrt G € G3(V):
1. Recursive substitution: With P-probability 1, we have

Vi(vz) = Vi(Vpac()nzs Voacin\z(vr)) for all j € [d],.Z C [d],v € V.
2. Basic potential outcomes are Markov wrt bidirected subgraph:
V7 </ Vicin G = V7(v)1 Vi (v) under P for all disjoint J,K C [d]and v € V.

Example: What is Y (a1, a2)? What is Y(a1)?

e

A1 L Ao Y
\/r




Properties

Suppose G € G(V) and P € CP(G).

Property 1 (Consistency of potential outcomes)

P(V(VI7 VJ) = V(VI) ‘ VJ(VI) = VJ) =1, for all disjoint Z,J C [d]7 vev.
Property 2 (Simplifying potential outcomes)

For any V7, Vic, Ve C V, Vie N Ve = (), we have

not Vy ~~ Vs | Viin G= P(Vy(vk,vz) = Vs(vk)) =1, for all vic € Vi, vp € V.
Property 3 (SWIG Markov property)

We have marginy/(,,)(P) € Pem(G(vz)) for all Vz C V and v € V.
» Proof on blackboard.
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|dentification by fixing

Consider G € G3(V).
» We say V; € V is fixable in G if there exists no V. € V such that V; ~ V| and
Vi =% <= Vi in G.
» For V; € V, its Markov background in G is defined as

mbgg(Vj) = {Vk € V: Vkx +— x <= V;in G}

Proposition

Consider G € G(V) and P € CP(G). If V; € V is fixable in G, then

P(Vi() = 7, Voy() = voj) _ POVS = % | Vinbat) = Yembs) ¢ i ¢ 7 and v ev,
p(Vj = vy Vo = v—j) P(V; = i | Vinbe() = Vinbe(s))

whenever p(V; = v} | Viubg()) = Vanbg(s)) > 0.
» Proof on blackboard.



Example

A1 L A Y

Show that the equality constraint

/p(y | a1,/,a2) p(/ | a1) d/ does not depend on aj.

corresponds to
» the independence Y(ay) L Ag; or
» no direct A; — Y effect: Y(a1,a2) = Y(a2).



Back-door criterion
Consider G € GR(V), P € CP(G), A, Y € V. Interested in the causal effect of Aon Y.

Theorem
Suppose X C V, X N {A, Y} = () satisfies

1. A~~ Xin G;
2. P[A¢w x4~ Y [, X] = 0.
Thenp(Y(a)=y | X=x)=p(Y =y |A=a, X =x).
» Proof on blackboard.
» Example: Which X C {B, C, D} meet the back-door criterion?



Confounder selection
Can we select a set of confounders X without knowing the full graph G?

Definition (symmetric back-door criterion)

» X C V\{A, Y} is an adjustment set for A, Y € Vif A~~ X and Y ~~ X.
» An adjustment set X is sufficient if P[A ¢~ x ¢ Y [, X] = 0.
» An adjustment set X is primary if P[A <4~ Y | X] = 0.

Heuristics
Directly blocking all confounding paths is difficult, because

PlA s x e Y [, X] =0 5 P[A¢w x e Y [, X] =0 for X C X.
But we can block confounding arcs recursively, because

P[As~s Y | X]=0= P[Acw Y | X =0 for X C X'.



District criterion

Theorem (marginalization preserves confounding arcs and paths)

Consider G € G{(V), distinct A, Y € V, X C V'\ {A, Y}. For any vertex set V such
that {A,B}UC C V C V, we have

P[A«» Y | X in Gl =0 <= P[A < Y | X in marging,(G)] = 0,
P[A & % 5 Y |5 X in G] = ) <= P[A ¢~ % ¢ Y |5 X in marging (G)] = 0.

As a corollary, we have

P[A <~ Y | Xin G] = 0 <= not A<= Y in marginga vy x(G),

P[A ¢~ % ¢ Y |3 X in G] = () <= not A<= * <= Y in marging 4 y}ux(G).



lterative graph expansion

1: procedure CONFOUNDERSELECT(A, Y)

2 R=10

3 procedure GRAPHEXPAND(X, B,, B,)

4 if A<— x<— Y by edges in B, then

5: return

6: else if not A<— x<— Y by edges in (XU{A, Y}) x (XU{A, Y})\ B, then
7 R =RU{X}

8: return

9: end if
10: (C +» D) = SELECTEDGE(A, Y, X, By, B,)
11: for X' in FINDPRIMARY(C < D, X) do
12: GRAPHEXPAND(X U X', By, B, U{C + D})
13: end for
14: GRAPHEXPAND(X, B, U {C < D}, B,)
15: end procedure

16: GRAPHEXPAND((, 0, 0)
17: return R
18: end procedure



[[lustration

©)
R
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&

Shiny app: https://ricguo.shinyapps.io/InteractiveConfSel/


https://ricguo.shinyapps.io/InteractiveConfSel/
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