Causal Graphical Models (Summer Short Course)

Qingyuan Zhao (Statistical Laboratory, University of Cambridge)

4-5 August, 2025 @ Peking University

Literature

Day 1 (Lecture 1-4)

➤ Zhao, Q. (2024). A matrix algebra for graphical statistical models. (arXiv:2407.15744)

Day 2 (Lecture 5-8)

- Lauritzen, S. L. (1996). *Graphical Models*. Clarendon Press.
- ► Zhao, Q. (2025). On statistical and causal models associated with acyclic directed mixed graphs. (arXiv:2501.03048)
- ► Guo, F. R., & Zhao, Q. (2023). Confounder selection via iterative graph expansion. (arXiv:2309.06053)

Outline

Lecture 1: Directed mixed graphs and linear systems

Lecture 2: Path analysis and graph marginalization

Lecture 3: m-separation and conditional independence

Lecture 4: Linear structural equation model and identifiability

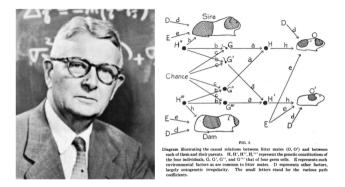
Lecture 5: Conditional independence and undirected graphical models

Lecture 6: DAG models and ADMG models

Lecture 7: Causal Markov model

Lecture 8: Causal identification and confounder selection

History



Sewall Green Wright (December 21, 1889 – March 3, 1988) was an American geneticist known for his influential work on evolutionary theory and also for his work on path analysis. He was a founder of population genetics alongside Ronald Fisher and J. B. S. Haldane, which was a major step in the development of the modern synthesis combining genetics with evolution.

Directed mixed graphs

We will consider graphs with two types of edges: directed (\longrightarrow) and bidirected (\longleftarrow) .

Definition

A directed mixed graph (DMG) $G = (V, \mathcal{D}, \mathcal{B})$ consists of a finite vertex set V, a directed edge set $\mathcal{D} \subseteq V \times V$ that contains ordered pairs of vertices, and a bidirected edge set $\mathcal{B} \subseteq V \times V$ that contains unordered pairs of vertices (so $(j, k) \in \mathcal{B}$ implies $(k, j) \in \mathcal{B}$) such that

$$(j,k) \in \mathcal{B} \Longrightarrow (j,j) \in \mathcal{B}, (k,k) \in \mathcal{B}, \text{ for all } j,k \in V.$$

Let $\mathbb{G}(V)$ denote the collection of all directed mixed graphs with vertex set V. We say the directed edge " $j \longrightarrow k$ " is contained in G if $(j,k) \in \mathcal{D}$, and in this case we say this is an *incoming edge* for k, an outgoing edge for j, the vertex j is a parent of k, and k is a child of j in G. Likewise, we say the bidirected edge " $j \longleftrightarrow k$ " is contained in G if $(j,k) \in \mathcal{B}$.

Causal interpretation

- Directed edges mean direct causal effects.
- ▶ Bidirected edges mean unspecified, residual/exogenous correlations.

Why directed edges?

- Causality is transitive (A causes B and B causes C ⇒ A causes C). This defines a pre-order.
 - This can be described by the reachability relationship of a directed graph.
- ▶ Often we think causality is irreflexive (A does not cause itself) and asymmetric (A and B cannot be causes of each other). This defines a partial order.
 - ► This can be described by the reachability relationship of a directed acyclic graph.

Why bidirected edges?

In statistics and causal inference we are often concerned with latent variables.

Canonical graphs

Definition

- We say the directed mixed graph is canonical if it contains all bidirected loops.
 - ▶ The full collection with vertex set V is denoted by $\mathbb{G}^*(V)$.
- We say the graph is canonically directed if it is canonical and contains no other bidirected edges.
 - ▶ The full collection with vertex set V is denoted by $\mathbb{G}_{\mathbb{D}}^*(V)$.

For such graphs, it is usually more convenient to use the trimmed graph obtained by

$$\mathsf{trim}: (V, \mathcal{D}, \mathcal{B}) \mapsto (V, \mathcal{D}, \mathcal{B} \setminus \{(j, j) : j \in V\}).$$

Walk, path, cycle

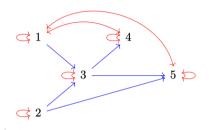
Definition

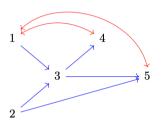
- ► A walk is an ordered sequence of connected edges ignoring edge direction.
- A path is a walk with no repeated vertices.
- ► A cycle is a walk with the same starting and ending vertices.
- Vertices at the two ends of a walk are called its endpoints, and the other vertices are called non-endpoints.
- ▶ A walk is directed if all its edges have the same direction, like $j \longrightarrow \cdots \longrightarrow k$.
- ▶ The graph G (or its direct subgraph) is acyclic if it contains no directed cycles.

Notation

- $ightharpoonup \mathbb{G}_{\mathsf{A}}^*(V)$: the collection of acyclic, canonical DMGs with vertex set V.
- $ightharpoonup \mathbb{G}_{DA}^*(V)$: the collection acyclic, canonically directed DMGs (basically DAGs).

Demonstration of trimming





Is the directed mixed graph on the left

- canonical?
- canonically directed?
- acyclic?

Gaussian linear system on a graph

We will not distinguish a random vector $V = (V_1, ..., V_d)$ (probability theory) with a vertex set of random variables $V = \{V_1, ..., V_d\}$ (graph theory).

Definition

We say a random vector V follows a Gaussian linear system wrt $G \in \mathbb{G}(V)$ if

$$V = \beta^T V + E$$
 for some $E \sim N(0, \Lambda)$

where

- ▶ $\Lambda \in \mathbb{R}^{d \times d}$ respects the bidirected subgraph: $V_j \leftrightarrow V_k$ in $G \Rightarrow \Lambda_{jk} = 0$.

Gaussian model

- Let $\mathbb{N}(G)$ denote the collection of probability distributions of such V.
- Let $\mathbb{N}^+(G)$ denote the subclass where Λ is positive definite (so $G \in \mathbb{G}^*(V)$).

Roadmap: Basic questions

Let V be a random vector and $J = V_{\mathcal{J}}$, $K = V_{\mathcal{K}}$, $L = V_{\mathcal{L}}$ be sub-vectors of V.

- 1. What is the probability distribution of J?
- 2. Is $J \perp \!\!\! \perp K$ true?
- 3. Is $J \perp \!\!\! \perp K \mid L$ true?

Answer

If $V \sim \mathrm{N}(0,\Sigma)$ and Σ is positive definite, then

- 1. $J \sim N(0, \Sigma_{\mathcal{J}, \mathcal{J}})$.
- 2. $J \perp \!\!\! \perp K$ if and only if $\Sigma_{\mathcal{J},\mathcal{K}} = 0$.
- 3. $V_j \perp \!\!\! \perp V_k \mid V_{[d] \setminus \{j,k\}}$ if and only if $(\Sigma^{-1})_{jk} = 0$.

Lecture 1-3

Let $P \in \mathbb{N}(G)$ be the distribution of V. Can we answer these questions using just G?

Roadmap: From linear algebra to graphs

Basic combinatoric result

Let A be the adjacency matrix of a directed graph G. Then

$$(A^r)_{jk}=|\{ ext{directed walks from } j ext{ to } k ext{ of length } r\}|, \ r\geq 1,$$

$$[(Id-A)^{-1}]_{jk}=[Id+A+A^2+\dots]_{jk}=\delta_{jk}+|\{ ext{directed walks from } j ext{ to } k\}|.$$

So matrix multiplication is similar to walking on a graph.

Thinking abstractly, edges in a graph encode certain local relations. By composing ("multiplying") those edges, we can obtain new global relations.

Matrices of walks

Basic matrices

Edges in $G = (V, \mathcal{D}, \mathcal{B}) \in \mathbb{G}(V)$ can be rearranged into:

$$W[j \longrightarrow k \text{ in } G] = \begin{cases} \{j \longrightarrow k\}, & \text{if } (j,k) \in \mathcal{D}, \\ \emptyset, & \text{otherwise}, \end{cases}$$
 $W[j \longleftrightarrow k \text{ in } G] = \begin{cases} \{j \longleftrightarrow k\}, & \text{if } (j,k) \in \mathcal{B}, \\ \emptyset, & \text{otherwise}. \end{cases}$

Examples (on blackboard).

Basic operations

On sets of walks

- 1. Addition + means set union.
 - ► Example: $\{V_2 \longrightarrow V_5\} + \{V_2 \longrightarrow V_3 \longrightarrow V_5\} = ?$.
- 2. Multiplication · means concatenation.
 - ► Example: $\{V_2 \longleftrightarrow V_2\} \cdot \{V_2 \longrightarrow V_5, V_2 \longrightarrow V_3 \longrightarrow V_5\} =?$.
- 3. Transpose T means reversing direction.
 - ► Example: $\{V_2 \longrightarrow V_5, V_2 \longrightarrow V_3 \longrightarrow V_5\}^T = ?$.

On matrices

Examples (on blackboard).

$$(W + W')[V_j, V_k] = W[V_j, V_k] + W'[V_j, V_k],$$

$$(W \cdot W')[V_j, V_k] = \sum_{V_l \in V} W[V_j, V_l] \cdot W'[V_l, V_k],$$

$$(W^T)[V_j, V_k] = (W[V_k, V_j])^T = \{w^T : w \in W[V_k, V_j]\}.$$

Further definitions

- ▶ Right-directed walks: $W[V \leadsto V] = \sum_{q=1}^{\infty} (W[V \longrightarrow V])^q$.
- ▶ Left-directed walks: $W[V \longleftrightarrow V] = (W[V \leadsto V])^T$.
- ▶ Identity matrix (for multiplication): Id = diag(id, ..., id), where id is the trivial walk with length 0 such that

$$id \cdot w = w \cdot id = w$$
 and $Id \cdot W = W \cdot Id = W$

Let \emptyset also denote the matrix with empty sets of walks. This is the identity element for matrix addition (set union).

Weight function

- ▶ Recall that $P \in \mathbb{N}(G)$ means $V = \beta^T V + E$ where $E \sim \mathbb{N}(0, \Lambda)$.
- ▶ So $V = (\operatorname{Id} \beta)^{-T} E \sim \operatorname{N}(0, \Sigma)$ where

$$\Sigma = (Id - \beta)^{-T} \Lambda (Id - \beta)^{-1}.$$

How can we represent this graphically?

 \blacktriangleright Let σ be the weight function on all walks in G generated by

$$\beta = \sigma(W[V \longrightarrow V])$$
 and $\Lambda = \sigma(W[V \longleftrightarrow V])$.

► Example: $\sigma(\{V_1 \longleftrightarrow V_4, V_1 \longleftrightarrow V_1 \longrightarrow V_3 \longrightarrow V_4\}) = \Lambda_{14} + \Lambda_{11}\beta_{13}\beta_{34}$.

Lemma

If β is stable (spectral radius < 1), then

$$(\mathsf{Id} - \beta)^{-1} = \mathsf{Id} + \sigma(W[V \leadsto V]).$$

Outline

Lecture 1: Directed mixed graphs and linear systems

Lecture 2: Path analysis and graph marginalization

Lecture 3: m-separation and conditional independence

Lecture 4: Linear structural equation model and identifiability

Lecture 5: Conditional independence and undirected graphical models

Lecture 6: DAG models and ADMG models

Lecture 7: Causal Markov model

Lecture 8: Causal identification and confounder selection

Trek rule

This motivates us to define treks or t-connected walks in G as (expand on blackboard)

$$W[V \overset{\mathsf{t}}{\longleftrightarrow} V] = (\mathsf{Id} + W[V \longleftrightarrow V]) \cdot W[V \longleftrightarrow V] \cdot (\mathsf{Id} + W[V \longleftrightarrow V]).$$

Theorem

Suppose $G \in \mathbb{G}(V)$ and $P \in \mathbb{N}(G)$ with weight function σ , then

$$Cov_P(V) = \sigma(W[V \overset{t}{\iff} V \text{ in G}]).$$

Examples

- ▶ $Var(V_3) = ?$
- $ightharpoonup Cov(V_3, V_4) = ?$

Arcs

Definitions

- ▶ We say a walk is an arc or m-connected if it has no collider (like $\longrightarrow j \longleftarrow$).
- ▶ We say a walk is d-connected if it is an arc and contains no bidirected edge, so

Proposition

An arc has exactly zero or one bidirected edge.

Notation

A squiggly line (----) means no collider, and we use no/half/full arrowheads at both ends.

$$W[V \overset{d}{\leadsto} V] = W[V \longleftrightarrow V] + W[V \leadsto V] + W[V \longleftrightarrow V \Longrightarrow V],$$

$$W[V \leadsto V] = W[V \overset{t}{\longleftrightarrow} V] + W[V \overset{d}{\leadsto} V].$$

From treks to paths

Notation: $P[\cdots] = W[\cdots] \cap \mathcal{P}_G$ where \mathcal{P}_G contains all paths on G and \cap is applied entry-wise.

Lemma

For any $G \in \mathbb{G}^*(V)$ and any $j,k \in V$, $j \neq k$, we have

$$j \stackrel{\mathsf{t}}{\Longleftrightarrow} k \text{ in } \mathsf{G} \Longleftrightarrow P[j \leadsto k \text{ in } \mathsf{G}] \neq \emptyset \Longleftrightarrow P[j \leadsto k \text{ in } \mathsf{trim}(\mathsf{G})] \neq \emptyset.$$

- ▶ Proof on blackboard (assuming G is acyclic).
- Key definition:

$$P[j \stackrel{d}{\leadsto} k \text{ via root } r] = \begin{cases} P[j \leadsto k], & \text{if } r = j, \\ P[j \leftrightsquigarrow k], & \text{if } r = k, \\ (P[j \leftrightsquigarrow r] \cdot P[r \leadsto k]) \cap \mathcal{P}_{\mathsf{G}}, & \text{otherwise.} \end{cases}$$

Wright's path analysis

Theorem

Suppose $G \in \mathbb{G}_A(V)$ and $P \in \mathbb{N}(G)$ with weight function σ , then for any $V_j, V_k \in V$, $j \neq k$, we have

$$\mathsf{Cov}_{\mathsf{P}}(V_j, V_k) = \sigma(P[V_j \overset{\mathsf{t}}{\longleftrightarrow} V_k \text{ in } \mathsf{G}]) \\ + \sum_{V_r \in V} \sigma(P[V_j \overset{\mathsf{d}}{\longleftrightarrow} V_k \text{ via root } V_r \text{ in } \mathsf{G}]) \cdot \mathsf{Var}_{\mathsf{P}}(V_r).$$

- Proof on blackboard.
- ightharpoonup Example: $Cov(V_3, V_4) = ?$

Blocking arcs

Definition

We say an arc is blocked by $L \subseteq V$ if the arc has an non-endpoint in L.

Examples

- 1. Which of the following are blocked by 3?
 - $ightharpoonup 1 \longrightarrow 3 \longrightarrow 4$
 - $ightharpoonup 4 \longleftrightarrow 3 \longleftrightarrow 5$
 - $ightharpoonup 1 \longrightarrow 3 \longleftarrow 2$
- 2. Define $W[V \leadsto V \mid L]$ and $W[V \stackrel{t}{\longleftrightarrow} V \mid L]$ using the matrix algebra.

Lemma

If $\beta = \sigma(W[V \longrightarrow V])$ is principally stable, then for any $L \subseteq V$, we have

$$(\operatorname{Id} - \beta_{L^c L^c})^{-1} = \operatorname{Id} + \sigma(W[L^c \leadsto L^c \mid L]).$$

Marginalization of graphs

- ▶ Notation: Write $W[\cdots \text{ in } G] \neq \emptyset$ as $\cdots \text{ in } G$.
- ▶ For $G \in \mathbb{G}(V)$ and $\tilde{V} \subseteq V$, the marginal graph margin $_{\tilde{V}}(G)$ is obtained by

$$\begin{split} j \longrightarrow k \text{ in } \tilde{\mathsf{G}} &\Longleftrightarrow j \leadsto k \mid \tilde{V} \text{ in } \mathsf{G}, \quad j,k \in \tilde{V}, \\ j &\longleftrightarrow k \text{ in } \tilde{\mathsf{G}} &\Longleftrightarrow j \overset{\mathsf{t}}{\Longleftrightarrow} k \mid \tilde{V} \text{ in } \mathsf{G}, \quad j,k \in \tilde{V}. \end{split}$$

- ▶ If \tilde{V} is ancestral (meaning \tilde{V} contains $\operatorname{an}(\tilde{V}) = \{V_j \in V : V_j \leadsto \tilde{V}\}$), then $\operatorname{margin}_{\tilde{V}}(G)$ is the subgraph of G restricted to \tilde{V} .
- ▶ It is often useful to view margin \tilde{V} as a map of walks in G to walks in \tilde{G} .

Proposition: Marginalization preserves unblocked directed walks and treks For any $G \in \mathbb{G}(V)$ and $L \subseteq \tilde{V} \subseteq V$,

$$\operatorname{margin}_{\tilde{V}}\left(W\left[\tilde{V}\left\{\begin{matrix} \leadsto \\ \widetilde{V} \\ \Longleftrightarrow \\ t \\ \leadsto \end{matrix}\right\}\tilde{V} \mid L \text{ in } G\right]\right) = W\left[\tilde{V}\left\{\begin{matrix} \leadsto \\ \leadsto \\ t \\ \Longleftrightarrow \end{matrix}\right\}\tilde{V} \mid L \text{ in } \operatorname{margin}_{\tilde{V}}(G)\right].$$

Marginalization of linear systems

Theorem

For $G \in \mathbb{G}(V)$ and $P \in \mathbb{N}(G)$, if β is principally stable, then

$$\mathsf{margin}_{ ilde{V}}(\mathsf{P}) \in \mathbb{N}(\mathsf{margin}_{ ilde{V}}(\mathsf{G}))$$

with weight function generated by

$$\begin{split} \tilde{\sigma}(W[\tilde{V} \longrightarrow \tilde{V} \text{ in } \tilde{\mathsf{G}}]) &= \sigma(W[\tilde{V} \leadsto \tilde{V} \mid \tilde{V} \text{ in } \mathsf{G}]), \\ \tilde{\sigma}(W[\tilde{V} \longleftrightarrow \tilde{V} \text{ in } \tilde{\mathsf{G}}]) &= \sigma(W[\tilde{V} \overset{\mathsf{t}}{\longleftrightarrow} \tilde{V} \mid \tilde{V} \text{ in } \mathsf{G}]). \end{split}$$

Proof of blackboard.

Example

Find the marginal graph and linear system with $\tilde{V} = \{V_1, V_2, V_4, V_5\}$.

Marginalization of canonical graphs

Definition (marginalization of trimmed graphs)

Consider $G \in \mathbb{G}^*(V)$ and $G^* = \text{trim}(G)$. For $\tilde{V} \subseteq V$, the marginal trimmed graph $\tilde{G}^* = \text{margin}_{\tilde{V}}^*(G^*)$ is obtained by

$$\begin{split} j &\longrightarrow k \text{ in } \tilde{\mathsf{G}}^* \Longleftrightarrow P[j \leadsto k \mid \tilde{V} \text{ in } \mathsf{G}^*] \neq \emptyset, \\ j &\longleftrightarrow k \text{ in } \tilde{\mathsf{G}}^* \Longleftrightarrow P[j \Longleftrightarrow k \mid \tilde{V} \text{ in } \mathsf{G}^*] \neq \emptyset. \end{split}$$

► This is the usual definition in the literature and is justified by the following commutative diagram (proof omitted; example on blackboard).

Outline

Lecture 1: Directed mixed graphs and linear systems

Lecture 2: Path analysis and graph marginalization

Lecture 3: m-separation and conditional independence

Lecture 4: Linear structural equation model and identifiability

Lecture 5: Conditional independence and undirected graphical models

Lecture 6: DAG models and ADMG models

Lecture 7: Causal Markov model

Lecture 8: Causal identification and confounder selection

Conditional independence in multivariate normal

Suppose $V \sim N(\mu, \Sigma)$ and Σ is positive definite.

Proposition

1. For $\mathcal{J} \subset [d]$ and $\mathcal{L} = [d] \setminus \mathcal{J}$, we have

$$V_{\mathcal{J}} \mid V_{\mathcal{L}} = v_{\mathcal{L}} \sim \mathrm{N}\left(\mu_{\mathcal{J}} + \Sigma_{\mathcal{J}} \mathcal{L} \Sigma_{\mathcal{L}}^{-1}(v_{\mathcal{L}} - \mu_{\mathcal{L}}), \Sigma_{\mathcal{J}} \mathcal{J} - \Sigma_{\mathcal{J}} \mathcal{L} \Sigma_{\mathcal{L}}^{-1} \Sigma_{\mathcal{L}} \mathcal{J}\right)$$

2. For any $j, k \in [d]$, $j \neq k$, we have

$$V_j \perp \!\!\! \perp V_k \mid V_{\lfloor d \rfloor \setminus \{j,k\}} \iff \mathsf{Cov}(V_j, V_k \mid V_{\lfloor d \rfloor \setminus \{j,k\}}) = 0 \iff (\Sigma^{-1})_{jk} = 0.$$

Proof sketch

- 1. $V_{\mathcal{J}} \Sigma_{\mathcal{J}\mathcal{L}}\Sigma_{\mathcal{L}\mathcal{L}}^{-1}V_{\mathcal{L}}$ is independent of $V_{\mathcal{L}}$.
- 2. Use $\mathcal{J} = \{j, k\}$, then use the block matrix inverse formula.

Collider-connected walks

Suppose $P \in \mathbb{N}^+(G)$ and $(Id - \beta)$ is non-singular.

- From Lecture 2: $\Sigma = (\operatorname{Id} \beta)^{-T} \Lambda (\operatorname{Id} \beta)^{-1}$.
- ► So $\Sigma^{-1} = (Id β)Λ^{-1}(Id β)^T$. More specifically,

$$(\Sigma^{-1})_{jk} = (\Lambda^{-1})_{jk} - \sum_{m \in [d]} \beta_{jm} (\Lambda^{-1})_{mk} - \sum_{l \in [d]} (\Lambda^{-1})_{jl} \beta_{kl} + \sum_{m,l \in [d]} \beta_{jm} (\Lambda^{-1})_{ml} \beta_{kl}$$

▶ A sufficient condition for $(\Sigma^{-1})_{jk} = 0$ is that every RHS term vanishes.

Lemma

For any $V_j \neq V_k$, we have

$$W[V_j \hookrightarrow * \longleftrightarrow V_k \text{ in } G] = \emptyset \Longrightarrow V_j \perp \!\!\! \perp V_k \mid V \setminus \{V_j, V_k\} \text{ under } P.$$

- $V_j \hookrightarrow * \longleftrightarrow V_k$ means a walk from V_j to V_k where every non-endpoint is a collider.
- ▶ Proof on blackboard. (*Hint:* First assume $\beta = 0$.)

Towards the general case

▶ Notation: Write $W[\cdots] = \emptyset$ as **not** ···.

Goal

We would like to establish a graphical condition for $J \perp \!\!\! \perp K \mid L$.

- ▶ Because V is Gaussian, it suffices to consider $V_j \perp \!\!\! \perp V_k \mid L$ for all $V_j \in J, V_k \in K$.
- ▶ Using the last Lemma, we have (let $\tilde{V} = \{V_j, V_k\} \cup L$)

$$\mathbf{not}\ V_j \longleftrightarrow * \longleftrightarrow V_k\ \mathbf{in}\ \mathsf{margin}_{\tilde{V}}(\mathsf{G}) \Longrightarrow V_j \perp \!\!\!\perp V_k \mid L\ \mathbf{under}\ \mathsf{P}\,.$$

Main problem

Can we conclude **not** $V_i \hookrightarrow * \longleftrightarrow V_k$ **in** margin $V_i \hookrightarrow * \longleftrightarrow V_k$

General blocking

Definition

- ▶ We say a walk in $G \in \mathbb{G}(V)$ is (ancestrally) blocked by $L \subseteq V$, if
 - 1. the walk contains a collider m such that $m \notin L$ (and $m \rightsquigarrow L$), or
 - 2. the walk contains a non-colliding non-endpoint \overline{m} such that $\overline{m} \in L$.
- Let $W[V \leftrightarrow * \longleftrightarrow V \mid L \text{ in } G]$ collect all walks that are not blocked by L.
- ▶ We say $J, K \subseteq V$ are m-separated given L if not $J \leadsto * \longleftrightarrow K \mid L$ in G.

Remarks

- ► All walks are separated by 0, 1, or more colliders.
- ▶ The literature usually uses ancestral blocking with paths (see next Proposition).

Example

Find all m-separations in the running example. (Hint: There are 2 in total.)

Graph separation

- **t-separation**: only consider $\longleftrightarrow * \longleftrightarrow$ (one or more treks).
- ▶ d-separation: only consider walks consisting of directed edges only.

Lemma

For any $G \in \mathbb{G}(V)$ and $J, K, L \subseteq \tilde{V} \subseteq V$, we have

$$J \stackrel{\mathsf{t}}{\Longleftrightarrow} * \stackrel{\mathsf{t}}{\Longleftrightarrow} K \mid L \text{ in } \mathsf{margin}_{\tilde{V}}(\mathsf{G}) \Longleftrightarrow J \stackrel{\mathsf{t}}{\Longleftrightarrow} * \stackrel{\mathsf{t}}{\Longleftrightarrow} K \mid L \text{ in } \mathsf{G}.$$

Lemma

Consider $G \in \mathbb{G}(V)$ and $\{j\}, \{k\}, L \subseteq V$. If G is canonical, then

(i)
$$j \stackrel{\mathsf{t}}{\Longleftrightarrow} * \stackrel{\mathsf{t}}{\Longleftrightarrow} k \mid L \Longleftrightarrow$$
 (ii) $j \rightsquigarrow * * \leadsto k \mid L \Longleftrightarrow$ (iii) $P[j \rightsquigarrow * * \leadsto k \mid_{a} L] \neq \emptyset$.

Furthermore, if G is canonically directed, then

(i), (ii), (iii)
$$\iff$$
 (iv) $j \stackrel{d}{\leadsto} * \stackrel{d}{\longleftrightarrow} k \mid L \iff$ (v) $P[j \stackrel{d}{\leadsto} * \stackrel{d}{\longleftrightarrow} k \mid_a L] \neq \emptyset$.

General result

Theorem

Suppose $P \in \mathbb{N}^+(G)$ for some $G \in \mathbb{G}^*(V)$ and $(Id - \beta)$ is principally non-singular. Then for all disjoint $J, K, L \subseteq V$, we have

not
$$J \leadsto * \longleftrightarrow K \mid L$$
 in $G \Longrightarrow J \perp\!\!\!\perp K \mid L$ under P .

Proof on blackboard using the results above.

Outline

Lecture 1: Directed mixed graphs and linear systems

Lecture 2: Path analysis and graph marginalization

Lecture 3: m-separation and conditional independence

Lecture 4: Linear structural equation model and identifiability

Lecture 5: Conditional independence and undirected graphical models

Lecture 6: DAG models and ADMG models

Lecture 7: Causal Markov model

Lecture 8: Causal identification and confounder selection

Potential outcome

Motivation

We can represent Hooke's law by (X force, Y compression distance, β elasticity):

$$X \longrightarrow Y$$
 and $Y = \beta X$.

- ▶ But equations have no direction: $Y = \beta X$ is equivalent to $X = Y/\beta$.
- ▶ To emphasize "force causes compression", we can write $Y(x) = \beta x$ for all x.

Definition

- Let $V(V_{\mathcal{I}} = v_{\mathcal{I}})$ (often abbreviated as $V(v_{\mathcal{I}})$) denote the potential outcome of the entire system under an intervention that sets $V_{\mathcal{I}}$ to $v_{\mathcal{I}}$.
- A causal model is a collection of probability distributions P on the potential outcomes schedule $V(\cdot) = (V(v_{\mathcal{I}}) : \mathcal{I} \in [d])$ such that

$$\mathsf{P}(V(v_{\mathcal{I}},v_{\mathcal{J}})=V(v_{\mathcal{I}})\mid V_{\mathcal{J}}(v_{\mathcal{I}})=v_{\mathcal{J}})=1, \text{ for all disjoint } \mathcal{I},\mathcal{J}\subseteq[d],\ v\in\mathbb{V}.$$

Linear structural equation model (Linear SEM)

Definition

We say $V(\cdot)$ follows a linear SEM with respect to $G \in \mathbb{G}(V)$, if there exist β and Λ compatible with G such that

$$V_j(v_{\mathcal{I}}) = \sum_{k \in \mathrm{pa}(j) \cap \mathcal{I}} \beta_{kj} v_k + \sum_{k \in \mathrm{pa}(j) \setminus \mathcal{I}} \beta_{kj} V_k(v_{\mathcal{I}}) + E_j, \text{ for all } j \in [d] \text{ and } \mathcal{I} \subseteq [d],$$

for some $E = (E_1, \dots, E_d)$ with $Cov(E) = \Lambda$ and $pa_G(j) = \{l \in [d] : V_l \longrightarrow V_j \text{ in } G\}$.

▶ In words, every equation still "holds" (thus is "structural") under any intervention.

Example

In the running example, how do the structural equations look like under the intervention $(V_2, V_3) = (v_2, v_3)$?

Single-world intervention graphs

We can rewrite the structural equations for $V(v_{\mathcal{I}})$ in matrix form:

$$\begin{pmatrix} v_{\mathcal{I}} \\ V_{\mathcal{I}}(v_{\mathcal{I}}) \\ V_{\mathcal{I}^c}(v_{\mathcal{I}}) \end{pmatrix} = \begin{pmatrix} v_{\mathcal{I}} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ \beta_{\mathcal{I},\mathcal{I}}^T & 0 & \beta_{\mathcal{I}^c,\mathcal{I}}^T \\ \beta_{\mathcal{I},\mathcal{I}^c}^T & 0 & \beta_{\mathcal{I}^c,\mathcal{I}^c}^T \end{pmatrix} \begin{pmatrix} v_{\mathcal{I}} \\ V_{\mathcal{I}}(v_{\mathcal{I}}) \\ V_{\mathcal{I}^c}(v_{\mathcal{I}}) \end{pmatrix} + \begin{pmatrix} 0 \\ E_{\mathcal{I}} \\ E_{\mathcal{I}^c} \end{pmatrix}.$$

So $(v_{\mathcal{I}}, V(v_{\mathcal{I}}))$ follows a linear system with respect to the single-world intervention graph (SWIG) $G(v_{\mathcal{I}})$ obtained by modifying G as follows:

- 1. each intervened vertex $i \in \mathcal{I}$ is split into two vertices, $V_i(v_{\mathcal{I}})$ and v_i , and each non-intervened vertex $j \notin \mathcal{I}$ is relabeled as $V_j(v_{\mathcal{I}})$.
- 2. the "random" vertex $V_i(v_I)$ inherits all "incoming" edges of V_i (edges like $* \longrightarrow V_i$ or $* \longleftrightarrow V_i$) in G;
- 3. the "fixed" vertex v_i inherits all "outgoing" edges of V_i (edges like $V_i \longrightarrow *$) in G. (Example on blackboard.)

Causal effects in linear SEM

Due to linearity, we can define the (joint) causal effect of $V_{\mathcal{I}}$ on V as the matrix

$$D_{\mathcal{I}} = \left\{ \nabla_{v_{\mathcal{I}}} V(v_{\mathcal{I}}) \right\}^T$$
 with entries $D_{ij} = \frac{\partial}{\partial v_i} V_j(v_{\mathcal{I}}), \ i \in \mathcal{I}, j \in [d].$

Theorem

Suppose P is a linear SEM with respect to $G \in \mathbb{G}(V)$ and β is principally stable. Then

$$\{\nabla_{\nu_{\mathcal{I}}}V(\nu_{\mathcal{I}})\}^T = \sigma(W[V_{\mathcal{I}} \leadsto V \mid V_{\mathcal{I}} \text{ in G}]).$$

Thus if G is acyclic, the total causal effect of V_i on V_j is

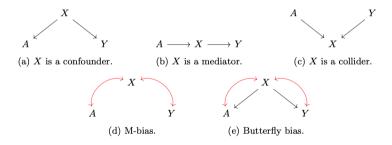
$$\frac{\mathrm{d}V_j(v_i)}{\mathrm{d}v_i} = \sigma(P[V_i \leadsto V_j]).$$

Proof on blackboard.

Correlation is not causation

- ▶ Statistical dependence: \longleftrightarrow (local), \longleftrightarrow (global), t/m-connection (conditional).
- ightharpoonup Causal dependence: \longrightarrow (local), \rightsquigarrow (global).

Examples



Assuming all variables are Gaussian and have unit variance, find Cov(A, Y), $Cov(A, Y \mid X)$ and the causal effect of A on Y.

Identifiability

A central question of causal inference is identifiability. In linear models, this is asking whether the following map is injective:

$$\Sigma : (\beta, \Lambda) \mapsto (\mathsf{Id} - \beta)^{-T} \Lambda (\mathsf{Id} - \beta)^{-1}.$$

We say $\mathbb{N}^+(\mathsf{G})$ is

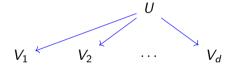
- ▶ globally identifiable if $\Sigma^{-1}(\Sigma(\beta, \Lambda))$ is a singleton for all (β, Λ) ;
- ▶ generically identifiable if $\Sigma^{-1}(\Sigma(\beta, \Lambda))$ is a singleton for almost all (β, Λ) ;
- ▶ locally identifiable if $\Sigma^{-1}(\Sigma(\beta, \Lambda))$ does not contain an open neighborhood of (β, Λ) for all (β, Λ) .

Examples

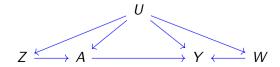
1. Instrumental variables.

$$Z \longrightarrow A \stackrel{\longleftarrow}{\longrightarrow} Y$$

2. Factor analysis (U is not observed).



3. Double negative controls (U is not observed).



Outline

- Lecture 1: Directed mixed graphs and linear systems
- Lecture 2: Path analysis and graph marginalization
- Lecture 3: m-separation and conditional independence
- Lecture 4: Linear structural equation model and identifiability
- Lecture 5: Conditional independence and undirected graphical models
- Lecture 6: DAG models and ADMG models
- Lecture 7: Causal Markov model
- Lecture 8: Causal identification and confounder selection

Conditional independence

Let $\mathbb{P}(\mathbb{V})$ denote all absolutely continuous probability distributions wrt \mathbb{V} (usually \mathbb{R}^d). Let p denote the density function of $P \in \mathbb{P}(\mathbb{V})$. Consider disjoint $V_{\mathcal{J}}, V_{\mathcal{K}}, V_{\mathcal{L}} \subseteq V$.

Definition

▶ The conditional density function of $V_{\mathcal{J}}$ given $V_{\mathcal{K}}$ is given by

$$p(V_{\mathcal{J}} = v_{\mathcal{J}} \mid V_{\mathcal{K}} = v_{\mathcal{K}}) = \frac{p(V_{\mathcal{J}} = v_{\mathcal{J}}, V_{\mathcal{K}} = v_{\mathcal{K}})}{p(V_{\mathcal{K}} = v_{\mathcal{K}})},$$

which is well defined at any value $v_{\mathcal{K}}$ such that $p(V_{\mathcal{K}} = v_{\mathcal{K}}) > 0$. We often abbreviate this as $p(v_{\mathcal{J}} \mid v_{\mathcal{K}})$.

- ▶ We write $V_{\mathcal{J}} \perp \!\!\! \perp V_{\mathcal{K}} \mid V_{\mathcal{L}}$ under P if one of the next equivalent conditions hold:
 - 1. $p(v_{\mathcal{J}}, v_{\mathcal{K}} \mid v_{\mathcal{L}}) = p(v_{\mathcal{J}} \mid v_{\mathcal{L}}) p(v_{\mathcal{K}} \mid v_{\mathcal{L}}).$
 - 2. $p(v_{\mathcal{J}} \mid v_{\mathcal{L}}, v_{\mathcal{K}}) = p(v_{\mathcal{J}} \mid v_{\mathcal{L}}).$
 - 3. $\log p(v_{\mathcal{J}}, v_{\mathcal{K}}, v_{\mathcal{L}}) = g_{\mathcal{J}, \mathcal{K}}(v_{\mathcal{J}}, v_{\mathcal{K}}) + g_{\mathcal{K}, \mathcal{L}}(v_{\mathcal{K}}, v_{\mathcal{L}})$ for some $g_{\mathcal{J}, \mathcal{K}}$ and $g_{\mathcal{K}, \mathcal{L}}$.

Graphoid axioms

Proposition

Consider $P \in \mathbb{P}(\mathbb{V})$ and disjoint subvectors $J, K, L, M \subseteq V$. We have

Symmetry
$$(J \perp\!\!\!\perp K \mid L) \iff (K \perp\!\!\!\perp J \mid L)$$
;

Chain rule
$$(J \perp\!\!\!\perp K \mid L, M)$$
 and $(J \perp\!\!\!\perp M \mid L) \iff (J \perp\!\!\!\perp K, M \mid L)$.

If p(v) > 0 for all v, then we also have

Intersection
$$(J \perp\!\!\!\perp K \mid L, M)$$
 and $(J \perp\!\!\!\perp M \mid K, L) \Longrightarrow (J \perp\!\!\!\perp K, M \mid L)$.

(Proof is left as an exercise.)

A ternary relation that satisfy these axioms is called a graphoid. The terminology is justified by the following visualization.

Separation in undirected graphs

Definition

- Let $\mathbb{UG}(V)$ denote the collection of all simple undirected graphs with vertex set V.
- ▶ Given $G \in \mathbb{UG}(V)$ and disjoint subsets $J, K, L \subset V$, we say L separate J and K in G and write

not
$$J \longrightarrow * \longrightarrow K \mid L$$
 in G

if every path from a vertex in J to a vertex in K in G contains a non-endpoint in L.

Interpretation

This is "dual" to separation in bidirected graphs:

- ▶ $J \longrightarrow L \longrightarrow K$, $J \longleftrightarrow M \longleftrightarrow K$ are blocked given L;
- ▶ $J \longrightarrow M \longrightarrow K$, $J \longleftrightarrow L \longleftrightarrow K$ are not blocked given L.

Undirected graphical models

Let $\mathbb{P}_{\mathsf{GM}}(G)$ collects all $\mathsf{P} \in \mathbb{P}(\mathbb{V})$ that satisfies the global Markov property wrt $\mathsf{G} \in \mathbb{UG}(V)$: for all disjoint $J, K, L \subset V$,

not
$$J \longrightarrow * \longrightarrow K \mid L$$
 in $G \Longrightarrow J \perp \!\!\! \perp K \mid L$ under P .

▶ Let $\mathbb{P}_{\mathsf{F}}(G)$ collects all $\mathsf{P} \in \mathbb{P}(\mathbb{V})$ that factorizes wrt $\mathsf{G} \in \mathbb{UG}(V)$:

$$\mathsf{p}(v) = \prod_{V_{\mathcal{J}} \in \mathcal{C}(\mathsf{G})} f_{\mathcal{J}}(v_{\mathcal{J}}),$$

for some $f_{\mathcal{J}}$, $\mathcal{J} \subseteq [d]$, where $\mathcal{C}(\mathsf{G})$ collects all "cliques" (complete subgraphs) of G .

Theorem (Hammersley-Clifford)

For any $G \in \mathbb{UG}(V)$, we have $\mathbb{P}_F(G) \subseteq \mathbb{P}_{GM}(G)$ and $\mathbb{P}_F^+(G) = \mathbb{P}_{GM}^+(G)$.

▶ Proof of the first part. (\mathbb{P}^+ means positive density functions.)

Graph augmentation

Graph separations in undirected and directed graphs are closely related via the augmentation map aug : $\mathbb{G}^*(V) \to \mathbb{UG}(V)$ defined by

$$V_j \longrightarrow V_k$$
 in $\operatorname{aug}(G) \iff V_j \hookrightarrow * \longleftrightarrow V_k$ in G , for all $V_j \neq V_k$.

- ▶ When restricted to $\mathbb{G}_{DA}^*(V)$, this is called moralization in the literature because it connects any two parents of the same child.
- ▶ For $J \subseteq V$, define $\operatorname{an}(J) = \{V_k \in V : V_k \leadsto J \text{ in } G\}$ and $\overline{\operatorname{an}}(J) = \operatorname{an}(J) \cup J$ (the smallest ancestral set containing J).

Proposition

For any $\mathsf{G} \in \mathbb{G}^*(V)$ and disjoint $J, K, L \subset V$, we have, with $\tilde{V} = \overline{\mathrm{an}}(J \cup K \cup L)$,

$$J \leftrightarrow * \longleftrightarrow K \mid L \text{ in } G \iff J \longrightarrow * \longrightarrow K \mid L \text{ in } aug \circ margin}_{\tilde{V}}(G).$$

Proof on blackboard.

Outline

- Lecture 1: Directed mixed graphs and linear systems
- Lecture 2: Path analysis and graph marginalization
- Lecture 3: m-separation and conditional independence
- Lecture 4: Linear structural equation model and identifiability
- Lecture 5: Conditional independence and undirected graphical models
- Lecture 6: DAG models and ADMG models
- Lecture 7: Causal Markov model
- Lecture 8: Causal identification and confounder selection

DAG models

Definition

▶ Let $\mathbb{P}_{\mathsf{F}}(G)$ collects all $\mathsf{P} \in \mathbb{P}(\mathbb{V})$ that factorizes wrt $\mathsf{G} \in \mathbb{G}^*_{\mathsf{DA}}(V)$:

$$p(v) = \prod_{j=1}^{p} p(v_j \mid v_{\mathrm{pa}_{\mathsf{G}}(j)}).$$

Let $\mathbb{P}_{GM}(G)$ collects all $P \in \mathbb{P}(\mathbb{V})$ that satisfies the global Markov property wrt $G \in \mathbb{G}_{DA}^*(V)$: for any disjoint subsets $J, K, L \subset V$,

$$\mathbf{not}\ J \overset{\mathrm{d}}{\leftrightsquigarrow} * \overset{\mathrm{d}}{\leftrightsquigarrow} K \mid L \ \mathbf{in} \ \mathsf{G} \Longrightarrow J \perp \!\!\! \perp K \mid L \ \mathbf{under} \ \mathsf{P} \ .$$

Theorem

For any $G \in \mathbb{G}^*_{DA}(V)$, we have $\mathbb{P}_F(G) = \mathbb{P}_{GM}(G)$.

Proof on blackboard.

ADMG models

Let $\mathbb{P}_{GM}(G)$ collects all $P \in \mathbb{P}(\mathbb{V})$ that satisfies the global Markov property wrt $G \in \mathbb{G}_A^*(V)$: for any disjoint subsets $J, K, L \subset V$,

not
$$J \leadsto * \longleftrightarrow K \mid L$$
 in $G \Longrightarrow J \perp \!\!\! \perp K \mid L$ under P .

Alternatively, we can define ADMG models by using simpler expanded graphs.

Graph expansion

▶ We say G' is an expansion of $G \in G^*(V)$ if it is in

$$\mathsf{expand}(\mathsf{G}) = \mathsf{margin}_V^{-1}(\mathsf{G}) = \bigcup_{V' \supseteq V} \{\mathsf{G}' \in \mathbb{G}^*(V') : \mathsf{margin}_V(\mathsf{G}') = \mathsf{G}\}.$$

- Often, bidirected edges in G correspond to certain latent variables in G'.
- ▶ If we are satisfied with an expansion G' of G, we can use $\operatorname{margin}_V(\mathbb{P}_{GM}(G'))$ as the model for G.

ADMG models

- ▶ Pairwise expansion: replace every $V_j \longleftrightarrow V_k$ with $V_j \longleftrightarrow U_{jk} \longrightarrow V_k$.
- ▶ Clique expansion: replace every bidirected clique $V_{\mathcal{J}}$ (complete bidirected subgraph) with directed edges $U_{\mathcal{J}} \longrightarrow V_j$, $j \in \mathcal{J}$.
- Noise expansion: add $U_j \longrightarrow V_j$ such that U_j inherits all bidirected edges of V_j .
- Example on blackboard.

Let the corresponding models be denoted as $\mathbb{P}_{PE}(G)$, $\mathbb{P}_{CE}(G)$, $\mathbb{P}_{NE}(G)$.

Proposition

For any $G \in \mathbb{G}_A^*(V)$, we have

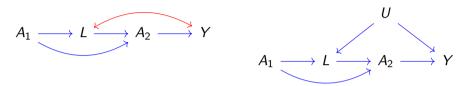
$$\mathbb{P}_{\mathsf{PE}}(\mathsf{G}) \subseteq \mathbb{P}_{\mathsf{CE}}(\mathsf{G}) \subseteq \mathbb{P}_{\mathsf{NE}}(\mathsf{G}) \subseteq \mathbb{P}_{\mathsf{GM}}(\mathsf{G}),$$

and \subseteq in above cannot be replaced by = in general.

► The latent variable models (PE/CE/NE) have additional equality and inequality constraints.

Additional equality constraints

Consider the following (trimmed) ADMG and its expansion (U is latent).



Suppose $P \in \mathbb{P}_{PE}(G)$ (PE,CE,NE are actually equivalent in this example). Then

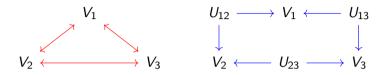
$$\int \mathsf{p}(y\mid a_1,I,a_2)\,\mathsf{p}(I\mid a_1)\,\mathrm{d}I \text{ does not depend on }a_1.$$

- Proof on blackboard.
- lacktriangle This can be understood as a "hidden" independence $Y \perp \!\!\! \perp A_1$ in the kernel

$$p(a_1, I, y \mid do(a_2)) = \frac{p(a_1, I, a_2, y)}{p(a_2 \mid a_1, I)} = p(a_1) p(I \mid a_1) p(y \mid a_1, I, a_2).$$

Additional inequality constraints

Consider the following bidirected clique and its pairwise expansion.



If $P \in \mathbb{P}_{PE}(G)$ and $\mathbb{V} = \{-1, 1\}^3$, the following "perfect correlation" is impossible:

$$P(V_1 = V_2 = V_3 = 1) = P(V_1 = V_2 = V_3 = -1) = \frac{1}{2}.$$

- ▶ Heuristically, if $V_1 = V_2$, then V_1 cannot depend on U_{13} .
- $ightharpoonup \mathbb{P}_{CE}(G)$ or $\mathbb{P}_{NE}(G)$ have no such constraints.
- ▶ Other related examples: Bell's inequality in quantum mechanics; Balke-Pearl bound for instrumental variable graph.

Advantages of the noise expansion model

1. It is equivalent to a natural nonparametric generalization of the linear SEM: if $P \in \mathbb{P}_{NE}(G)$, then V satisfies

$$V_j = f_j(V_{\text{pa}_G(j)}, E_j)$$

for some functions f_1, \ldots, f_d and noise variables E_1, \ldots, E_d that satisfy

$$V_{\mathcal{J}} \not\longleftrightarrow V_{\mathcal{K}} \text{ in } \mathsf{G} \Longrightarrow E_{\mathcal{J}} \perp\!\!\!\perp E_{\mathcal{K}}.$$

- 2. Let $\mathbb{G}^*_{UA}(V)$ collects all unconfounded ADMGs $(V_j \longleftrightarrow V_k \text{ in } G, V_j \neq V_k \text{ implies } pa_G(j) = \emptyset)$ with vertex set V. Then
 - ▶ For all $G \in \mathbb{G}^*_{UA}(V)$, we have $\mathbb{P}_{NE}(G) = \mathbb{P}_{GM}(G)$.
 - For all $G \in \mathbb{G}_A^*(V)$, we have

$$\mathbb{P}_{\mathsf{NE}}(\mathsf{G}) = \bigcup_{V' \supset V} \bigcup_{\mathsf{G}'} \mathsf{margin}_{V}(\mathbb{P}_{\mathsf{NE}}(\mathsf{G}')).$$

(The second union is over
$$G' \in \text{expand}(G) \cap \mathbb{G}^*_{UA}(V')$$
.)

Outline

- Lecture 1: Directed mixed graphs and linear systems
- Lecture 2: Path analysis and graph marginalization
- Lecture 3: m-separation and conditional independence
- Lecture 4: Linear structural equation model and identifiability
- Lecture 5: Conditional independence and undirected graphical models
- Lecture 6: DAG models and ADMG models
- Lecture 7: Causal Markov model
- Lecture 8: Causal identification and confounder selection

Causal Markov model

Recall that a causal model is a collection of consistent probability distributions on the potential outcomes schedule $V(\cdot)$.

Definition

Let $\mathbb{CP}(G)$ collect all distributions P on $V(\cdot)$ that is causal Markov wrt $G \in \mathbb{G}_A^*(V)$:

1. Recursive substitution: With P-probability 1, we have

$$V_j(v_{\mathcal{I}}) = V_j(v_{\mathrm{pa}_{\mathsf{G}}(j) \cap \mathcal{I}}, V_{\mathrm{pa}_{\mathsf{G}}(j) \setminus \mathcal{I}}(v_{\mathcal{I}})) \text{ for all } j \in [d], \mathcal{I} \subseteq [d], v \in \mathbb{V}.$$

2. Basic potential outcomes are Markov wrt bidirected subgraph:

Example: What is $Y(a_1, a_2)$? What is $Y(a_1)$?

Properties

Suppose $G \in \mathbb{G}_A^*(V)$ and $P \in \mathbb{CP}(G)$.

Property 1 (Consistency of potential outcomes)

$$\mathsf{P}(V(v_{\mathcal{I}},v_{\mathcal{J}})=V(v_{\mathcal{I}})\mid V_{\mathcal{J}}(v_{\mathcal{I}})=v_{\mathcal{J}})=1, \text{ for all disjoint } \mathcal{I},\mathcal{J}\subseteq [d],\ v\in\mathbb{V}.$$

Property 2 (Simplifying potential outcomes)

For any $V_{\mathcal{J}}, V_{\mathcal{K}}, V_{\mathcal{L}} \subseteq V$, $V_{\mathcal{K}} \cap V_{\mathcal{L}} = \emptyset$, we have

$$\mathsf{not}\ V_{\mathcal{L}} \leadsto V_{\mathcal{J}} \mid V_{\mathcal{K}} \ \mathsf{in}\ \mathsf{G} \Longrightarrow \mathsf{P}(V_{\mathcal{J}}(\mathsf{v}_{\mathcal{K}},\mathsf{v}_{\mathcal{L}}) = V_{\mathcal{J}}(\mathsf{v}_{\mathcal{K}})) = 1, \ \mathsf{for} \ \mathsf{all}\ \mathsf{v}_{\mathcal{K}} \in \mathbb{V}_{\mathcal{K}}, \mathsf{v}_{\mathcal{L}} \in \mathbb{V}_{\mathcal{L}}.$$

Property 3 (SWIG Markov property)

We have $\operatorname{margin}_{V(v_{\mathcal{I}})}(\mathsf{P}) \in \mathbb{P}_{\mathsf{GM}}(\mathsf{G}(v_{\mathcal{I}}))$ for all $V_{\mathcal{I}} \subseteq V$ and $v \in \mathbb{V}$.

Proof on blackboard.

Outline

- Lecture 1: Directed mixed graphs and linear systems
- Lecture 2: Path analysis and graph marginalization
- Lecture 3: m-separation and conditional independence
- Lecture 4: Linear structural equation model and identifiability
- Lecture 5: Conditional independence and undirected graphical models
- Lecture 6: DAG models and ADMG models
- Lecture 7: Causal Markov model
- Lecture 8: Causal identification and confounder selection

Identification by fixing

Consider $G \in \mathbb{G}_A^*(V)$.

- ▶ We say $V_j \in V$ is fixable in G if there exists no $V_k \in V$ such that $V_j \leadsto V_k$ and $V_j \longleftrightarrow * \longleftrightarrow V_k$ in G.
- ▶ For $V_j \in V$, its Markov background in G is defined as

$$\mathrm{mbg}_{\mathsf{G}}(V_j) = \{V_k \in V : V_k \longrightarrow * \longleftrightarrow V_j \text{ in } \mathsf{G}\}.$$

Proposition

Consider $G \in \mathbb{G}_A^*(V)$ and $P \in \mathbb{CP}(G)$. If $V_j \in V$ is fixable in G, then

$$\frac{\mathsf{p}(V_j(v_j) = \tilde{v}_j, V_{-j}(v_j) = v_{-j})}{\mathsf{p}(V_j = v_j, V_{-j} = v_{-j})} = \frac{\mathsf{p}(V_j = \tilde{v}_j \mid V_{\mathrm{mbg}(j)} = v_{\mathrm{mbg}(j)})}{\mathsf{p}(V_j = v_j \mid V_{\mathrm{mbg}(j)} = v_{\mathrm{mbg}(j)})}, \text{ for all } v \in \mathbb{V} \text{ and } v_j^* \in \mathbb{V}_j,$$

whenever $p(V_j = v_j \mid V_{\text{mbg}(j)} = v_{\text{mbg}(j)}) > 0$.

Proof on blackboard.

Example

Show that the equality constraint

$$\int \mathsf{p}(y\mid a_1,I,a_2)\,\mathsf{p}(I\mid a_1)\,\mathrm{d}I \text{ does not depend on } a_1.$$

corresponds to

- ▶ the independence $Y(a_2) \perp \!\!\! \perp A_1$; or
- ▶ no direct $A_1 \longrightarrow Y$ effect: $Y(a_1, a_2) = Y(a_2)$.

Back-door criterion

Consider $G \in \mathbb{G}_A^*(V)$, $P \in \mathbb{CP}(G)$, $A, Y \in V$. Interested in the causal effect of A on Y.

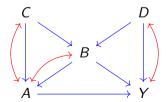
Theorem

Suppose $X \subset V$, $X \cap \{A, Y\} = \emptyset$ satisfies

- 1. $A \rightsquigarrow X$ in G;
- 2. $P[A \leftrightarrow * \leftrightarrow Y \mid_a X] = \emptyset$.

Then $p(Y(a) = y \mid X = x) = p(Y = y \mid A = a, X = x).$

- Proof on blackboard.
- **Example:** Which $X \subseteq \{B, C, D\}$ meet the back-door criterion?



Confounder selection

Can we select a set of confounders X without knowing the full graph G?

Definition (symmetric back-door criterion)

- $ightharpoonup X \subseteq V \setminus \{A, Y\}$ is an adjustment set for $A, Y \in V$ if $A \not\rightsquigarrow X$ and $Y \not\rightsquigarrow X$.
- ▶ An adjustment set X is sufficient if $P[A \leftrightarrow * * \leftrightarrow Y \mid_a X] = \emptyset$.
- ▶ An adjustment set X is primary if $P[A \longleftrightarrow Y \mid X] = \emptyset$.

Heuristics

Directly blocking all confounding paths is difficult, because

$$P[A \longleftrightarrow * \longleftrightarrow Y \mid_a X] = \emptyset \Rightarrow P[A \longleftrightarrow * \longleftrightarrow Y \mid_a \tilde{X}] = \emptyset \text{ for } X \subset \tilde{X}.$$

But we can block confounding arcs recursively, because

$$P[A \longleftrightarrow Y \mid X] = \emptyset \Rightarrow P[A \longleftrightarrow Y \mid X'] = \emptyset \text{ for } X \subset X'.$$

District criterion

Theorem (marginalization preserves confounding arcs and paths)

Consider $G \in \mathbb{G}_A^*(V)$, distinct $A, Y \in V$, $X \subseteq V \setminus \{A, Y\}$. For any vertex set \tilde{V} such that $\{A, B\} \cup C \subseteq \tilde{V} \subseteq V$, we have

$$P[A \longleftrightarrow Y \mid X \text{ in } G] = \emptyset \iff P[A \longleftrightarrow Y \mid X \text{ in margin}_{\tilde{V}}(G)] = \emptyset,$$

$$P[A \longleftrightarrow * \longleftrightarrow Y \mid_{a} X \text{ in } G] = \emptyset \iff P[A \longleftrightarrow * \longleftrightarrow Y \mid_{a} X \text{ in margin}_{\tilde{V}}(G)] = \emptyset.$$

As a corollary, we have

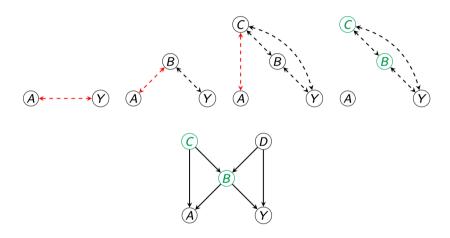
$$P[A \longleftrightarrow Y \mid X \text{ in } G] = \emptyset \iff \text{not } A \longleftrightarrow Y \text{ in } \operatorname{margin}_{\{A,Y\} \cup X}(G),$$

$$P[A \longleftrightarrow * \longleftrightarrow Y \mid_{a} X \text{ in } G] = \emptyset \iff \text{not } A \longleftrightarrow * \longleftrightarrow Y \text{ in } \operatorname{margin}_{\{A,Y\} \cup X}(G).$$

Iterative graph expansion

```
1: procedure ConfounderSelect(A. Y)
           \mathcal{R} = \emptyset
 2:
 3:
           procedure Graph Expand (X, \mathcal{B}_v, \mathcal{B}_n)
 4:
                 if A \longleftrightarrow * \longleftrightarrow Y by edges in \mathcal{B}_{V} then
 5:
                      return
                 else if not A \longleftrightarrow * \longleftrightarrow Y by edges in (X \cup \{A, Y\}) \times (X \cup \{A, Y\}) \setminus \mathcal{B}_n then
 6:
                      \mathcal{R} = \mathcal{R} \cup \{X\}
 8:
                      return
 9:
                 end if
                 (C \leftrightarrow D) = \text{SELECTEDGE}(A, Y, X, \mathcal{B}_{v}, \mathcal{B}_{n})
10:
11:
                 for X' in FINDPRIMARY (C \leftrightarrow D, X) do
12:
                       GRAPHEXPAND(X \cup X', \mathcal{B}_v, \mathcal{B}_n \cup \{C \leftrightarrow D\})
13:
                 end for
                 GRAPHEXPAND(X, \mathcal{B}_v \cup \{C \leftrightarrow D\}, \mathcal{B}_n)
14:
15:
           end procedure
            GraphExpand(\emptyset, \emptyset, \emptyset)
16:
17:
            return \mathcal{R}.
18: end procedure
```

Illustration



Shiny app: https://ricguo.shinyapps.io/InteractiveConfSel/

