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Outline

Lecture 1: Directed mixed graphs and linear systems

Lecture 2: Path analysis and graph marginalization

Lecture 3: m-separation and conditional independence

Lecture 4: Linear structural equation model and identifiability

Lecture 5: Conditional independence and undirected graphical models

Lecture 6: DAG models and ADMG models

Lecture 7: Causal Markov model

Lecture 8: Causal identification and confounder selection
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History

▶ Sewall Green Wright (December 21, 1889 – March 3, 1988) was an American
geneticist known for his influential work on evolutionary theory and also for his
work on path analysis. He was a founder of population genetics alongside Ronald
Fisher and J. B. S. Haldane, which was a major step in the development of the
modern synthesis combining genetics with evolution.
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Directed mixed graphs

We will consider graphs with two types of edges: directed ( ) and bidirected ( ).

Definition
A directed mixed graph (DMG) G = (V ,D,B) consists of a finite vertex set V , a
directed edge set D ⊆ V × V that contains ordered pairs of vertices, and a bidirected
edge set B ⊆ V × V that contains unordered pairs of vertices (so (j , k) ∈ B implies
(k, j) ∈ B) such that

(j , k) ∈ B =⇒ (j , j) ∈ B, (k, k) ∈ B, for all j , k ∈ V .

Let G(V ) denote the collection of all directed mixed graphs with vertex set V .
We say the directed edge “j k” is contained in G if (j , k) ∈ D, and in this case we
say this is an incoming edge for k, an outgoing edge for j , the vertex j is a parent of k,
and k is a child of j in G. Likewise, we say the bidirected edge “j k” is contained
in G if (j , k) ∈ B.
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Causal interpretation

▶ Directed edges mean direct causal effects.
▶ Bidirected edges mean unspecified, residual/exogenous correlations.

Why directed edges?
▶ Causality is transitive (A causes B and B causes C ⇒ A causes C). This defines a

pre-order.
▶ This can be described by the reachability relationship of a directed graph.

▶ Often we think causality is irreflexive (A does not cause itself) and asymmetric (A
and B cannot be causes of each other). This defines a partial order.
▶ This can be described by the reachability relationship of a directed acyclic graph.

Why bidirected edges?
▶ In statistics and causal inference we are often concerned with latent variables.
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Canonical graphs

Definition
▶ We say the directed mixed graph is canonical if it contains all bidirected loops.

▶ The full collection with vertex set V is denoted by G∗(V ).
▶ We say the graph is canonically directed if it is canonical and contains no other

bidirected edges.
▶ The full collection with vertex set V is denoted by G∗

D(V ).
For such graphs, it is usually more convenient to use the trimmed graph obtained by

trim : (V ,D,B) 7→ (V ,D,B \{(j , j) : j ∈ V }).
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Walk, path, cycle

Definition
▶ A walk is an ordered sequence of connected edges ignoring edge direction.
▶ A path is a walk with no repeated vertices.
▶ A cycle is a walk with the same starting and ending vertices.
▶ Vertices at the two ends of a walk are called its endpoints, and the other vertices

are called non-endpoints.
▶ A walk is directed if all its edges have the same direction, like j · · · k.
▶ The graph G (or its direct subgraph) is acyclic if it contains no directed cycles.

Notation
▶ G∗

A(V ): the collection of acyclic, canonical DMGs with vertex set V .
▶ G∗

DA(V ): the collection acyclic, canonically directed DMGs (basically DAGs).
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Demonstration of trimming

Is the directed mixed graph on the left
▶ canonical?
▶ canonically directed?
▶ acyclic?
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Gaussian linear system on a graph
We will not distinguish a random vector V = (V1, . . . ,Vd) (probability theory) with a
vertex set of random variables V = {V1, . . . ,Vd} (graph theory).

Definition
We say a random vector V follows a Gaussian linear system wrt G ∈ G(V ) if

V = βT V + E for some E ∼ N(0,Λ)

where
▶ β ∈ Rd×d respects the directed subgraph: Vj 6 Vk in G ⇒ βjk = 0.
▶ Λ ∈ Rd×d respects the bidirected subgraph: Vj 6 Vk in G ⇒ Λjk = 0.

Gaussian model
▶ Let N(G) denote the collection of probability distributions of such V .
▶ Let N+(G) denote the subclass where Λ is positive definite (so G ∈ G∗(V )).
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Roadmap: Basic questions

Let V be a random vector and J = VJ , K = VK, L = VL be sub-vectors of V .
1. What is the probability distribution of J?
2. Is J ⊥⊥ K true?
3. Is J ⊥⊥ K | L true?

Answer
If V ∼ N(0,Σ) and Σ is positive definite, then

1. J ∼ N(0,ΣJ ,J ).
2. J ⊥⊥ K if and only if ΣJ ,K = 0.
3. Vj ⊥⊥ Vk | V[d]\{j,k} if and only if (Σ−1)jk = 0.

Lecture 1-3
Let P ∈ N(G) be the distribution of V . Can we answer these questions using just G?
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Roadmap: From linear algebra to graphs

Basic combinatoric result
Let A be the adjacency matrix of a directed graph G. Then

(Ar )jk = |{directed walks from j to k of length r}|, r ≥ 1,

[(Id − A)−1]jk = [Id + A + A2 + . . . ]jk = δjk + |{directed walks from j to k}|.

So matrix multiplication is similar to walking on a graph.
▶ Thinking abstractly, edges in a graph encode certain local relations. By

composing ("multiplying") those edges, we can obtain new global relations.
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Matrices of walks

Basic matrices
Edges in G = (V ,D,B) ∈ G(V ) can be rearranged into:

W [j k in G] =

{
{j k}, if (j , k) ∈ D,

∅, otherwise,

W [j k in G] =

{
{j k}, if (j , k) ∈ B,
∅, otherwise.

▶ Examples (on blackboard).
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Basic operations
On sets of walks

1. Addition + means set union.
▶ Example: {V2 V5}+ {V2 V3 V5} =?.

2. Multiplication · means concatenation.
▶ Example: {V2 V2} · {V2 V5, V2 V3 V5} =?.

3. Transpose T means reversing direction.
▶ Example: {V2 V5, V2 V3 V5}T =?.

On matrices
Examples (on blackboard).

(W + W ′)[Vj ,Vk ] = W [Vj ,Vk ] + W ′[Vj ,Vk ],

(W · W ′)[Vj ,Vk ] =
∑

Vl∈V
W [Vj ,Vl ] · W ′[Vl ,Vk ],

(W T )[Vj ,Vk ] = (W [Vk ,Vj ])
T = {wT : w ∈ W [Vk ,Vj ]}.
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Further definitions

▶ Right-directed walks: W [V V ] =
∑∞

q=1(W [V V ])q.
▶ Left-directed walks: W [V V ] = (W [V V ])T .
▶ Identity matrix (for multiplication): Id = diag(id, . . . , id), where id is the trivial

walk with length 0 such that

id · w = w · id = w and Id · W = W · Id = W

▶ Let ∅ also denote the matrix with empty sets of walks. This is the identity
element for matrix addition (set union).
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Weight function
▶ Recall that P ∈ N(G) means V = βT V + E where E ∼ N(0,Λ).
▶ So V = (Id − β)−T E ∼ N(0,Σ) where

Σ = (Id − β)−TΛ(Id − β)−1.

How can we represent this graphically?
▶ Let σ be the weight function on all walks in G generated by

β = σ(W [V V ]) and Λ = σ(W [V V ]).

▶ Example: σ({V1 V4,V1 V1 V3 V4}) = Λ14 + Λ11β13β34.

Lemma
If β is stable (spectral radius < 1), then

(Id − β)−1 = Id + σ(W [V V ]).
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Lecture 1: Directed mixed graphs and linear systems

Lecture 2: Path analysis and graph marginalization

Lecture 3: m-separation and conditional independence

Lecture 4: Linear structural equation model and identifiability

Lecture 5: Conditional independence and undirected graphical models

Lecture 6: DAG models and ADMG models

Lecture 7: Causal Markov model

Lecture 8: Causal identification and confounder selection
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Trek rule

This motivates us to define treks or t-connected walks in G as (expand on blackboard)

W [V
t

V ] =(Id + W [V V ]) · W [V V ] · (Id + W [V V ]).

Theorem
Suppose G ∈ G(V ) and P ∈ N(G) with weight function σ, then

CovP(V ) = σ(W [V
t

V in G]).

Examples
▶ Var(V3) =?

▶ Cov(V3,V4) =?
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Arcs

Definitions
▶ We say a walk is an arc or m-connected if it has no collider (like j ).
▶ We say a walk is d-connected if it is an arc and contains no bidirected edge, so

Proposition
An arc has exactly zero or one bidirected edge.

Notation
A squiggly line ( ) means no collider, and we use no/half/full arrowheads at both
ends.

W [V
d

V ] = W [V V ] + W [V V ] + W [V V V ],

W [V V ] = W [V
t

V ] + W [V
d

V ].
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From treks to paths
▶ Notation: P[· · · ] = W [· · · ] ∩ PG where PG contains all paths on G and ∩ is

applied entry-wise.

Lemma
For any G ∈ G∗(V ) and any j , k ∈ V , j 6= k, we have

j
t

k in G ⇐⇒ P[j k in G] 6= ∅ ⇐⇒ P[j k in trim(G)] 6= ∅.

▶ Proof on blackboard (assuming G is acyclic).
▶ Key definition:

P[j
d

k via root r ] =


P[j k], if r = j ,
P[j k], if r = k,
(P[j r ] · P[r k]) ∩ PG, otherwise.
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Wright’s path analysis

Theorem
Suppose G ∈ GA(V ) and P ∈ N(G) with weight function σ, then for any Vj ,Vk ∈ V ,
j 6= k, we have

CovP(Vj ,Vk) =σ(P[Vj
t

Vk in G])

+
∑

Vr∈V
σ(P[Vj

d
Vk via root Vr in G]) · VarP(Vr ).

▶ Proof on blackboard.
▶ Example: Cov(V3,V4) =?
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Blocking arcs

Definition
We say an arc is blocked by L ⊆ V if the arc has an non-endpoint in L.

Examples
1. Which of the following are blocked by 3?

▶ 1 3 4
▶ 4 3 3 5
▶ 1 3 2

2. Define W [V V | L] and W [V
t

V | L] using the matrix algebra.

Lemma
If β = σ(W [V V ]) is principally stable, then for any L ⊆ V , we have

(Id − βLcLc )−1 = Id + σ(W [Lc Lc | L]).



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Marginalization of graphs
▶ Notation: Write W [· · · in G] 6= ∅ as · · · in G.
▶ For G ∈ G(V ) and Ṽ ⊆ V , the marginal graph marginṼ (G) is obtained by

j k in G̃ ⇐⇒ j k | Ṽ in G, j , k ∈ Ṽ ,

j k in G̃ ⇐⇒ j
t

k | Ṽ in G, j , k ∈ Ṽ .

▶ If Ṽ is ancestral (meaning Ṽ contains an(Ṽ ) = {Vj ∈ V : Vj Ṽ }), then
marginṼ (G) is the subgraph of G restricted to Ṽ .

▶ It is often useful to view marginṼ as a map of walks in G to walks in G̃.
Proposition: Marginalization preserves unblocked directed walks and treks
For any G ∈ G(V ) and L ⊆ Ṽ ⊆ V ,

marginṼ

W

Ṽ

 t

 Ṽ | L in G


 = W

Ṽ

 t

 Ṽ | L in marginṼ (G)

 .
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Marginalization of linear systems

Theorem
For G ∈ G(V ) and P ∈ N(G), if β is principally stable, then

marginṼ (P) ∈ N(marginṼ (G))

with weight function generated by

σ̃(W [Ṽ Ṽ in G̃]) = σ(W [Ṽ Ṽ | Ṽ in G]),

σ̃(W [Ṽ Ṽ in G̃]) = σ(W [Ṽ
t

Ṽ | Ṽ in G]).

▶ Proof of blackboard.

Example
▶ Find the marginal graph and linear system with Ṽ = {V1,V2,V4,V5}.
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Marginalization of canonical graphs
Definition (marginalization of trimmed graphs)
Consider G ∈ G∗(V ) and G∗ = trim(G). For Ṽ ⊆ V , the marginal trimmed graph
G̃
∗
= margin∗Ṽ (G∗) is obtained by

j k in G̃
∗ ⇐⇒ P[j k | Ṽ in G∗] 6= ∅,

j k in G̃
∗ ⇐⇒ P[j k | Ṽ in G∗] 6= ∅.

▶ This is the usual definition in the literature and is justified by the following
commutative diagram (proof omitted; example on blackboard).

G∗(V ) trim(G∗(V ))

G∗(Ṽ ) trim(G∗(Ṽ ))

trim

marginṼ margin∗Ṽ

trim

G G∗

G̃ G̃
∗

trim

marginṼ margin∗Ṽ

trim
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Conditional independence in multivariate normal
Suppose V ∼ N(µ,Σ) and Σ is positive definite.

Proposition
1. For J ⊂ [d ] and L = [d ] \ J , we have

VJ | VL = vL ∼ N
(
µJ +ΣJ LΣ

−1
LL(vL − µL), ΣJ J − ΣJ LΣ

−1
LLΣLJ

)
2. For any j , k ∈ [d ], j 6= k, we have

Vj ⊥⊥ Vk | V[d]\{j,k} ⇐⇒ Cov(Vj ,Vk | V[d]\{j,k}) = 0 ⇐⇒ (Σ−1)jk = 0.

Proof sketch
1. VJ − ΣJ LΣ

−1
LLVL is independent of VL.

2. Use J = {j , k}, then use the block matrix inverse formula.
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Collider-connected walks
Suppose P ∈ N+(G) and (Id − β) is non-singular.
▶ From Lecture 2: Σ = (Id − β)−TΛ(Id − β)−1.
▶ So Σ−1 = (Id − β)Λ−1(Id − β)T . More specifically,
(Σ−1)jk = (Λ−1)jk −

∑
m∈[d]

βjm(Λ
−1)mk −

∑
l∈[d]

(Λ−1)jlβkl +
∑

m,l∈[d]
βjm(Λ

−1)mlβkl

▶ A sufficient condition for (Σ−1)jk = 0 is that every RHS term vanishes.

Lemma
For any Vj 6= Vk , we have

W [Vj ∗ Vk in G] = ∅ =⇒ Vj ⊥⊥ Vk | V \ {Vj ,Vk} under P .

▶ Vj ∗ Vk means a walk from Vj to Vk where every non-endpoint is a
collider.

▶ Proof on blackboard. (Hint: First assume β = 0.)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Towards the general case

▶ Notation: Write W [· · · ] = ∅ as not · · ·.

Goal
We would like to establish a graphical condition for J ⊥⊥ K | L.
▶ Because V is Gaussian, it suffices to consider Vj ⊥⊥ Vk | L for all Vj ∈ J ,Vk ∈ K .
▶ Using the last Lemma, we have (let Ṽ = {Vj ,Vk} ∪ L)

not Vj ∗ Vk in marginṼ (G) =⇒ Vj ⊥⊥ Vk | L under P .

Main problem
Can we conclude not Vj ∗ Vk in marginṼ (G) using G directly?
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General blocking
Definition
▶ We say a walk in G ∈ G(V ) is (ancestrally) blocked by L ⊆ V , if

1. the walk contains a collider m such that m 6∈ L (and m 6 L), or
2. the walk contains a non-colliding non-endpoint m such that m ∈ L.

▶ Let W [V ∗ V | L in G] collect all walks that are not blocked by L.
▶ We say J ,K ⊆ V are m-separated given L if not J ∗ K | L in G.

Remarks
▶ All walks are separated by 0, 1, or more colliders.
▶ W [V ∗ V ] 6= W [V ∗ V | ∅] = W [V V ].
▶ The literature usually uses ancestral blocking with paths (see next Proposition).

Example
▶ Find all m-separations in the running example. (Hint: There are 2 in total.)
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Graph separation
▶ t-separation: only consider

t
∗

t
(one or more treks).

▶ d-separation: only consider walks consisting of directed edges only.
Lemma
For any G ∈ G(V ) and J ,K , L ⊆ Ṽ ⊆ V , we have

J
t

∗
t

K | L in marginṼ (G) ⇐⇒ J
t

∗
t

K | L in G .

Lemma
Consider G ∈ G(V ) and {j}, {k}, L ⊆ V . If G is canonical, then

(i) j
t

∗
t

k | L ⇐⇒ (ii) j ∗ k | L ⇐⇒ (iii) P[j ∗ k |a L] 6= ∅.

Furthermore, if G is canonically directed, then

(i), (ii), (iii) ⇐⇒ (iv) j
d

∗
d

k | L ⇐⇒ (v) P[j
d

∗
d

k |a L] 6= ∅.
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General result

Theorem
Suppose P ∈ N+(G) for some G ∈ G∗(V ) and (Id − β) is principally non-singular.
Then for all disjoint J ,K , L ⊆ V , we have

not J ∗ K | L in G =⇒ J ⊥⊥ K | L under P .

▶ Proof on blackboard using the results above.
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Potential outcome
Motivation
We can represent Hooke’s law by (X force, Y compression distance, β elasticity):

X Y and Y = βX .

▶ But equations have no direction: Y = βX is equivalent to X = Y /β.
▶ To emphasize "force causes compression", we can write Y (x) = βx for all x .

Definition
▶ Let V (VI = vI) (often abbreviated as V (vI)) denote the potential outcome of

the entire system under an intervention that sets VI to vI .
▶ A causal model is a collection of probability distributions P on the potential

outcomes schedule V (·) = (V (vI) : I ∈ [d ]) such that

P(V (vI , vJ ) = V (vI) | VJ (vI) = vJ ) = 1, for all disjoint I,J ⊆ [d ], v ∈ V.
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Linear structural equation model (Linear SEM)

Definition
We say V (·) follows a linear SEM with respect to G ∈ G(V ), if there exist β and Λ
compatible with G such that

Vj(vI) =
∑

k∈pa(j)∩I
βkjvk +

∑
k∈pa(j)\I

βkjVk(vI) + Ej , for all j ∈ [d ] and I ⊆ [d ],

for some E = (E1, . . . ,Ed) with Cov(E ) = Λ and paG(j) = {l ∈ [d ] : Vl Vj in G}.
▶ In words, every equation still "holds" (thus is "structural") under any intervention.

Example
In the running example, how do the structural equations look like under the
intervention (V2,V3) = (v2, v3)?
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Single-world intervention graphs

We can rewrite the structural equations for V (vI) in matrix form: vI
VI(vI)
VIc (vI)

 =

vI
0
0

+

 0 0 0
βT
I,I 0 βT

Ic ,I
βT
I,Ic 0 βT

Ic ,Ic

 vI
VI(vI)
VIc (vI)

+

 0
EI
EIc

 .

So (vI ,V (vI)) follows a linear system with respect to the single-world intervention
graph (SWIG) G(vI) obtained by modifying G as follows:

1. each intervened vertex i ∈ I is split into two vertices, Vi(vI) and vi , and each
non-intervened vertex j 6∈ I is relabeled as Vj(vI).

2. the “random” vertex Vi(vI) inherits all “incoming” edges of Vi (edges like
∗ Vi or ∗ Vi) in G;

3. the “fixed” vertex vi inherits all “outgoing” edges of Vi (edges like Vi ∗) in G.
(Example on blackboard.)
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Causal effects in linear SEM
Due to linearity, we can define the (joint) causal effect of VI on V as the matrix

DI = {∇vIV (vI)}T with entries Dij =
∂

∂vi
Vj(vI), i ∈ I, j ∈ [d ].

Theorem
Suppose P is a linear SEM with respect to G ∈ G(V ) and β is principally stable. Then

{∇vIV (vI)}T = σ(W [VI V | VI in G]).

Thus if G is acyclic, the total causal effect of Vi on Vj is

dVj(vi)

dvi
= σ(P[Vi Vj ]).

▶ Proof on blackboard.
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Correlation is not causation
▶ Statistical dependence: (local),

t
(global), t/m-connection (conditional).

▶ Causal dependence: (local), (global).

Examples

Assuming all variables are Gaussian and have unit variance, find Cov(A,Y ),
Cov(A,Y | X ) and the causal effect of A on Y .
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Identifiability

A central question of causal inference is identifiability. In linear models, this is asking
whether the following map is injective:

Σ : (β,Λ) 7→ (Id − β)−TΛ(Id − β)−1.

We say N+(G) is
▶ globally identifiable if Σ−1(Σ(β,Λ)) is a singleton for all (β,Λ);
▶ generically identifiable if Σ−1(Σ(β,Λ)) is a singleton for almost all (β,Λ);
▶ locally identifiable if Σ−1(Σ(β,Λ)) does not contain an open neighborhood of

(β,Λ) for all (β,Λ).
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Examples
1. Instrumental variables.

Z A Y

2. Factor analysis (U is not observed).

U

V1 V2 · · · Vd

3. Double negative controls (U is not observed).

U

Z A Y W
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Conditional independence

Let P(V) denote all absolutely continuous probability distributions wrt V (usually Rd).
Let p denote the density function of P ∈ P(V). Consider disjoint VJ ,VK,VL ⊆ V .

Definition
▶ The conditional density function of VJ given VK is given by

p(VJ = vJ | VK = vK) =
p(VJ = vJ ,VK = vK)

p(VK = vK)
,

which is well defined at any value vK such that p(VK = vK) > 0. We often
abbreviate this as p(vJ | vK).

▶ We write VJ ⊥⊥ VK | VL under P if one of the next equivalent conditions hold:
1. p(vJ , vK | vL) = p(vJ | vL) p(vK | vL).
2. p(vJ | vL, vK) = p(vJ | vL).
3. log p(vJ , vK, vL) = gJ ,K(vJ , vK) + gK,L(vK, vL) for some gJ ,K and gK,L.
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Graphoid axioms
Proposition
Consider P ∈ P(V) and disjoint subvectors J ,K , L,M ⊆ V . We have

Symmetry (J ⊥⊥ K | L) ⇐⇒ (K ⊥⊥ J | L);
Chain rule (J ⊥⊥ K | L,M) and (J ⊥⊥ M | L) ⇐⇒ (J ⊥⊥ K ,M | L).

If p(v) > 0 for all v , then we also have
Intersection (J ⊥⊥ K | L,M) and (J ⊥⊥ M | K , L) =⇒ (J ⊥⊥ K ,M | L).

(Proof is left as an exercise.)
▶ A ternary relation that satisfy these axioms is called a graphoid. The terminology

is justified by the following visualization.

J L
K

M
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Separation in undirected graphs

Definition
▶ Let UG(V ) denote the collection of all simple undirected graphs with vertex set V .
▶ Given G ∈ UG(V ) and disjoint subsets J ,K , L ⊂ V , we say L separate J and K in

G and write
not J ∗ K | L in G

if every path from a vertex in J to a vertex in K in G contains a non-endpoint in L.

Interpretation
This is "dual" to separation in bidirected graphs:
▶ J L K , J M K are blocked given L;
▶ J M K , J L K are not blocked given L.
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Undirected graphical models

▶ Let PGM(G) collects all P ∈ P(V) that satisfies the global Markov property wrt
G ∈ UG(V ): for all disjoint J ,K , L ⊂ V ,

not J ∗ K | L in G =⇒ J ⊥⊥ K | L under P .

▶ Let PF(G) collects all P ∈ P(V) that factorizes wrt G ∈ UG(V ):

p(v) =
∏

VJ∈C(G)

fJ (vJ ),

for some fJ , J ⊆ [d ], where C(G) collects all "cliques" (complete subgraphs) of G.

Theorem (Hammersley-Clifford)
For any G ∈ UG(V ), we have PF(G) ⊆ PGM(G) and P+

F (G) = P+
GM(G).

▶ Proof of the first part. (P+ means positive density functions.)
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Graph augmentation
Graph separations in undirected and directed graphs are closely related via the
augmentation map aug : G∗(V ) → UG(V ) defined by

Vj Vk in aug(G) ⇐⇒ Vj ∗ Vk in G, for all Vj 6= Vk .

▶ When restricted to G∗
DA(V ), this is called moralization in the literature because it

connects any two parents of the same child.
▶ For J ⊆ V , define an(J) = {Vk ∈ V : Vk J in G} and an(J) = an(J) ∪ J (the

smallest ancestral set containing J).

Proposition
For any G ∈ G∗(V ) and disjoint J ,K , L ⊂ V , we have, with Ṽ = an(J ∪ K ∪ L),

J ∗ K | L in G ⇐⇒ J ∗ K | L in aug ◦marginṼ (G).

▶ Proof on blackboard.
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DAG models
Definition
▶ Let PF(G) collects all P ∈ P(V) that factorizes wrt G ∈ G∗

DA(V ):

p(v) =
p∏

j=1
p(vj | vpaG(j)).

▶ Let PGM(G) collects all P ∈ P(V) that satisfies the global Markov property wrt
G ∈ G∗

DA(V ): for any disjoint subsets J ,K , L ⊂ V ,

not J
d

∗
d

K | L in G =⇒ J ⊥⊥ K | L under P .

Theorem
For any G ∈ G∗

DA(V ), we have PF(G) = PGM(G).
▶ Proof on blackboard.
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ADMG models
▶ Let PGM(G) collects all P ∈ P(V) that satisfies the global Markov property wrt

G ∈ G∗
A(V ): for any disjoint subsets J ,K , L ⊂ V ,

not J ∗ K | L in G =⇒ J ⊥⊥ K | L under P .

▶ Alternatively, we can define ADMG models by using simpler expanded graphs.

Graph expansion
▶ We say G′ is an expansion of G ∈ G∗(V ) if it is in

expand(G) = margin−1
V (G) =

∪
V ′⊇V

{G′ ∈ G∗(V ′) : marginV (G′) = G}.

▶ Often, bidirected edges in G correspond to certain latent variables in G′.
▶ If we are satisfied with an expansion G′ of G, we can use marginV (PGM(G ′)) as

the model for G.
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ADMG models
▶ Pairwise expansion: replace every Vj Vk with Vj Ujk Vk .
▶ Clique expansion: replace every bidirected clique VJ (complete bidirected

subgraph) with directed edges UJ Vj , j ∈ J .
▶ Noise expansion: add Uj Vj such that Uj inherits all bidirected edges of Vj .
▶ Example on blackboard.

Let the corresponding models be denoted as PPE(G), PCE(G), PNE(G).

Proposition
For any G ∈ G∗

A(V ), we have

PPE(G) ⊆ PCE(G) ⊆ PNE(G) ⊆ PGM(G),

and ⊆ in above cannot be replaced by = in general.
▶ The latent variable models (PE/CE/NE) have additional equality and inequality

constraints.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Additional equality constraints
Consider the following (trimmed) ADMG and its expansion (U is latent).

A1 L A2 Y
U

A1 L A2 Y

Suppose P ∈ PPE(G) (PE,CE,NE are actually equivalent in this example). Then∫
p(y | a1, l , a2) p(l | a1) dl does not depend on a1.

▶ Proof on blackboard.
▶ This can be understood as a "hidden" independence Y ⊥⊥ A1 in the kernel

p(a1, l , y | do(a2)) =
p(a1, l , a2, y)
p(a2 | a1, l)

= p(a1) p(l | a1) p(y | a1, l , a2).
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Additional inequality constraints
Consider the following bidirected clique and its pairwise expansion.

V1

V2 V3

U12 V1 U13

V2 U23 V3

If P ∈ PPE(G) and V = {−1, 1}3, the following "perfect correlation" is impossible:

P(V1 = V2 = V3 = 1) = P(V1 = V2 = V3 = −1) = 1
2 .

▶ Heuristically, if V1 = V2, then V1 cannot depend on U13.
▶ PCE(G) or PNE(G) have no such constraints.
▶ Other related examples: Bell’s inequality in quantum mechanics; Balke-Pearl

bound for instrumental variable graph.
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Advantages of the noise expansion model
1. It is equivalent to a natural nonparametric generalization of the linear SEM: if

P ∈ PNE(G), then V satisfies

Vj = fj(VpaG(j),Ej)

for some functions f1, . . . , fd and noise variables E1, . . . ,Ed that satisfy

VJ 6 VK in G =⇒ EJ ⊥⊥ EK.

2. Let G∗
UA(V ) collects all unconfounded ADMGs (Vj Vk in G, Vj 6= Vk implies

paG(j) = ∅) with vertex set V . Then
▶ For all G ∈ G∗

UA(V ), we have PNE(G) = PGM(G).
▶ For all G ∈ G∗

A(V ), we have

PNE(G) =
∪

V ′⊇V

∪
G′

marginV (PNE(G
′)).

(The second union is over G′ ∈ expand(G) ∩G∗
UA(V ′).)
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Causal Markov model
Recall that a causal model is a collection of consistent probability distributions on the
potential outcomes schedule V (·).
Definition
Let CP(G) collect all distributions P on V (·) that is causal Markov wrt G ∈ G∗

A(V ):
1. Recursive substitution: With P-probability 1, we have

Vj(vI) = Vj(vpaG(j)∩I ,VpaG(j)\I(vI)) for all j ∈ [d ], I ⊆ [d ], v ∈ V.

2. Basic potential outcomes are Markov wrt bidirected subgraph:

VJ 6 VK in G =⇒ VJ (v)⊥⊥VK(v) under P for all disjoint J ,K ⊂ [d ] and v ∈ V.

Example: What is Y (a1, a2)? What is Y (a1)?

A1 L A2 Y
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Properties

Suppose G ∈ G∗
A(V ) and P ∈ CP(G).

Property 1 (Consistency of potential outcomes)
P(V (vI , vJ ) = V (vI) | VJ (vI) = vJ ) = 1, for all disjoint I,J ⊆ [d ], v ∈ V.

Property 2 (Simplifying potential outcomes)
For any VJ ,VK,VL ⊆ V , VK ∩ VL = ∅, we have

not VL VJ | VK in G =⇒ P(VJ (vK, vL) = VJ (vK)) = 1, for all vK ∈ VK, vL ∈ VL.

Property 3 (SWIG Markov property)
We have marginV (vI)(P) ∈ PGM(G(vI)) for all VI ⊆ V and v ∈ V.
▶ Proof on blackboard.
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Identification by fixing
Consider G ∈ G∗

A(V ).
▶ We say Vj ∈ V is fixable in G if there exists no Vk ∈ V such that Vj Vk and

Vj ∗ Vk in G.
▶ For Vj ∈ V , its Markov background in G is defined as

mbgG(Vj) = {Vk ∈ V : Vk ∗ Vj in G}.

Proposition
Consider G ∈ G∗

A(V ) and P ∈ CP(G). If Vj ∈ V is fixable in G, then

p(Vj(vj) = ṽj ,V−j(vj) = v−j)

p(Vj = vj ,V−j = v−j)
=

p(Vj = ṽj | Vmbg(j) = vmbg(j))

p(Vj = vj | Vmbg(j) = vmbg(j))
, for all v ∈ V and v∗

j ∈ Vj ,

whenever p(Vj = vj | Vmbg(j) = vmbg(j)) > 0.
▶ Proof on blackboard.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example

A1 L A2 Y

Show that the equality constraint∫
p(y | a1, l , a2) p(l | a1) dl does not depend on a1.

corresponds to
▶ the independence Y (a2)⊥⊥ A1; or
▶ no direct A1 Y effect: Y (a1, a2) = Y (a2).
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Back-door criterion
Consider G ∈ G∗

A(V ), P ∈ CP(G), A,Y ∈ V . Interested in the causal effect of A on Y .
Theorem
Suppose X ⊂ V , X ∩ {A,Y } = ∅ satisfies

1. A 6 X in G;
2. P[A ∗ Y |a X ] = ∅.

Then p(Y (a) = y | X = x) = p(Y = y | A = a,X = x).
▶ Proof on blackboard.
▶ Example: Which X ⊆ {B,C ,D} meet the back-door criterion?

C D

B

A Y
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Confounder selection
Can we select a set of confounders X without knowing the full graph G?

Definition (symmetric back-door criterion)
▶ X ⊆ V \ {A,Y } is an adjustment set for A,Y ∈ V if A 6 X and Y 6 X .
▶ An adjustment set X is sufficient if P[A ∗ Y |a X ] = ∅.
▶ An adjustment set X is primary if P[A Y | X ] = ∅.

Heuristics
Directly blocking all confounding paths is difficult, because

P[A ∗ Y |a X ] = ∅ 6⇒ P[A ∗ Y |a X̃ ] = ∅ for X ⊂ X̃ .

But we can block confounding arcs recursively, because

P[A Y | X ] = ∅ ⇒ P[A Y | X ′] = ∅ for X ⊂ X ′.
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District criterion

Theorem (marginalization preserves confounding arcs and paths)
Consider G ∈ G∗

A(V ), distinct A,Y ∈ V , X ⊆ V \ {A,Y }. For any vertex set Ṽ such
that {A,B} ∪ C ⊆ Ṽ ⊆ V , we have

P[A Y | X in G] = ∅ ⇐⇒ P[A Y | X in marginṼ (G)] = ∅,
P[A ∗ Y |a X in G] = ∅ ⇐⇒ P[A ∗ Y |a X in marginṼ (G)] = ∅.

As a corollary, we have

P[A Y | X in G] = ∅ ⇐⇒ not A Y in margin{A,Y }∪X (G),

P[A ∗ Y |a X in G] = ∅ ⇐⇒ not A ∗ Y in margin{A,Y }∪X (G).
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Iterative graph expansion
1: procedure ConfounderSelect(A, Y )
2: R = ∅
3: procedure GraphExpand(X , By , Bn)
4: if A ∗ Y by edges in By then
5: return
6: else if not A ∗ Y by edges in (X ∪ {A,Y })× (X ∪ {A,Y }) \ Bn then
7: R = R∪ {X}
8: return
9: end if

10: (C ↔ D) = SelectEdge(A, Y , X , By , Bn)
11: for X ′ in FindPrimary(C ↔ D, X) do
12: GraphExpand(X ∪ X ′, By , Bn ∪ {C ↔ D})
13: end for
14: GraphExpand(X , By ∪ {C ↔ D}, Bn)
15: end procedure
16: GraphExpand(∅, ∅, ∅)
17: return R
18: end procedure
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Illustration

Shiny app: https://ricguo.shinyapps.io/InteractiveConfSel/

https://ricguo.shinyapps.io/InteractiveConfSel/
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