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1 Lecture 1: Directed mixed graphs and linear systems
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» Sewall Green Wright (December 21, 1889 — March 3, 1988) was an American geneticist known
for his influential work on evolutionary theory and also for his work on path analysis. He was
a founder of population genetics alongside Ronald Fisher and J. B. S. Haldane, which was a
major step in the development of the modern synthesis combining genetics with evolution.

1.2 Directed mixed graphs
We will consider graphs with two types of edges: directed (—) and bidirected («—).

1.2.1 Definition

A directed mixed graph (DMG) G = (V, D, B) consists of a finite vertex set V, a directed edge
set D C V x V that contains ordered pairs of vertices, and a bidirected edge set B C V x V that
contains unordered pairs of vertices (so (j, k) € B implies (k, j) € B) such that

(j,k) e B= (j,j) € B,(k,k) € B, forall jkeV.

Let G(V') denote the collection of all directed mixed graphs with vertex set V.

We say the directed edge “j — k” is contained in G if (j, k) € D, and in this case we say this
is an incoming edge for k, an outgoing edge for j, the vertex j is a parent of k, and k is a child of
j in G. Likewise, we say the bidirected edge “j <« k” is contained in G if (j,k) € B.

1.3 Causal interpretation

¢ Directed edges mean direct causal effects.

 Bidirected edges mean unspecified, residual/exogenous correlations.

1.3.1 Why directed edges?
o Causality is transitive (A causes B and B causes C = A causes C). This defines a pre-order.
— This can be described by the reachability relationship of a directed graph.

o Often we think causality is irreflexive (A does not cause itself) and asymmetric (A and B
cannot be causes of each other). This defines a partial order.

— This can be described by the reachability relationship of a directed acyclic graph.

1.3.2 Why bidirected edges?

o In statistics and causal inference we are often concerned with latent variables.



1.4 Canonical graphs
1.4.1 Definition

e We say the directed mixed graph is canonical if it contains all bidirected loops.
— The full collection with vertex set V is denoted by G*(V).

e We say the graph is canonically directed if it is canonical and contains no other bidirected
edges.

— The full collection with vertex set V' is denoted by G}, (V).

For such graphs, it is usually more convenient to use the trimmed graph obtained by

trim : (V,D,B) — (V,D,B\{(j,7) : j € V}).

1.5 Walk, path, cycle
1.5.1 Definition

o A walk is an ordered sequence of connected edges ignoring edge direction.
o A path is a walk with no repeated vertices.
e A cycle is a walk with the same starting and ending vertices.

e Vertices at the two ends of a walk are called its endpoints, and the other vertices are called
non-endpoints.

o A walk is directed if all its edges have the same direction, like j — --- — k.

o The graph G (or its direct subgraph) is acyclic if it contains no directed cycles.

1.5.2 Notation

o G (V): the collection of acyclic, canonical DMGs with vertex set V.

o GHA(V): the collection acyclic, canonically directed DMGs (basically DAGs).

1.6 Demonstration of trimming

Is the directed mixed graph on the left
e canonical?
e canonically directed?

e acyclic?



1.7 Gaussian linear system on a graph

We will not distinguish a random vector V' = (V1,...,Vy) (probability theory) with a vertex set of
random variables V' = {Vj,...,V;} (graph theory).

1.7.1 Definition

We say a random vector V follows a Gaussian linear system wrt G € G(V) if
V = BTV + F for some E ~ N(0,A)
where
o € R4 regpects the directed subgraph: Vi Vi in G = B, = 0.

o A e R¥9 respects the bidirected subgraph: Vi Vipin G = Aj, = 0.

1.7.2 Gaussian model

o Let N(G) denote the collection of probability distributions of such V.

o Let NT(G) denote the subclass where A is positive definite (so G € G*(V)).

1.8 Roadmap: Basic questions

Let V be a random vector and J = V7, K = Vi, L =V be sub-vectors of V.
1. What is the probability distribution of J?
2. Is J 1L K true?

3. Is J 1L K | L true?

1.8.1 Answer

If V.~ N(0,%) and ¥ is positive definite, then
1. J~N(0,%7.7).
2. JA K ifand only if ¥7 x = 0.

3. Vi AL Vi | Vigp ey if and only if (£71)j;, = 0.

1.8.2 Lecture 1-3

Let P € N(G) be the distribution of V. Can we answer these questions using just G?

1.9 Roadmap: From linear algebra to graphs
1.9.1 Basic combinatoric result

Let A be the adjacency matrix of a directed graph G. Then
(A7) i, = |{directed walks from j to k of length r}|, > 1,
[(Id — A) Y = [Id+ A+ A* + ... ];5 = S + |{directed walks from j to k}|.
So matrix multiplication is similar to walking on a graph.

o Thinking abstractly, edges in a graph encode certain local relations. By composing ("multiply-
ing") those edges, we can obtain new global relations.



1.10 Matrices of walks
1.10.1 Basic matrices
Edges in G = (V, D, B) € G(V) can be rearranged into:

{/—k}, if(j,k) €D,

0, otherwise,

{j =k}, if (j,k) € B,

0, otherwise.

W[j—>k:inG]:{
W[ijinG]:{

o Examples (on blackboard).

1.11 Basic operations
1.11.1 On sets of walks
1. Addition + means set union.
o Example: {Vo — V5} 4+ {Vo — V3 — V5} =7.
2. Multiplication - means concatenation.

o Example: {Va <= Vo} - {Vo — Vs, Vo — V3 — V5} =7.

T

3. Transpose * means reversing direction.

o Example: {Vo — Vs, Vo — V3 — V5}T =2

1.11.2 On matrices
Examples (on blackboard).
(W + W/)[Vj? Vk] - W[VJ7 Vk] + W/[V}v Vk]v

(W-WHV;, Vel = > WIV;, Vil - W'V, Vi,
V,ev

(WHV;, Vi) = (W[Vi, Vi)' = {w” :w e W[Vi, Vil
1.12 Further definitions
« Right-directed walks: W[V ~» V] =3¢, (W[V — V])7.
o Left-directed walks: W[V ¢~ V] = (W[V ~ V])T.

o Identity matrix (for multiplication): Id = diag(id,...,id), where id is the trivial walk with
length 0 such that
idw=w-id=w and Id-W=W.-Ild=W

o Let () also denote the matrix with empty sets of walks. This is the identity element for matrix
addition (set union).



1.13 Weight function
o Recall that P € N(G) means V = 7V + E where E ~ N(0, A).
e SoV =(Id—B)"TE ~N(0,%) where
Y = (Id—B)"TA(Id - B)~.
How can we represent this graphically?
e Let o be the weight function on all walks in G generated by
B=c(W[V—V]) and A=a(W[V <« V]).

o Example: c({V1 <= Vi, V1 <= Vi — V3 — Vi}) = A1y + A11513534.

1.13.1 Lemma
If 3 is stable (spectral radius < 1), then

(Id — ) =Id + o(W[V ~ V]).

2 Lecture 2: Path analysis and graph marginalization

2.1 Trek rule

This motivates us to define treks or t-connected walks in G as (expand on blackboard)
WV 4 V] =(Id + W[V 4 V]) - W[V <= V] - (Id + W[V ~ V]).

2.1.1 Theorem
Suppose G € G(V) and P € N(G) with weight function o, then

Covp(V) = o(W[V « V in G)).

2.1.2 Examples
o Var(V3) =7
o Cov(V3,Vy) =7

2.2 Arcs
2.2.1 Definitions
o We say a walk is an arc or m-connected if it has no collider (like — j <—).

o We say a walk is d-connected if it is an arc and contains no bidirected edge, so

2.2.2 Proposition

An arc has exactly zero or one bidirected edge.

2.2.3 Notation
A squiggly line (~~) means no collider, and we use no/half/full arrowheads at both ends.
d
WV 4 V] = W[V 6 V] + WV o V] + W[V 4 V ~v V],
d
WV 4y V] = W[V 45 V] + W[V o V].



2.3 From treks to paths

o Notation: P[---] = W][---]N'Pg where Pg contains all paths on G and N is applied entry-wise.

2.3.1 Lemma
For any G € G*(V) and any j,k € V, j # k, we have

jevs kin G <= P[j 4w k in Q] # 0 <= P[j ~w k in trim(Q)] # 0.

 Proof on blackboard (assuming G is acyclic).

e Key definition:

. P[j ~~ k], if r =7,
Pj «~ k via root r] = ¢ P[j «~ k], if r =k,

(P[j ¢~ 7] P[r ~~ k]) N'Pg, otherwise.

2.4 Wright’s path analysis
2.4.1 Theorem
Suppose G € GA (V) and P € N(G) with weight function o, then for any V;,Vj, € V, j # k, we have

Covp(V}, Vi) = (P[V; v Vi in G])

+ Z o(P[V; &, Vi via root V, in GJ) - Varp (V).
VeV

¢ Proof on blackboard.

o Example: Cov(V3,Vy) =7

2.5 Blocking arcs
2.5.1 Definition

We say an arc is blocked by L C V if the arc has an non-endpoint in L.

2.5.2 Examples
1. Which of the following are blocked by 37

e 1 —3—4
e 4<—3¢«—>3—5

e 1 —3<«—2
2. Define W[V ~~» V | L] and W[V sV | L] using the matrix algebra.
2.5.3 Lemma
If 8 = o(W[V — V]) is principally stable, then for any L C V', we have

(Id — Brepe) ™t =1d 4+ o(W[LE ~ L | L)).



2.6 Marginalization of graphs
o Notation: Write W{--- in G] # 0 as --- in G.

« For G € G(V) and V C V, the marginal graph marging (G) is obtained by
j—kinG<e j~k|VinG, jkeV,
jeskinGes jewk|VinG, jkeV.

o If V is ancestral (meaning V contains an(V) = {V; € V : V; ~» V}), then marging (G) is the
subgraph of G restricted to V.

o It is often useful to view marging, as a map of walks in G to walks in G.

2.6.1 Proposition: Marginalization preserves unblocked directed walks and treks

For any G € G(V) and L C VCV,

AN AN
marging | W Vi~ 3V |LinG| | =W |[V{¢~3V |Lin marging (G)
t t
e v

2.7 Marginalization of linear systems

2.7.1 Theorem

For G € G(V) and P € N(QG), if § is principally stable, then
marging (P) € N(marging (G))

with weight function generated by

e Proof of blackboard.

2.7.2 Example

« Find the marginal graph and linear system with V = {Vi, Vs, V4, Vs }.

2.8 Marginalization of canonical graphs
2.8.1 Definition (marginalization of trimmed graphs)
Consider G € G*(V) and G* = trim(G). For V C V, the marginal trimmed graph G~ = marging, (G”)
is obtained by
j—kin G <= P[j~~k |V in G*] £ 0,
jeskin G < P[j e k| V in G*] £ 0.

e This is the usual definition in the literature and is justified by the following commutative diagram
(proof omitted; example on blackboard).

G*(V) 225 trim(G*(V)) G JfEm, o
marginVJ/ J/margin*f/ marginvl margin;ﬁ/
G*(V) ~H trim(G*(V)) G uimy G



3 Lecture 3: m-separation and conditional independence
3.1 Conditional independence in multivariate normal
Suppose V' ~ N(u,X) and ¥ is positive definite.
3.1.1 Proposition
1. For J C [d] and £ = [d] \ J, we have
Vi|Ve=ve~N (Mj+ ZJ[EZ%(Uﬁ —pr), Xgg — Ejggzlﬁzgj)
2. For any j,k € [d], j # k, we have
Vi LV ’ V[d]\{j,k} < Cov(V;, Vi | V[d}\{j,k}) =0 <= (Efl)jk =0.
3.1.2 Proof sketch
1. Vy— ZJEZFLVE is independent of V.
2. Use J = {J, k}, then use the block matrix inverse formula.
3.2 Collider-connected walks
Suppose P € NT(G) and (Id — 3) is non-singular.
e From Lecture 2: ¥ = (Id — 8)"TA(Id — B)~ 1.
e So X7l =(Id— B)A1(Id — B)T. More specifically,

E =AY = D BimA Dk = DA B+ D Bim (A B

me(d] le[d] m,lE[d]
o A sufficient condition for (£71);; = 0 is that every RHS term vanishes.
3.2.1 Lemma
For any V; # Vj, we have
W[V =%« V,inG=0=V; LV, | V\{V;,V;} under P.
o V; 4= x <V}, means a walk from V; to V}, where every non-endpoint is a collider.

o Proof on blackboard. (Hint: First assume § = 0.)

3.3 Towards the general case

o Notation: Write W|---] =0 as not ---

3.3.1 Goal
We would like to establish a graphical condition for J 1L K | L.

o Because V is Gaussian, it suffices to consider V; 1LV}, | L for all V; € J,V}, € K.

« Using the last Lemma, we have (let V = {V}, Vi } U L)

not Vj < x «<— V; in marginy (G) = V; 1L V4 | L under P.



3.3.2 Main problem

Can we conclude not V; <= * <— V}, in marginy (G) using G directly?

3.4 General blocking
3.4.1 Definition
o We say a walk in G € G(V) is (ancestrally) blocked by L C V, if

1. the walk contains a collider m such that m ¢ L (and m ~%» L), or

2. the walk contains a non-colliding non-endpoint m such that m € L.
o Let W[V 4w % 4w V| L in G] collect all walks that are not blocked by L.

o Wesay J, K CV are m-separated given L if not J «~ % ¢~ K | L in G.

3.4.2 Remarks
o All walks are separated by 0, 1, or more colliders.
o WIV 4 k4 V] £ W[V 29 o V | ] = W[V 4 V.

o The literature usually uses ancestral blocking with paths (see next Proposition).

3.4.3 Example

o Find all m-separations in the running example. (Hint: There are 2 in total.)

3.5 Graph separation

) t t
o t-separation: only consider ¢~ % 4~ (one or more treks).

o d-separation: only consider walks consisting of directed edges only.

3.5.1 Lemma
For any G € G(V) and J, K, L C V C V, we have
JJ»*«E»K|LinmarginV(G)<:>J<vE\>*éft~>K|LinG.

3.5.2 Lemma
Consider G € G(V') and {j},{k}, L C V. If G is canonical, then

(i) j ¢ % oos kb | L <= (i) J 4 5 oo b | L <= (i) P[j «v # & k | L] # 0.

Furthermore, if G is canonically directed, then
(i), (ii), (ifi) <= (iv) j <o # € k | L <= (v) P[j <% % ¢ k |o L] # 0.

3.6 General result
3.6.1 Theorem

Suppose P € N*(G) for some G € G*(V) and (Id— f3) is principally non-singular. Then for all disjoint
J,K,L CV, we have

not J 4w s ¢w K |Lin G= J 1 K | L under P.

e Proof on blackboard using the results above.
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4 Lecture 4: Linear structural equation model and identifiability

4.1 Potential outcome
4.1.1 Motivation
We can represent Hooke’s law by (X force, Y compression distance, 3 elasticity):
X—Y and Y =pX.
o But equations have no direction: Y = X is equivalent to X =Y/f.

o To emphasize "force causes compression', we can write Y (z) = Sz for all x.

4.1.2 Definition

o Let V(Vz = vr) (often abbreviated as V(vz)) denote the potential outcome of the entire
system under an intervention that sets V7 to vz.

e A causal model is a collection of probability distributions P on the potential outcomes
schedule V(:) = (V(vz) : Z € [d]) such that

P(V(vz,vs) = V(vg) | Vs(vr) =vy) =1, for all disjoint Z,J C [d], v € V.

4.2 Linear structural equation model (Linear SEM)
4.2.1 Definition

We say V() follows a linear SEM with respect to G € G(V), if there exist 5 and A compatible with
G such that

Vitor)= Y Buwk+ Y. BrVilvr) + Ej, forall j € [d] and T C [d],
kepa(j)NZ kepa(j)\Z

for some E = (E4,. .., Eq) with Cov(E) = A and pag(j) ={l € [d] : V, — V; in G}.

o In words, every equation still "holds" (thus is "structural") under any intervention.

4.2.2 Example

In the running example, how do the structural equations look like under the intervention (V5, V3) =
(ve,v3)?

4.3 Single-world intervention graphs

We can rewrite the structural equations for V(vz) in matrix form:

(s VT 0 0 0 VL 0
Vz(vz) | =10 | + ﬁ% 7z 0 5%1 Vi(vr) | + | Ez
VIC (UI) 0 ,8% zc 0 ﬂ%CIC VIC (UI) EIC

So (vz,V(vz)) follows a linear system with respect to the single-world intervention graph
(SWIG) G(vz) obtained by modifying G as follows:

1. each intervened vertex ¢ € Z is split into two vertices, V;(vr) and v;, and each non-intervened
vertex j & 7 is relabeled as Vj(vz).

2. the “random” vertex V;(vz) inherits all “incoming” edges of V; (edges like x — V; or * <— V})
in G;

3. the “fixed” vertex v; inherits all “outgoing” edges of V; (edges like V; — *) in G.

(Example on blackboard.)
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4.4 Causal effects in linear SEM

Due to linearity, we can define the (joint) causal effect of V7 on V as the matrix

0
7‘/_7'(171)3 ’L'GI,]. € [d]

Dz = {V,,;V(vz)}" with entries D;; = 0.

4.4.1 Theorem

Suppose P is a linear SEM with respect to G € G(V') and f is principally stable. Then
(Vo,V(vr)} = o(W[Vz ~~ V| V7 in G]).

Thus if G is acyclic, the total causal effect of V; on Vj is

dV;(v;)

Tdu = o(P[V; ~ Vj]).

e Proof on blackboard.

4.5 Correlation is not causation
 Statistical dependence: <— (local), s (global), t/m-connection (conditional).

o Causal dependence: — (local), ~» (global).
4.5.1 Examples

N N

A— X —Y

(a) X is a confounder. (b) X is a mediator. (c) X is a collider.
f X k—\ V/\) X k—\
A Y A Y
(d) M-bias. (e) Butterfly bias.

Assuming all variables are Gaussian and have unit variance, find Cov(4,Y), Cov(A,Y | X) and
the causal effect of A on Y.

4.6 Identifiability

A central question of causal inference is identifiability. In linear models, this is asking whether the
following map is injective:

¥ (8,4) = (Id = B) A = B)~.
We say NT(G) is
« globally identifiable if ¥~1(3(3, A)) is a singleton for all (3, A);
« generically identifiable if ¥71(3(3, A)) is a singleton for almost all (3, A);

e locally identifiable if ¥~}(X(3,A)) does not contain an open neighborhood of (3, A) for all
(B8,4).

12



4.7 Examples

1. Instrumental variables.
7 A" 3y

2. Factor analysis (U is not observed).

TN

3. Double negative controls (U is not observed).

5 Lecture 5: Conditional independence and undirected graphical
models

5.1 Conditional independence

Let P(V) denote all absolutely continuous probability distributions wrt V (usually R?). Let p denote
the density function of P € P(V). Consider disjoint V7, Vi,V C V.

5.1.1 Definition

o The conditional density function of V; given Vi is given by

p(Vy =v7,Vk = vk)
p(Vk = vk)

p(Vy=vg7 |V =vk) =

I

which is well defined at any value v such that p(Vic = vi) > 0. We often abbreviate this as
p(vg [ vi)-

o We write V.7 Il Vic | V, under P if one of the next equivalent conditions hold:
L p(vg,vk | ve) = p(vg [ ve)plok | ve).-

2. p(vg | ve,vk) = p(vg | ve).
3. logp(vy,vk,ve) = g7k (v7,vk) + gic,c(vi, ve) for some g7 x and gi .

5.2 Graphoid axioms
5.2.1 Proposition
Consider P € P(V) and disjoint subvectors J, K, L, M C V. We have

Symmetry (J 1L K |L) <= (K 1 J| L);

Chain rule (J 1L K |L,M)and (J 1L M |L)<~= (JIL K,M|L).

If p(v) > 0 for all v, then we also have

Intersection (J 1L K |L,M)and (JU M |K,L)= (JILK,M|L).

(Proof is left as an exercise.)
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o A ternary relation that satisfy these axioms is called a graphoid. The terminology is justified
by the following visualization.

5.3 Separation in undirected graphs
5.3.1 Definition
o Let UG(V) denote the collection of all simple undirected graphs with vertex set V.
o Given G € UG(V) and disjoint subsets J, K, L C V, we say L separate J and K in G and write
not J—+—K|LinG

if every path from a vertex in J to a vertex in K in G contains a non-endpoint in L.

5.3.2 Interpretation
This is "dual" to separation in bidirected graphs:
o J—L—K, J<> M <> K are blocked given L;
e J— M — K, J<> L+ K are not blocked given L.

5.4 Undirected graphical models

o Let Pam(G) collects all P € P(V) that satisfies the global Markov property wrt G € UG(V):
for all disjoint J, K, L C V,

not J—+—K|LinG=J 1 K|LunderP.
o Let Pr(G) collects all P € P(V) that factorizes wrt G € UG(V):

p)= [ frva),

V7eC(G)

for some f7, J C [d], where C(G) collects all "cliques" (complete subgraphs) of G.

5.4.1 Theorem (Hammersley-Clifford)
For any G € UG(V), we have Pp(G) C Pem(G) and Pf(G) = Py, (G).

o Proof of the first part. (P means positive density functions.)

5.5 Graph augmentation

Graph separations in undirected and directed graphs are closely related via the augmentation map
aug : G*(V) = UG(V) defined by

Vi — Vi in aug(G) <= V; <= x <V}, in G, for all V; # V..

o When restricted to G, (V), this is called moralization in the literature because it connects
any two parents of the same child.

o For J C V, define an(J) = {V} € V : Vi ~~ J in G} and an(J) = an(J) U J (the smallest
ancestral set containing J).

14



5.5.1 Proposition
For any G € G*(V) and disjoint J, K, L C V', we have, with V= an(JUK UL),
J 4 % ¢ K| Lin G <= J — x — K | L inaug o marginy (G).

e Proof on blackboard.

6 Lecture 6: DAG models and ADMG models

6.1 DAG models
6.1.1 Definition
o Let Pp(G) collects all P € P(V) that factorizes wrt G € G}, (V):

p
p(v) = H p(’Uj ‘ UpaG(j))'
Jj=1

o Let Pom(G) collects all P € P(V) that satisfies the global Markov property wrt G € G}, (V):
for any disjoint subsets J, K, L C V,

d d
not J 4w s ¢w K |Lin G= J 1 K | L under P.

6.1.2 Theorem
For any G € G},,(V), we have Pp(G) = Pau(G).
¢ Proof on blackboard.

6.2 ADMG models

o Let Pam(G) collects all P € P(V) that satisfies the global Markov property wrt G € G} (V):
for any disjoint subsets J, K, L C V,

not J 4« x 4w K| Lin G== J 1 K | L under P.

e Alternatively, we can define ADMG models by using simpler expanded graphs.

6.2.1 Graph expansion
o We say G’ is an expansion of G € G*(V) if it is in

expand(G) = margin;' (G) = U {G" € G*(V') : marginy, (G') = G}.
VoV

o Often, bidirected edges in G correspond to certain latent variables in G’.
o If we are satisfied with an expansion G’ of G, we can use marginy (Pgy(G’)) as the model for
G.
6.3 ADMG models
« Pairwise expansion: replace every V; «— Vj with V;«—Uj, — V.

o Clique expansion: replace every bidirected clique V7 (complete bidirected subgraph) with
directed edges Uy —Vj, j € J.

« Noise expansion: add U; — V; such that U; inherits all bidirected edges of V.
o Example on blackboard.
Let the corresponding models be denoted as Ppr(G), Pcr(G), Pne(G).
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6.3.1 Proposition
For any G € G} (V'), we have

Ppe(G) C Pop(G) C Pae(G) € Pam(G),
and C in above cannot be replaced by = in general.
o The latent variable models (PE/CE/NE) have additional equality and inequality constraints.

6.4 Additional equality constraints
Consider the following (trimmed) ADMG and its expansion (U is latent).

Y v
Ay L As Y
~_ A, I /A2 \ v
\_/,

Suppose P € Ppg(G) (PE,CE,NE are actually equivalent in this example). Then

/p(y | a1,1,a2)p(l | a1)dl does not depend on aj;.

e Proof on blackboard.

e This can be understood as a "hidden" independence Y 1 A; in the kernel

p(ahlv a?vy)

plas | a1 1) p(ar) p(l | a1) p(y | a1, 1, a2).

p(ablvy | dO(az)) =

6.5 Additional inequality constraints

Consider the following bidirected clique and its pairwise expansion.

Wi Uiz W Uis
Vs V3 Va Uss V3

If P € Ppg(G) and V = {—1,1}3, the following "perfect correlation" is impossible:

1
PVi=Ve=Vs=1)=P(Vi=Va=Vs=—-1)= .

e Heuristically, if V1 = V5, then V; cannot depend on Ujs.

o Pcr(G) or Pyg(G) have no such constraints.

e Other related examples: Bell’s inequality in quantum mechanics; Balke-Pearl bound for instru-

mental variable graph.
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6.6 Advantages of the noise expansion model

1. It is equivalent to a natural nonparametric generalization of the linear SEM: if P € Pxg(G),
then V satisfies

Vi = fi(Voag (5): Ej)
for some functions f1, ..., fg and noise variables F1, ..., F4 that satisfy

Vj<7L>V;C inG:>EJJ.|_ch.

2. Let G{;, (V) collects all unconfounded ADMGs (V; <— V;, in G, V; # V;, implies pag(j) = 0)
with vertex set V. Then

o For all G € G{j,(V), we have Pyg(G) = Pau(G).
o For all G € G (V), we have

Pae(G) = | |Jmarging (Pye(G)).
VoV @

(The second union is over G’ € expand(G) NG, (V').)

7 Lecture 7: Causal Markov model

7.1 Causal Markov model

Recall that a causal model is a collection of consistent probability distributions on the potential
outcomes schedule V (+).

7.1.1 Definition
Let CP(G) collect all distributions P on V(-) that is causal Markov wrt G € G} (V):

1. Recursive substitution: With P-probability 1, we have

Vi(vz) = Vj(vpag ()nz Voaginz(vz)) for all j € [d],Z C [d],v € V.

2. Basic potential outcomes are Markov wrt bidirected subgraph:

Vg </ Vi in G = V7 (v) 1L Vic(v) under P for all disjoint J,K C [d] and v € V.

Example: What is Y (a1, a2)? What is Y (a1)?

Ay L As Y

7.2 Properties
Suppose G € G} (V) and P € CP(G).

7.2.1 Property 1 (Consistency of potential outcomes)
P(V(vz,vy) =V(vz) | Vs(vz) = vgy) =1, for all disjoint Z,J C [d], v € V.

7.2.2 Property 2 (Simplifying potential outcomes)
For any V7, Vi,V CV, Vic NV = (), we have

not Vp ~» Vs | Vi in G = P(Vy(vic,vz) = Vir(uk)) =1, for all v € Vi, ve € V.
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7.2.3 Property 3 (SWIG Markov property)
We have marginy (,,)(P) € Pam(G(vz)) for all Vz CV and v € V.

¢ Proof on blackboard.

8 Lecture 8: Causal identification and confounder selection

8.1 Identification by fixing
Consider G € G} (V).

o« We say V; € V is fixable in G if there exists no Vj € V such that V; ~ V}, and V; <= x <
Vi in G.

o For V; € V, its Markov background in G is defined as
mbgq(V;) ={V, € V: V, «= x <=V, in G}.

8.1.1 Proposition
Consider G € G} (V) and P € CP(G). If V; € V is fixable in G, then

(ay ) — 7 Ay — oy Vi =0 | Visba() = Umbe( i
p(Vj(v;) = 05,V (v;) = v_;) _ p(Vj = v, ’ bg(j) = Y bg(a))7 for all v € V and v; ev;,
p(Vj =v;, Voj =v_j) P(Vj =5 | Vinbg(j) = Vmbeg(s))

whenever p(Vj = v; | Viupg(j) = Vmbg(j)) > 0

e Proof on blackboard.

8.2 Example

Ay L As Y

Show that the equality constraint
/p(y | a1,1,a2)p(l | a1)dl does not depend on aj;.

corresponds to
o the independence Y (az) AL Aj; or

o no direct A} — Y effect: Y (a1, a2) =Y (ag).

8.3 Back-door criterion

Consider G € G} (V), P € CP(G), A,Y € V. Interested in the causal effect of A on Y.

8.3.1 Theorem
Suppose X C V, X N{A, Y} = 0 satisfies
1. A~» X in G;
2. P[A 4w x e Y |, X] = 0.
Then p(Y(a)=y| X =2)=pY =y| A=0a,X =2x).
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¢ Proof on blackboard.

o Example: Which X C {B,C, D} meet the back-door criterion?
C D
5.0
Lo

Y

|

8.4 Confounder selection

Can we select a set of confounders X without knowing the full graph G?

8.4.1 Definition (symmetric back-door criterion)
e X CV\{A,Y} isan adjustment set for A,Y € Vif A~ X and Y ~» X.
o An adjustment set X is sufficient if P[A ¢w % ¢ Y |, X]| = 0.

o An adjustment set X is primary if P[A<«-»Y | X| =0.

8.4.2 Heuristics

Directly blocking all confounding paths is difficult, because
PlAcw 5w Y | X] =0 P[A¢w s e Y |, X] =0 for X C X.
But we can block confounding arcs recursively, because
PlAewY | X]=0= P[A¢~»Y | X'| =0 for X C X'.
8.5 District criterion

8.5.1 Theorem (marginalization preserves confounding arcs and paths)

Consider G € G} (V), distinct A,Y € V, X C V\{A,Y}. For any vertex set V such that {A, BJUC C
V CV, we have

P[A«»Y | X in G] =0 <= P[A ¢~ Y | X in marging (G)] = 0,
P[A v % ¢ Y |4 X in G] = ) <= P[A ¢v % ¢ Y |, X in marging (G)] = 0.

As a corollary, we have

Pl[A+~»Y | X in G] = <= not A« Y in margings yyux(G),

PlA ¢ x e Y [ X in G] = ) <= not A <— * <= Y in marging4 yyx (G).

8.6 Iterative graph expansion

1: procedure CONFOUNDERSELECT(A, Y')

2 R=10

3 procedure GRAPHEXPAND(X, By, B,)

4 if A< x<—Y by edges in B, then

5: return

6: else if not A< *<—Y by edgesin (X U{A,Y}) x (XU{A,Y})\ B, then
7 R=RU{X}

8 return

9 end if

10 (C < D) = SELECTEDGE(A, Y, X, By, B,)
11: for X’ in FINDPRIMARY(C <+ D, X) do
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12: GRAPHEXPAND(X U X', By, B, U{C + D})

13: end for
14: GRAPHEXPAND(X, By U {C < D}, B,)
15: end procedure

16: GRAPHEXPAND(0), 0, 0)
17: return R
18: end procedure

8.7 Illustration

®
T
ﬁ '
o
16 '

Shiny app: https://ricguo.shinyapps.io/InteractiveConfSel/
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