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1 Lecture 1: Directed mixed graphs and linear systems

1.1 History

• Sewall Green Wright (December 21, 1889 – March 3, 1988) was an American geneticist known
for his influential work on evolutionary theory and also for his work on path analysis. He was
a founder of population genetics alongside Ronald Fisher and J. B. S. Haldane, which was a
major step in the development of the modern synthesis combining genetics with evolution.

1.2 Directed mixed graphs

We will consider graphs with two types of edges: directed ( ) and bidirected ( ).

1.2.1 Definition

A directed mixed graph (DMG) G = (V,D,B) consists of a finite vertex set V , a directed edge
set D ⊆ V × V that contains ordered pairs of vertices, and a bidirected edge set B ⊆ V × V that
contains unordered pairs of vertices (so (j, k) ∈ B implies (k, j) ∈ B) such that

(j, k) ∈ B =⇒ (j, j) ∈ B, (k, k) ∈ B, for all j, k ∈ V.

Let G(V ) denote the collection of all directed mixed graphs with vertex set V .
We say the directed edge “j k” is contained in G if (j, k) ∈ D, and in this case we say this

is an incoming edge for k, an outgoing edge for j, the vertex j is a parent of k, and k is a child of
j in G. Likewise, we say the bidirected edge “j k” is contained in G if (j, k) ∈ B.

1.3 Causal interpretation

• Directed edges mean direct causal effects.

• Bidirected edges mean unspecified, residual/exogenous correlations.

1.3.1 Why directed edges?

• Causality is transitive (A causes B and B causes C ⇒ A causes C). This defines a pre-order.

– This can be described by the reachability relationship of a directed graph.

• Often we think causality is irreflexive (A does not cause itself) and asymmetric (A and B
cannot be causes of each other). This defines a partial order.

– This can be described by the reachability relationship of a directed acyclic graph.

1.3.2 Why bidirected edges?

• In statistics and causal inference we are often concerned with latent variables.
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1.4 Canonical graphs

1.4.1 Definition

• We say the directed mixed graph is canonical if it contains all bidirected loops.

– The full collection with vertex set V is denoted by G∗(V ).

• We say the graph is canonically directed if it is canonical and contains no other bidirected
edges.

– The full collection with vertex set V is denoted by G∗
D(V ).

For such graphs, it is usually more convenient to use the trimmed graph obtained by

trim : (V,D,B) 7→ (V,D,B \{(j, j) : j ∈ V }).

1.5 Walk, path, cycle

1.5.1 Definition

• A walk is an ordered sequence of connected edges ignoring edge direction.

• A path is a walk with no repeated vertices.

• A cycle is a walk with the same starting and ending vertices.

• Vertices at the two ends of a walk are called its endpoints, and the other vertices are called
non-endpoints.

• A walk is directed if all its edges have the same direction, like j · · · k.

• The graph G (or its direct subgraph) is acyclic if it contains no directed cycles.

1.5.2 Notation

• G∗
A(V ): the collection of acyclic, canonical DMGs with vertex set V .

• G∗
DA(V ): the collection acyclic, canonically directed DMGs (basically DAGs).

1.6 Demonstration of trimming

Is the directed mixed graph on the left

• canonical?

• canonically directed?

• acyclic?
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1.7 Gaussian linear system on a graph

We will not distinguish a random vector V = (V1, . . . , Vd) (probability theory) with a vertex set of
random variables V = {V1, . . . , Vd} (graph theory).

1.7.1 Definition

We say a random vector V follows a Gaussian linear system wrt G ∈ G(V ) if

V = βTV + E for some E ∼ N(0,Λ)

where

• β ∈ Rd×d respects the directed subgraph: Vj 6 Vk in G ⇒ βjk = 0.

• Λ ∈ Rd×d respects the bidirected subgraph: Vj 6 Vk in G ⇒ Λjk = 0.

1.7.2 Gaussian model

• Let N(G) denote the collection of probability distributions of such V .

• Let N+(G) denote the subclass where Λ is positive definite (so G ∈ G∗(V )).

1.8 Roadmap: Basic questions

Let V be a random vector and J = VJ , K = VK, L = VL be sub-vectors of V .

1. What is the probability distribution of J?

2. Is J ⊥⊥K true?

3. Is J ⊥⊥K | L true?

1.8.1 Answer

If V ∼ N(0,Σ) and Σ is positive definite, then

1. J ∼ N(0,ΣJ ,J ).

2. J ⊥⊥K if and only if ΣJ ,K = 0.

3. Vj ⊥⊥ Vk | V[d]\{j,k} if and only if (Σ−1)jk = 0.

1.8.2 Lecture 1-3

Let P ∈ N(G) be the distribution of V . Can we answer these questions using just G?

1.9 Roadmap: From linear algebra to graphs

1.9.1 Basic combinatoric result

Let A be the adjacency matrix of a directed graph G. Then

(Ar)jk = |{directed walks from j to k of length r}|, r ≥ 1,

[(Id−A)−1]jk = [Id+A+A2 + . . . ]jk = δjk + |{directed walks from j to k}|.

So matrix multiplication is similar to walking on a graph.

• Thinking abstractly, edges in a graph encode certain local relations. By composing ("multiply-
ing") those edges, we can obtain new global relations.
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1.10 Matrices of walks

1.10.1 Basic matrices

Edges in G = (V,D,B) ∈ G(V ) can be rearranged into:

W [j k in G] =

{
{j k}, if (j, k) ∈ D,

∅, otherwise,

W [j k in G] =

{
{j k}, if (j, k) ∈ B,
∅, otherwise.

• Examples (on blackboard).

1.11 Basic operations

1.11.1 On sets of walks

1. Addition + means set union.

• Example: {V2 V5}+ {V2 V3 V5} =?.

2. Multiplication · means concatenation.

• Example: {V2 V2} · {V2 V5, V2 V3 V5} =?.

3. Transpose T means reversing direction.

• Example: {V2 V5, V2 V3 V5}T =?.

1.11.2 On matrices

Examples (on blackboard).

(W +W ′)[Vj , Vk] = W [Vj , Vk] +W ′[Vj , Vk],

(W ·W ′)[Vj , Vk] =
∑
Vl∈V

W [Vj , Vl] ·W ′[Vl, Vk],

(W T )[Vj , Vk] = (W [Vk, Vj ])
T = {wT : w ∈ W [Vk, Vj ]}.

1.12 Further definitions

• Right-directed walks: W [V V ] =
∑∞

q=1(W [V V ])q.

• Left-directed walks: W [V V ] = (W [V V ])T .

• Identity matrix (for multiplication): Id = diag(id, . . . , id), where id is the trivial walk with
length 0 such that

id · w = w · id = w and Id ·W = W · Id = W

• Let ∅ also denote the matrix with empty sets of walks. This is the identity element for matrix
addition (set union).
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1.13 Weight function

• Recall that P ∈ N(G) means V = βTV + E where E ∼ N(0,Λ).

• So V = (Id − β)−TE ∼ N(0,Σ) where

Σ = (Id− β)−TΛ(Id− β)−1.

How can we represent this graphically?

• Let σ be the weight function on all walks in G generated by

β = σ(W [V V ]) and Λ = σ(W [V V ]).

• Example: σ({V1 V4, V1 V1 V3 V4}) = Λ14 + Λ11β13β34.

1.13.1 Lemma

If β is stable (spectral radius < 1), then

(Id − β)−1 = Id + σ(W [V V ]).

2 Lecture 2: Path analysis and graph marginalization

2.1 Trek rule

This motivates us to define treks or t-connected walks in G as (expand on blackboard)

W [V
t

V ] =(Id +W [V V ]) ·W [V V ] · (Id +W [V V ]).

2.1.1 Theorem

Suppose G ∈ G(V ) and P ∈ N(G) with weight function σ, then

CovP(V ) = σ(W [V
t

V in G]).

2.1.2 Examples

• Var(V3) =?

• Cov(V3, V4) =?

2.2 Arcs

2.2.1 Definitions

• We say a walk is an arc or m-connected if it has no collider (like j ).

• We say a walk is d-connected if it is an arc and contains no bidirected edge, so

2.2.2 Proposition

An arc has exactly zero or one bidirected edge.

2.2.3 Notation

A squiggly line ( ) means no collider, and we use no/half/full arrowheads at both ends.

W [V
d

V ] = W [V V ] +W [V V ] +W [V V V ],

W [V V ] = W [V
t

V ] +W [V
d

V ].
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2.3 From treks to paths

• Notation: P [· · · ] = W [· · · ] ∩PG where PG contains all paths on G and ∩ is applied entry-wise.

2.3.1 Lemma

For any G ∈ G∗(V ) and any j, k ∈ V , j 6= k, we have

j
t

k in G ⇐⇒ P [j k in G] 6= ∅ ⇐⇒ P [j k in trim(G)] 6= ∅.

• Proof on blackboard (assuming G is acyclic).

• Key definition:

P [j
d

k via root r] =


P [j k], if r = j,

P [j k], if r = k,

(P [j r] · P [r k]) ∩ PG, otherwise.

2.4 Wright’s path analysis

2.4.1 Theorem

Suppose G ∈ GA(V ) and P ∈ N(G) with weight function σ, then for any Vj , Vk ∈ V , j 6= k, we have

CovP(Vj , Vk) =σ(P [Vj
t

Vk in G])

+
∑
Vr∈V

σ(P [Vj
d

Vk via root Vr in G]) · VarP(Vr).

• Proof on blackboard.

• Example: Cov(V3, V4) =?

2.5 Blocking arcs

2.5.1 Definition

We say an arc is blocked by L ⊆ V if the arc has an non-endpoint in L.

2.5.2 Examples

1. Which of the following are blocked by 3?

• 1 3 4

• 4 3 3 5

• 1 3 2

2. Define W [V V | L] and W [V
t

V | L] using the matrix algebra.

2.5.3 Lemma

If β = σ(W [V V ]) is principally stable, then for any L ⊆ V , we have

(Id − βLcLc)−1 = Id + σ(W [Lc Lc | L]).
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2.6 Marginalization of graphs

• Notation: Write W [· · · in G] 6= ∅ as · · · in G.

• For G ∈ G(V ) and Ṽ ⊆ V , the marginal graph marginṼ (G) is obtained by

j k in G̃ ⇐⇒ j k | Ṽ in G, j, k ∈ Ṽ ,

j k in G̃ ⇐⇒ j
t

k | Ṽ in G, j, k ∈ Ṽ .

• If Ṽ is ancestral (meaning Ṽ contains an(Ṽ ) = {Vj ∈ V : Vj Ṽ }), then marginṼ (G) is the
subgraph of G restricted to Ṽ .

• It is often useful to view marginṼ as a map of walks in G to walks in G̃.

2.6.1 Proposition: Marginalization preserves unblocked directed walks and treks

For any G ∈ G(V ) and L ⊆ Ṽ ⊆ V ,

marginṼ

W

Ṽ
 t

 Ṽ | L in G


 = W

Ṽ
 t

 Ṽ | L in marginṼ (G)

 .

2.7 Marginalization of linear systems

2.7.1 Theorem

For G ∈ G(V ) and P ∈ N(G), if β is principally stable, then

marginṼ (P) ∈ N(marginṼ (G))

with weight function generated by

σ̃(W [Ṽ Ṽ in G̃]) = σ(W [Ṽ Ṽ | Ṽ in G]),

σ̃(W [Ṽ Ṽ in G̃]) = σ(W [Ṽ
t

Ṽ | Ṽ in G]).

• Proof of blackboard.

2.7.2 Example

• Find the marginal graph and linear system with Ṽ = {V1, V2, V4, V5}.

2.8 Marginalization of canonical graphs

2.8.1 Definition (marginalization of trimmed graphs)

Consider G ∈ G∗(V ) and G∗ = trim(G). For Ṽ ⊆ V , the marginal trimmed graph G̃
∗
= margin∗

Ṽ
(G∗)

is obtained by

j k in G̃
∗ ⇐⇒ P [j k | Ṽ in G∗] 6= ∅,

j k in G̃
∗ ⇐⇒ P [j k | Ṽ in G∗] 6= ∅.

• This is the usual definition in the literature and is justified by the following commutative diagram
(proof omitted; example on blackboard).

G∗(V ) trim(G∗(V ))

G∗(Ṽ ) trim(G∗(Ṽ ))

trim

marginṼ margin∗
Ṽ

trim

G G∗

G̃ G̃
∗

trim

marginṼ margin∗
Ṽ

trim

8



3 Lecture 3: m-separation and conditional independence

3.1 Conditional independence in multivariate normal

Suppose V ∼ N(µ,Σ) and Σ is positive definite.

3.1.1 Proposition

1. For J ⊂ [d] and L = [d] \ J , we have

VJ | VL = vL ∼ N
(
µJ +ΣJ LΣ

−1
LL(vL − µL), ΣJ J − ΣJ LΣ

−1
LLΣLJ

)
2. For any j, k ∈ [d], j 6= k, we have

Vj ⊥⊥ Vk | V[d]\{j,k} ⇐⇒ Cov(Vj , Vk | V[d]\{j,k}) = 0 ⇐⇒ (Σ−1)jk = 0.

3.1.2 Proof sketch

1. VJ − ΣJ LΣ
−1
LLVL is independent of VL.

2. Use J = {j, k}, then use the block matrix inverse formula.

3.2 Collider-connected walks

Suppose P ∈ N+(G) and (Id − β) is non-singular.

• From Lecture 2: Σ = (Id − β)−TΛ(Id − β)−1.

• So Σ−1 = (Id − β)Λ−1(Id − β)T . More specifically,

(Σ−1)jk = (Λ−1)jk −
∑
m∈[d]

βjm(Λ−1)mk −
∑
l∈[d]

(Λ−1)jlβkl +
∑

m,l∈[d]

βjm(Λ−1)mlβkl

• A sufficient condition for (Σ−1)jk = 0 is that every RHS term vanishes.

3.2.1 Lemma

For any Vj 6= Vk, we have

W [Vj ∗ Vk in G] = ∅ =⇒ Vj ⊥⊥ Vk | V \ {Vj , Vk} under P .

• Vj ∗ Vk means a walk from Vj to Vk where every non-endpoint is a collider.

• Proof on blackboard. (Hint: First assume β = 0.)

3.3 Towards the general case

• Notation: Write W [· · · ] = ∅ as not · · ·.

3.3.1 Goal

We would like to establish a graphical condition for J ⊥⊥K | L.

• Because V is Gaussian, it suffices to consider Vj ⊥⊥ Vk | L for all Vj ∈ J, Vk ∈ K.

• Using the last Lemma, we have (let Ṽ = {Vj , Vk} ∪ L)

not Vj ∗ Vk in marginṼ (G) =⇒ Vj ⊥⊥ Vk | L under P .
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3.3.2 Main problem

Can we conclude not Vj ∗ Vk in marginṼ (G) using G directly?

3.4 General blocking

3.4.1 Definition

• We say a walk in G ∈ G(V ) is (ancestrally) blocked by L ⊆ V , if

1. the walk contains a collider m such that m 6∈ L (and m 6 L), or
2. the walk contains a non-colliding non-endpoint m such that m ∈ L.

• Let W [V ∗ V | L in G] collect all walks that are not blocked by L.

• We say J,K ⊆ V are m-separated given L if not J ∗ K | L in G.

3.4.2 Remarks

• All walks are separated by 0, 1, or more colliders.

• W [V ∗ V ] 6= W [V ∗ V | ∅] = W [V V ].

• The literature usually uses ancestral blocking with paths (see next Proposition).

3.4.3 Example

• Find all m-separations in the running example. (Hint: There are 2 in total.)

3.5 Graph separation

• t-separation: only consider
t

∗
t

(one or more treks).

• d-separation: only consider walks consisting of directed edges only.

3.5.1 Lemma

For any G ∈ G(V ) and J,K,L ⊆ Ṽ ⊆ V , we have

J
t

∗
t

K | L in marginṼ (G) ⇐⇒ J
t

∗
t

K | L in G .

3.5.2 Lemma

Consider G ∈ G(V ) and {j}, {k}, L ⊆ V . If G is canonical, then

(i) j
t

∗
t

k | L ⇐⇒ (ii) j ∗ k | L ⇐⇒ (iii) P [j ∗ k |a L] 6= ∅.

Furthermore, if G is canonically directed, then

(i), (ii), (iii) ⇐⇒ (iv) j
d

∗
d

k | L ⇐⇒ (v) P [j
d

∗
d

k |a L] 6= ∅.

3.6 General result

3.6.1 Theorem

Suppose P ∈ N+(G) for some G ∈ G∗(V ) and (Id−β) is principally non-singular. Then for all disjoint
J,K,L ⊆ V , we have

not J ∗ K | L in G =⇒ J ⊥⊥K | L under P .

• Proof on blackboard using the results above.
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4 Lecture 4: Linear structural equation model and identifiability

4.1 Potential outcome

4.1.1 Motivation

We can represent Hooke’s law by (X force, Y compression distance, β elasticity):

X Y and Y = βX.

• But equations have no direction: Y = βX is equivalent to X = Y/β.

• To emphasize "force causes compression", we can write Y (x) = βx for all x.

4.1.2 Definition

• Let V (VI = vI) (often abbreviated as V (vI)) denote the potential outcome of the entire
system under an intervention that sets VI to vI .

• A causal model is a collection of probability distributions P on the potential outcomes
schedule V (·) = (V (vI) : I ∈ [d]) such that

P(V (vI , vJ ) = V (vI) | VJ (vI) = vJ ) = 1, for all disjoint I,J ⊆ [d], v ∈ V.

4.2 Linear structural equation model (Linear SEM)

4.2.1 Definition

We say V (·) follows a linear SEM with respect to G ∈ G(V ), if there exist β and Λ compatible with
G such that

Vj(vI) =
∑

k∈pa(j)∩I

βkjvk +
∑

k∈pa(j)\I

βkjVk(vI) + Ej , for all j ∈ [d] and I ⊆ [d],

for some E = (E1, . . . , Ed) with Cov(E) = Λ and paG(j) = {l ∈ [d] : Vl Vj in G}.

• In words, every equation still "holds" (thus is "structural") under any intervention.

4.2.2 Example

In the running example, how do the structural equations look like under the intervention (V2, V3) =
(v2, v3)?

4.3 Single-world intervention graphs

We can rewrite the structural equations for V (vI) in matrix form: vI
VI(vI)
VIc(vI)

 =

vI
0
0

+

 0 0 0
βT
I,I 0 βT

Ic,I
βT
I,Ic 0 βT

Ic,Ic

 vI
VI(vI)
VIc(vI)

+

 0
EI
EIc

 .

So (vI , V (vI)) follows a linear system with respect to the single-world intervention graph
(SWIG) G(vI) obtained by modifying G as follows:

1. each intervened vertex i ∈ I is split into two vertices, Vi(vI) and vi, and each non-intervened
vertex j 6∈ I is relabeled as Vj(vI).

2. the “random” vertex Vi(vI) inherits all “incoming” edges of Vi (edges like ∗ Vi or ∗ Vi)
in G;

3. the “fixed” vertex vi inherits all “outgoing” edges of Vi (edges like Vi ∗) in G.

(Example on blackboard.)
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4.4 Causal effects in linear SEM

Due to linearity, we can define the (joint) causal effect of VI on V as the matrix

DI = {∇vIV (vI)}T with entries Dij =
∂

∂vi
Vj(vI), i ∈ I, j ∈ [d].

4.4.1 Theorem

Suppose P is a linear SEM with respect to G ∈ G(V ) and β is principally stable. Then

{∇vIV (vI)}T = σ(W [VI V | VI in G]).

Thus if G is acyclic, the total causal effect of Vi on Vj is

dVj(vi)

dvi
= σ(P [Vi Vj ]).

• Proof on blackboard.

4.5 Correlation is not causation

• Statistical dependence: (local),
t

(global), t/m-connection (conditional).

• Causal dependence: (local), (global).

4.5.1 Examples

Assuming all variables are Gaussian and have unit variance, find Cov(A, Y ), Cov(A, Y | X) and
the causal effect of A on Y .

4.6 Identifiability

A central question of causal inference is identifiability. In linear models, this is asking whether the
following map is injective:

Σ : (β,Λ) 7→ (Id − β)−TΛ(Id − β)−1.

We say N+(G) is

• globally identifiable if Σ−1(Σ(β,Λ)) is a singleton for all (β,Λ);

• generically identifiable if Σ−1(Σ(β,Λ)) is a singleton for almost all (β,Λ);

• locally identifiable if Σ−1(Σ(β,Λ)) does not contain an open neighborhood of (β,Λ) for all
(β,Λ).
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4.7 Examples

1. Instrumental variables.

Z A Y

2. Factor analysis (U is not observed).

U

V1 V2 · · · Vd

3. Double negative controls (U is not observed).

U

Z A Y W

5 Lecture 5: Conditional independence and undirected graphical
models

5.1 Conditional independence

Let P(V) denote all absolutely continuous probability distributions wrt V (usually Rd). Let p denote
the density function of P ∈ P(V). Consider disjoint VJ , VK, VL ⊆ V .

5.1.1 Definition

• The conditional density function of VJ given VK is given by

p(VJ = vJ | VK = vK) =
p(VJ = vJ , VK = vK)

p(VK = vK)
,

which is well defined at any value vK such that p(VK = vK) > 0. We often abbreviate this as
p(vJ | vK).

• We write VJ ⊥⊥ VK | VL under P if one of the next equivalent conditions hold:

1. p(vJ , vK | vL) = p(vJ | vL) p(vK | vL).
2. p(vJ | vL, vK) = p(vJ | vL).
3. log p(vJ , vK, vL) = gJ ,K(vJ , vK) + gK,L(vK, vL) for some gJ ,K and gK,L.

5.2 Graphoid axioms

5.2.1 Proposition

Consider P ∈ P(V) and disjoint subvectors J,K,L,M ⊆ V . We have

Symmetry (J ⊥⊥K | L) ⇐⇒ (K ⊥⊥ J | L);

Chain rule (J ⊥⊥K | L,M) and (J ⊥⊥M | L) ⇐⇒ (J ⊥⊥K,M | L).

If p(v) > 0 for all v, then we also have

Intersection (J ⊥⊥K | L,M) and (J ⊥⊥M | K,L) =⇒ (J ⊥⊥K,M | L).

(Proof is left as an exercise.)

13



• A ternary relation that satisfy these axioms is called a graphoid. The terminology is justified
by the following visualization.

J L

K

M

5.3 Separation in undirected graphs

5.3.1 Definition

• Let UG(V ) denote the collection of all simple undirected graphs with vertex set V .

• Given G ∈ UG(V ) and disjoint subsets J,K,L ⊂ V , we say L separate J and K in G and write

not J ∗ K | L in G

if every path from a vertex in J to a vertex in K in G contains a non-endpoint in L.

5.3.2 Interpretation

This is "dual" to separation in bidirected graphs:

• J L K, J M K are blocked given L;

• J M K, J L K are not blocked given L.

5.4 Undirected graphical models

• Let PGM(G) collects all P ∈ P(V) that satisfies the global Markov property wrt G ∈ UG(V ):
for all disjoint J,K,L ⊂ V ,

not J ∗ K | L in G =⇒ J ⊥⊥K | L under P .

• Let PF(G) collects all P ∈ P(V) that factorizes wrt G ∈ UG(V ):

p(v) =
∏

VJ∈C(G)

fJ (vJ ),

for some fJ , J ⊆ [d], where C(G) collects all "cliques" (complete subgraphs) of G.

5.4.1 Theorem (Hammersley-Clifford)

For any G ∈ UG(V ), we have PF(G) ⊆ PGM(G) and P+
F (G) = P+

GM(G).

• Proof of the first part. (P+ means positive density functions.)

5.5 Graph augmentation

Graph separations in undirected and directed graphs are closely related via the augmentation map
aug : G∗(V ) → UG(V ) defined by

Vj Vk in aug(G) ⇐⇒ Vj ∗ Vk in G, for all Vj 6= Vk.

• When restricted to G∗
DA(V ), this is called moralization in the literature because it connects

any two parents of the same child.

• For J ⊆ V , define an(J) = {Vk ∈ V : Vk J in G} and an(J) = an(J) ∪ J (the smallest
ancestral set containing J).
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5.5.1 Proposition

For any G ∈ G∗(V ) and disjoint J,K,L ⊂ V , we have, with Ṽ = an(J ∪K ∪ L),

J ∗ K | L in G ⇐⇒ J ∗ K | L in aug ◦marginṼ (G).

• Proof on blackboard.

6 Lecture 6: DAG models and ADMG models

6.1 DAG models

6.1.1 Definition

• Let PF(G) collects all P ∈ P(V) that factorizes wrt G ∈ G∗
DA(V ):

p(v) =

p∏
j=1

p(vj | vpaG(j)).

• Let PGM(G) collects all P ∈ P(V) that satisfies the global Markov property wrt G ∈ G∗
DA(V ):

for any disjoint subsets J,K,L ⊂ V ,

not J
d

∗
d

K | L in G =⇒ J ⊥⊥K | L under P .

6.1.2 Theorem

For any G ∈ G∗
DA(V ), we have PF(G) = PGM(G).

• Proof on blackboard.

6.2 ADMG models

• Let PGM(G) collects all P ∈ P(V) that satisfies the global Markov property wrt G ∈ G∗
A(V ):

for any disjoint subsets J,K,L ⊂ V ,

not J ∗ K | L in G =⇒ J ⊥⊥K | L under P .

• Alternatively, we can define ADMG models by using simpler expanded graphs.

6.2.1 Graph expansion

• We say G′ is an expansion of G ∈ G∗(V ) if it is in

expand(G) = margin−1
V (G) =

∪
V ′⊇V

{G′ ∈ G∗(V ′) : marginV (G
′) = G}.

• Often, bidirected edges in G correspond to certain latent variables in G′.

• If we are satisfied with an expansion G′ of G, we can use marginV (PGM(G′)) as the model for
G.

6.3 ADMG models

• Pairwise expansion: replace every Vj Vk with Vj Ujk Vk.

• Clique expansion: replace every bidirected clique VJ (complete bidirected subgraph) with
directed edges UJ Vj , j ∈ J .

• Noise expansion: add Uj Vj such that Uj inherits all bidirected edges of Vj .

• Example on blackboard.

Let the corresponding models be denoted as PPE(G), PCE(G), PNE(G).
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6.3.1 Proposition

For any G ∈ G∗
A(V ), we have

PPE(G) ⊆ PCE(G) ⊆ PNE(G) ⊆ PGM(G),

and ⊆ in above cannot be replaced by = in general.

• The latent variable models (PE/CE/NE) have additional equality and inequality constraints.

6.4 Additional equality constraints

Consider the following (trimmed) ADMG and its expansion (U is latent).

A1 L A2 Y

U

A1 L A2 Y

Suppose P ∈ PPE(G) (PE,CE,NE are actually equivalent in this example). Then∫
p(y | a1, l, a2) p(l | a1) dl does not depend on a1.

• Proof on blackboard.

• This can be understood as a "hidden" independence Y ⊥⊥A1 in the kernel

p(a1, l, y | do(a2)) =
p(a1, l, a2, y)

p(a2 | a1, l)
= p(a1) p(l | a1) p(y | a1, l, a2).

6.5 Additional inequality constraints

Consider the following bidirected clique and its pairwise expansion.

V1

V2 V3

U12 V1 U13

V2 U23 V3

If P ∈ PPE(G) and V = {−1, 1}3, the following "perfect correlation" is impossible:

P(V1 = V2 = V3 = 1) = P(V1 = V2 = V3 = −1) =
1

2
.

• Heuristically, if V1 = V2, then V1 cannot depend on U13.

• PCE(G) or PNE(G) have no such constraints.

• Other related examples: Bell’s inequality in quantum mechanics; Balke-Pearl bound for instru-
mental variable graph.
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6.6 Advantages of the noise expansion model

1. It is equivalent to a natural nonparametric generalization of the linear SEM: if P ∈ PNE(G),
then V satisfies

Vj = fj(VpaG(j), Ej)

for some functions f1, . . . , fd and noise variables E1, . . . , Ed that satisfy

VJ 6 VK in G =⇒ EJ ⊥⊥ EK.

2. Let G∗
UA(V ) collects all unconfounded ADMGs (Vj Vk in G, Vj 6= Vk implies paG(j) = ∅)

with vertex set V . Then

• For all G ∈ G∗
UA(V ), we have PNE(G) = PGM(G).

• For all G ∈ G∗
A(V ), we have

PNE(G) =
∪

V ′⊇V

∪
G′

marginV (PNE(G
′)).

(The second union is over G′ ∈ expand(G) ∩G∗
UA(V

′).)

7 Lecture 7: Causal Markov model

7.1 Causal Markov model

Recall that a causal model is a collection of consistent probability distributions on the potential
outcomes schedule V (·).

7.1.1 Definition

Let CP(G) collect all distributions P on V (·) that is causal Markov wrt G ∈ G∗
A(V ):

1. Recursive substitution: With P-probability 1, we have

Vj(vI) = Vj(vpaG(j)∩I , VpaG(j)\I(vI)) for all j ∈ [d], I ⊆ [d], v ∈ V.

2. Basic potential outcomes are Markov wrt bidirected subgraph:

VJ 6 VK in G =⇒ VJ (v)⊥⊥ VK(v) under P for all disjoint J ,K ⊂ [d] and v ∈ V.

Example: What is Y (a1, a2)? What is Y (a1)?

A1 L A2 Y

7.2 Properties

Suppose G ∈ G∗
A(V ) and P ∈ CP(G).

7.2.1 Property 1 (Consistency of potential outcomes)

P(V (vI , vJ ) = V (vI) | VJ (vI) = vJ ) = 1, for all disjoint I,J ⊆ [d], v ∈ V.

7.2.2 Property 2 (Simplifying potential outcomes)

For any VJ , VK, VL ⊆ V , VK ∩ VL = ∅, we have

not VL VJ | VK in G =⇒ P(VJ (vK, vL) = VJ (vK)) = 1, for all vK ∈ VK, vL ∈ VL.

17



7.2.3 Property 3 (SWIG Markov property)

We have marginV (vI)(P) ∈ PGM(G(vI)) for all VI ⊆ V and v ∈ V.

• Proof on blackboard.

8 Lecture 8: Causal identification and confounder selection

8.1 Identification by fixing

Consider G ∈ G∗
A(V ).

• We say Vj ∈ V is fixable in G if there exists no Vk ∈ V such that Vj Vk and Vj ∗
Vk in G.

• For Vj ∈ V , its Markov background in G is defined as

mbgG(Vj) = {Vk ∈ V : Vk ∗ Vj in G}.

8.1.1 Proposition

Consider G ∈ G∗
A(V ) and P ∈ CP(G). If Vj ∈ V is fixable in G, then

p(Vj(vj) = ṽj , V−j(vj) = v−j)

p(Vj = vj , V−j = v−j)
=

p(Vj = ṽj | Vmbg(j) = vmbg(j))

p(Vj = vj | Vmbg(j) = vmbg(j))
, for all v ∈ V and v∗j ∈ Vj ,

whenever p(Vj = vj | Vmbg(j) = vmbg(j)) > 0.

• Proof on blackboard.

8.2 Example

A1 L A2 Y

Show that the equality constraint∫
p(y | a1, l, a2) p(l | a1) dl does not depend on a1.

corresponds to

• the independence Y (a2)⊥⊥A1; or

• no direct A1 Y effect: Y (a1, a2) = Y (a2).

8.3 Back-door criterion

Consider G ∈ G∗
A(V ), P ∈ CP(G), A, Y ∈ V . Interested in the causal effect of A on Y .

8.3.1 Theorem

Suppose X ⊂ V , X ∩ {A, Y } = ∅ satisfies

1. A 6 X in G;

2. P [A ∗ Y |a X] = ∅.

Then p(Y (a) = y | X = x) = p(Y = y | A = a,X = x).
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• Proof on blackboard.

• Example: Which X ⊆ {B,C,D} meet the back-door criterion?

C D

B

A Y

8.4 Confounder selection

Can we select a set of confounders X without knowing the full graph G?

8.4.1 Definition (symmetric back-door criterion)

• X ⊆ V \ {A, Y } is an adjustment set for A, Y ∈ V if A 6 X and Y 6 X.

• An adjustment set X is sufficient if P [A ∗ Y |a X] = ∅.

• An adjustment set X is primary if P [A Y | X] = ∅.

8.4.2 Heuristics

Directly blocking all confounding paths is difficult, because

P [A ∗ Y |a X] = ∅ 6⇒ P [A ∗ Y |a X̃] = ∅ for X ⊂ X̃.

But we can block confounding arcs recursively, because

P [A Y | X] = ∅ ⇒ P [A Y | X ′] = ∅ for X ⊂ X ′.

8.5 District criterion

8.5.1 Theorem (marginalization preserves confounding arcs and paths)

Consider G ∈ G∗
A(V ), distinct A, Y ∈ V , X ⊆ V \{A, Y }. For any vertex set Ṽ such that {A,B}∪C ⊆

Ṽ ⊆ V , we have

P [A Y | X in G] = ∅ ⇐⇒ P [A Y | X in marginṼ (G)] = ∅,
P [A ∗ Y |a X in G] = ∅ ⇐⇒ P [A ∗ Y |a X in marginṼ (G)] = ∅.

As a corollary, we have

P [A Y | X in G] = ∅ ⇐⇒ not A Y in margin{A,Y }∪X(G),

P [A ∗ Y |a X in G] = ∅ ⇐⇒ not A ∗ Y in margin{A,Y }∪X(G).

8.6 Iterative graph expansion
1: procedure ConfounderSelect(A, Y )
2: R = ∅
3: procedure GraphExpand(X, By, Bn)
4: if A ∗ Y by edges in By then
5: return
6: else if not A ∗ Y by edges in (X ∪ {A, Y })× (X ∪ {A, Y }) \ Bn then
7: R = R∪ {X}
8: return
9: end if

10: (C ↔ D) = SelectEdge(A, Y , X, By, Bn)
11: for X ′ in FindPrimary(C ↔ D, X) do
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12: GraphExpand(X ∪X ′, By, Bn ∪ {C ↔ D})
13: end for
14: GraphExpand(X, By ∪ {C ↔ D}, Bn)
15: end procedure
16: GraphExpand(∅, ∅, ∅)
17: return R
18: end procedure

8.7 Illustration

Shiny app: https://ricguo.shinyapps.io/InteractiveConfSel/
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