Causal Graphical Models (Summer Short Course)

Qingyuan Zhao (Statistical Laboratory, University of Cambridge) 4-5 August, 2025 @ Peking University

Contents

1	Lecture 1: Directed mixed graphs and linear systems	2
2	Lecture 2: Path analysis and graph marginalization	6
3	Lecture 3: m-separation and conditional independence	9
4	Lecture 4: Linear structural equation model and identifiability	11
5	Lecture 5: Conditional independence and undirected graphical models	13
6	Lecture 6: DAG models and ADMG models	15
7	Lecture 7: Causal Markov model	17
8	Lecture 8: Causal identification and confounder selection	18
0.1 Literature		

0.1.1 Day 1 (Lecture 1-4)

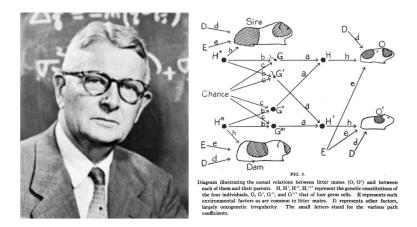
• Zhao, Q. (2024). A matrix algebra for graphical statistical models. (arXiv:2407.15744)

0.1.2 Day 2 (Lecture 5-8)

- Lauritzen, S. L. (1996). Graphical Models. Clarendon Press.
- $\bullet\,$ Zhao, Q. (2025). On statistical and causal models associated with acyclic directed mixed graphs. (arXiv:2501.03048)
- Guo, F. R., & Zhao, Q. (2023). Confounder selection via iterative graph expansion. (arXiv:2309.06053)

1 Lecture 1: Directed mixed graphs and linear systems

1.1 History



• Sewall Green Wright (December 21, 1889 – March 3, 1988) was an American geneticist known for his influential work on evolutionary theory and also for his work on **path analysis**. He was a founder of population genetics alongside Ronald Fisher and J. B. S. Haldane, which was a major step in the development of the modern synthesis combining genetics with evolution.

1.2 Directed mixed graphs

We will consider graphs with two types of edges: directed (\longrightarrow) and bidirected (\longleftrightarrow) .

1.2.1 Definition

A directed mixed graph (DMG) $G = (V, \mathcal{D}, \mathcal{B})$ consists of a finite vertex set V, a directed edge set $\mathcal{D} \subseteq V \times V$ that contains ordered pairs of vertices, and a bidirected edge set $\mathcal{B} \subseteq V \times V$ that contains unordered pairs of vertices (so $(j, k) \in \mathcal{B}$ implies $(k, j) \in \mathcal{B}$) such that

$$(j,k) \in \mathcal{B} \Longrightarrow (j,j) \in \mathcal{B}, (k,k) \in \mathcal{B}, \text{ for all } j,k \in V.$$

Let $\mathbb{G}(V)$ denote the collection of all directed mixed graphs with vertex set V.

We say the **directed edge** " $j \to k$ " is contained in G if $(j,k) \in \mathcal{D}$, and in this case we say this is an *incoming edge* for k, an **outgoing edge** for j, the vertex j is a **parent** of k, and k is a **child** of j in G. Likewise, we say the **bidirected edge** " $j \leftrightarrow k$ " is contained in G if $(j,k) \in \mathcal{B}$.

1.3 Causal interpretation

- Directed edges mean direct causal effects.
- Bidirected edges mean unspecified, residual/exogenous correlations.

1.3.1 Why directed edges?

- Causality is transitive (A causes B and B causes $C \Rightarrow A$ causes C). This defines a **pre-order**.
 - This can be described by the reachability relationship of a **directed graph**.
- Often we think causality is **irreflexive** (A does not cause itself) and **asymmetric** (A and B cannot be causes of each other). This defines a **partial order**.
 - This can be described by the reachability relationship of a **directed acyclic graph**.

1.3.2 Why bidirected edges?

• In statistics and causal inference we are often concerned with latent variables.

1.4 Canonical graphs

1.4.1 Definition

- We say the directed mixed graph is **canonical** if it contains all bidirected loops.
 - The full collection with vertex set V is denoted by $\mathbb{G}^*(V)$.
- We say the graph is **canonically directed** if it is canonical and contains no other bidirected edges.
 - The full collection with vertex set V is denoted by $\mathbb{G}_{\mathcal{D}}^*(V)$.

For such graphs, it is usually more convenient to use the trimmed graph obtained by

trim :
$$(V, \mathcal{D}, \mathcal{B}) \mapsto (V, \mathcal{D}, \mathcal{B} \setminus \{(j, j) : j \in V\}).$$

1.5 Walk, path, cycle

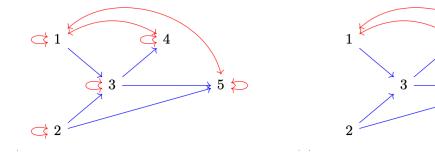
1.5.1 Definition

- A walk is an ordered sequence of connected edges ignoring edge direction.
- A path is a walk with no repeated vertices.
- A **cycle** is a walk with the same starting and ending vertices.
- Vertices at the two ends of a walk are called its **endpoints**, and the other vertices are called **non-endpoints**.
- A walk is **directed** if all its edges have the same direction, like $j \longrightarrow \cdots \longrightarrow k$.
- The graph G (or its direct subgraph) is **acyclic** if it contains no directed cycles.

1.5.2 Notation

- $\mathbb{G}_{\mathcal{A}}^*(V)$: the collection of acyclic, canonical DMGs with vertex set V.
- $\mathbb{G}_{\mathrm{DA}}^*(V)$: the collection acyclic, canonically directed DMGs (basically DAGs).

1.6 Demonstration of trimming



Is the directed mixed graph on the left

- canonical?
- canonically directed?
- acyclic?

1.7 Gaussian linear system on a graph

We will not distinguish a random vector $V = (V_1, \ldots, V_d)$ (probability theory) with a vertex set of random variables $V = \{V_1, \ldots, V_d\}$ (graph theory).

1.7.1 Definition

We say a random vector V follows a Gaussian linear system wrt $G \in \mathbb{G}(V)$ if

$$V = \beta^T V + E$$
 for some $E \sim N(0, \Lambda)$

where

- $\beta \in \mathbb{R}^{d \times d}$ respects the directed subgraph: $V_j \to V_k$ in $G \Rightarrow \beta_{jk} = 0$.
- $\Lambda \in \mathbb{R}^{d \times d}$ respects the bidirected subgraph: $V_j \leftrightarrow V_k$ in $G \Rightarrow \Lambda_{jk} = 0$.

1.7.2 Gaussian model

- Let $\mathbb{N}(G)$ denote the collection of probability distributions of such V.
- Let $\mathbb{N}^+(G)$ denote the subclass where Λ is positive definite (so $G \in \mathbb{G}^*(V)$).

1.8 Roadmap: Basic questions

Let V be a random vector and $J = V_{\mathcal{J}}$, $K = V_{\mathcal{K}}$, $L = V_{\mathcal{L}}$ be sub-vectors of V.

- 1. What is the probability distribution of J?
- 2. Is $J \perp \!\!\! \perp K$ true?
- 3. Is $J \perp \!\!\! \perp K \mid L$ true?

1.8.1 **Answer**

If $V \sim N(0, \Sigma)$ and Σ is positive definite, then

- 1. $J \sim N(0, \Sigma_{\mathcal{J},\mathcal{J}})$.
- 2. $J \perp \!\!\!\perp K$ if and only if $\Sigma_{\mathcal{J},\mathcal{K}} = 0$.
- 3. $V_j \perp \!\!\! \perp V_k \mid V_{[d] \setminus \{j,k\}}$ if and only if $(\Sigma^{-1})_{jk} = 0$.

1.8.2 Lecture 1-3

Let $P \in \mathbb{N}(G)$ be the distribution of V. Can we answer these questions using just G?

1.9 Roadmap: From linear algebra to graphs

1.9.1 Basic combinatoric result

Let A be the adjacency matrix of a directed graph G. Then

$$(A^r)_{jk} = |\{\text{directed walks from } j \text{ to } k \text{ of length } r\}|, r \ge 1,$$

$$[(Id-A)^{-1}]_{jk} = [Id+A+A^2+\dots]_{jk} = \delta_{jk} + |\{\text{directed walks from } j \text{ to } k\}|.$$

So matrix multiplication is similar to walking on a graph.

• Thinking abstractly, edges in a graph encode certain local relations. By composing ("multiplying") those edges, we can obtain new global relations.

1.10 Matrices of walks

1.10.1 Basic matrices

Edges in $G = (V, \mathcal{D}, \mathcal{B}) \in \mathbb{G}(V)$ can be rearranged into:

$$W[j \longrightarrow k \text{ in } G] = \begin{cases} \{j \longrightarrow k\}, & \text{if } (j,k) \in \mathcal{D}, \\ \emptyset, & \text{otherwise}, \end{cases}$$

$$W[j \longleftrightarrow k \text{ in } G] = \begin{cases} \{j \longleftrightarrow k\}, & \text{if } (j,k) \in \mathcal{B}, \\ \emptyset, & \text{otherwise}. \end{cases}$$

• Examples (on blackboard).

1.11 Basic operations

1.11.1 On sets of walks

- 1. Addition + means set union.
 - Example: $\{V_2 \longrightarrow V_5\} + \{V_2 \longrightarrow V_3 \longrightarrow V_5\} = ?$.
- 2. Multiplication \cdot means concatenation.
 - Example: $\{V_2 \longleftrightarrow V_2\} \cdot \{V_2 \longrightarrow V_5, V_2 \longrightarrow V_3 \longrightarrow V_5\} = ?$.
- 3. Transpose T means reversing direction.
 - Example: $\{V_2 \longrightarrow V_5, V_2 \longrightarrow V_3 \longrightarrow V_5\}^T = ?$.

1.11.2 On matrices

Examples (on blackboard).

$$(W + W')[V_j, V_k] = W[V_j, V_k] + W'[V_j, V_k],$$

$$(W \cdot W')[V_j, V_k] = \sum_{V_l \in V} W[V_j, V_l] \cdot W'[V_l, V_k],$$

$$(W^T)[V_j, V_k] = (W[V_k, V_j])^T = \{w^T : w \in W[V_k, V_j]\}.$$

1.12 Further definitions

- Right-directed walks: $W[V \leadsto V] = \sum_{q=1}^{\infty} (W[V \longrightarrow V])^q$.
- $\bullet \ \ \mathbf{Left\text{-}directed \ walks:} \ W[V \leftrightsquigarrow V] = (W[V \leadsto V])^T.$
- **Identity matrix** (for multiplication): Id = diag(id,...,id), where id is the trivial walk with length 0 such that

$$id \cdot w = w \cdot id = w$$
 and $Id \cdot W = W \cdot Id = W$

• Let \emptyset also denote the matrix with empty sets of walks. This is the identity element for matrix addition (set union).

1.13 Weight function

- Recall that $P \in \mathbb{N}(G)$ means $V = \beta^T V + E$ where $E \sim \mathbb{N}(0, \Lambda)$.
- So $V = (\mathrm{Id} \beta)^{-T} E \sim \mathrm{N}(0, \Sigma)$ where

$$\Sigma = (Id - \beta)^{-T} \Lambda (Id - \beta)^{-1}.$$

How can we represent this graphically?

• Let σ be the **weight function** on all walks in G generated by

$$\beta = \sigma(W[V \longrightarrow V])$$
 and $\Lambda = \sigma(W[V \longleftrightarrow V])$.

• Example: $\sigma(\{V_1 \longleftrightarrow V_4, V_1 \longleftrightarrow V_1 \longrightarrow V_3 \longrightarrow V_4\}) = \Lambda_{14} + \Lambda_{11}\beta_{13}\beta_{34}$.

1.13.1 Lemma

If β is stable (spectral radius < 1), then

$$(\operatorname{Id} - \beta)^{-1} = \operatorname{Id} + \sigma(W[V \leadsto V]).$$

2 Lecture 2: Path analysis and graph marginalization

2.1 Trek rule

This motivates us to define **treks** or **t-connected walks** in G as (expand on blackboard)

$$W[V \overset{\mathrm{t}}{\longleftrightarrow} V] = (\mathrm{Id} + W[V \longleftrightarrow V]) \cdot W[V \longleftrightarrow V] \cdot (\mathrm{Id} + W[V \longleftrightarrow V]).$$

2.1.1 Theorem

Suppose $G \in \mathbb{G}(V)$ and $P \in \mathbb{N}(G)$ with weight function σ , then

$$\mathsf{Cov}_{\mathsf{P}}(V) = \sigma(W[V \overset{\mathsf{t}}{\iff} V \ \mathbf{in} \ \mathbf{G}]).$$

2.1.2 Examples

- $Var(V_3) = ?$
- $Cov(V_3, V_4) = ?$

2.2 Arcs

2.2.1 Definitions

- We say a walk is an **arc** or **m-connected** if it has no collider (like $\longrightarrow j \longleftarrow$).
- We say a walk is **d-connected** if it is an arc and contains no bidirected edge, so

2.2.2 Proposition

An arc has exactly zero or one bidirected edge.

2.2.3 Notation

A squiggly line (----) means no collider, and we use no/half/full arrowheads at both ends.

$$\begin{split} W[V &\stackrel{\mathrm{d}}{\leadsto} V] = W[V \leftrightsquigarrow V] + W[V \leadsto V] + W[V \leftrightsquigarrow V \leadsto V], \\ W[V \leftrightsquigarrow V] = W[V &\stackrel{\mathrm{t}}{\leadsto} V] + W[V &\stackrel{\mathrm{d}}{\leadsto} V]. \end{split}$$

2.3 From treks to paths

• Notation: $P[\cdots] = W[\cdots] \cap \mathcal{P}_G$ where \mathcal{P}_G contains all paths on G and \cap is applied entry-wise.

2.3.1 Lemma

For any $G \in \mathbb{G}^*(V)$ and any $j, k \in V, j \neq k$, we have

$$j \stackrel{\mathrm{t}}{\Longleftrightarrow} k \text{ in } \mathbf{G} \Longleftrightarrow P[j \leadsto k \text{ in } \mathbf{G}] \neq \emptyset \Longleftrightarrow P[j \leadsto k \text{ in } \mathrm{trim}(\mathbf{G})] \neq \emptyset.$$

- Proof on blackboard (assuming G is acyclic).
- Key definition:

$$P[j \stackrel{\text{d}}{\leadsto} k \text{ via root } r] = \begin{cases} P[j \leadsto k], & \text{if } r = j, \\ P[j \leftrightsquigarrow k], & \text{if } r = k, \\ (P[j \leftrightsquigarrow r] \cdot P[r \leadsto k]) \cap \mathcal{P}_{G}, & \text{otherwise.} \end{cases}$$

2.4 Wright's path analysis

2.4.1 Theorem

Suppose $G \in \mathbb{G}_A(V)$ and $P \in \mathbb{N}(G)$ with weight function σ , then for any $V_j, V_k \in V$, $j \neq k$, we have

$$\begin{split} \mathsf{Cov}_\mathsf{P}(V_j, V_k) = & \sigma(P[V_j \overset{\mathsf{t}}{\Longleftrightarrow} V_k \ \mathbf{in} \ \mathsf{G}]) \\ &+ \sum_{V_r \in V} \sigma(P[V_j \overset{\mathsf{d}}{\leadsto} V_k \ \mathrm{via \ root} \ V_r \ \mathbf{in} \ \mathsf{G}]) \cdot \mathsf{Var}_\mathsf{P}(V_r). \end{split}$$

- Proof on blackboard.
- Example: $Cov(V_3, V_4) = ?$

2.5 Blocking arcs

2.5.1 Definition

We say an arc is **blocked** by $L \subseteq V$ if the arc has an non-endpoint in L.

2.5.2 Examples

- 1. Which of the following are blocked by 3?
 - $1 \longrightarrow 3 \longrightarrow 4$
 - $4 \leftarrow 3 \leftrightarrow 3 \longrightarrow 5$
 - $1 \longrightarrow 3 \longleftarrow 2$
- 2. Define $W[V \leadsto V \mid L]$ and $W[V \stackrel{\mathsf{t}}{\Longleftrightarrow} V \mid L]$ using the matrix algebra.

2.5.3 Lemma

If $\beta = \sigma(W[V \longrightarrow V])$ is principally stable, then for any $L \subseteq V$, we have

$$(\operatorname{Id} - \beta_{L^c L^c})^{-1} = \operatorname{Id} + \sigma(W[L^c \leadsto L^c \mid L]).$$

2.6 Marginalization of graphs

- Notation: Write $W[\cdots \text{ in } G] \neq \emptyset$ as $\cdots \text{ in } G$.
- For $G \in \mathbb{G}(V)$ and $\tilde{V} \subseteq V$, the **marginal graph** margin $_{\tilde{V}}(G)$ is obtained by

$$j \longrightarrow k \text{ in } \tilde{\mathbf{G}} \Longleftrightarrow j \leadsto k \mid \tilde{V} \text{ in } \mathbf{G}, \quad j, k \in \tilde{V},$$
$$j \longleftrightarrow k \text{ in } \tilde{\mathbf{G}} \Longleftrightarrow j \overset{\mathbf{t}}{\longleftrightarrow} k \mid \tilde{V} \text{ in } \mathbf{G}, \quad j, k \in \tilde{V}.$$

- If \tilde{V} is ancestral (meaning \tilde{V} contains $\operatorname{an}(\tilde{V}) = \{V_j \in V : V_j \leadsto \tilde{V}\}$), then $\operatorname{margin}_{\tilde{V}}(G)$ is the subgraph of G restricted to \tilde{V} .
- It is often useful to view $\mathrm{margin}_{\tilde{V}}$ as a map of walks in G to walks in $\tilde{\mathbf{G}}.$

2.6.1 Proposition: Marginalization preserves unblocked directed walks and treks

For any $G \in \mathbb{G}(V)$ and $L \subseteq \tilde{V} \subseteq V$,

$$\operatorname{margin}_{\tilde{V}}\left(W\left[\tilde{V}\left\{\begin{matrix} \leadsto \\ \check{V} \\ \leadsto \\ t \\ \leadsto \end{matrix}\right\}\tilde{V} \mid L \text{ in } G\right]\right) = W\left[\tilde{V}\left\{\begin{matrix} \leadsto \\ \leadsto \\ t \\ \leadsto \end{matrix}\right\}\tilde{V} \mid L \text{ in } \operatorname{margin}_{\tilde{V}}(G)\right].$$

2.7 Marginalization of linear systems

2.7.1 Theorem

For $G \in \mathbb{G}(V)$ and $P \in \mathbb{N}(G)$, if β is principally stable, then

$$\operatorname{margin}_{\tilde{V}}(\mathsf{P}) \in \mathbb{N}(\operatorname{margin}_{\tilde{V}}(\mathsf{G}))$$

with weight function generated by

$$\begin{split} \tilde{\sigma}(W[\tilde{V} \longrightarrow \tilde{V} \text{ in } \tilde{\mathbf{G}}]) &= \sigma(W[\tilde{V} \leadsto \tilde{V} \mid \tilde{V} \text{ in } \mathbf{G}]), \\ \tilde{\sigma}(W[\tilde{V} \longleftrightarrow \tilde{V} \text{ in } \tilde{\mathbf{G}}]) &= \sigma(W[\tilde{V} \leftrightsquigarrow \tilde{V} \mid \tilde{V} \text{ in } \mathbf{G}]). \end{split}$$

• Proof of blackboard.

2.7.2 Example

• Find the marginal graph and linear system with $\tilde{V} = \{V_1, V_2, V_4, V_5\}$.

2.8 Marginalization of canonical graphs

2.8.1 Definition (marginalization of trimmed graphs)

Consider $G \in \mathbb{G}^*(V)$ and $G^* = \operatorname{trim}(G)$. For $\tilde{V} \subseteq V$, the marginal trimmed graph $\tilde{G}^* = \operatorname{margin}_{\tilde{V}}^*(G^*)$ is obtained by

$$j \longrightarrow k \text{ in } \tilde{G}^* \Longleftrightarrow P[j \leadsto k \mid \tilde{V} \text{ in } G^*] \neq \emptyset,$$
$$j \longleftrightarrow k \text{ in } \tilde{G}^* \Longleftrightarrow P[j \Longleftrightarrow k \mid \tilde{V} \text{ in } G^*] \neq \emptyset.$$

• This is the usual definition in the literature and is justified by the following commutative diagram (proof omitted; example on blackboard).

3 Lecture 3: m-separation and conditional independence

3.1 Conditional independence in multivariate normal

Suppose $V \sim N(\mu, \Sigma)$ and Σ is positive definite.

3.1.1 Proposition

1. For $\mathcal{J} \subset [d]$ and $\mathcal{L} = [d] \setminus \mathcal{J}$, we have

$$V_{\mathcal{J}} \mid V_{\mathcal{L}} = v_{\mathcal{L}} \sim \mathrm{N} \left(\mu_{\mathcal{J}} + \Sigma_{\mathcal{J} \mathcal{L}} \Sigma_{\mathcal{L} \mathcal{L}}^{-1} (v_{\mathcal{L}} - \mu_{\mathcal{L}}), \, \Sigma_{\mathcal{J} \mathcal{J}} - \Sigma_{\mathcal{J} \mathcal{L}} \Sigma_{\mathcal{L} \mathcal{L}}^{-1} \Sigma_{\mathcal{L} \mathcal{J}} \right)$$

2. For any $j, k \in [d], j \neq k$, we have

$$V_i \perp \!\!\!\perp V_k \mid V_{[d]\setminus\{i,k\}} \iff \mathsf{Cov}(V_i, V_k \mid V_{[d]\setminus\{i,k\}}) = 0 \iff (\Sigma^{-1})_{ik} = 0.$$

3.1.2 Proof sketch

- 1. $V_{\mathcal{J}} \Sigma_{\mathcal{J}\mathcal{L}}\Sigma_{\mathcal{L}\mathcal{L}}^{-1}V_{\mathcal{L}}$ is independent of $V_{\mathcal{L}}$.
- 2. Use $\mathcal{J} = \{j, k\}$, then use the block matrix inverse formula.

3.2 Collider-connected walks

Suppose $P \in \mathbb{N}^+(G)$ and $(Id - \beta)$ is non-singular.

- From Lecture 2: $\Sigma = (\mathrm{Id} \beta)^{-T} \Lambda (\mathrm{Id} \beta)^{-1}$.
- So $\Sigma^{-1} = (\mathrm{Id} \beta)\Lambda^{-1}(\mathrm{Id} \beta)^T$. More specifically,

$$(\Sigma^{-1})_{jk} = (\Lambda^{-1})_{jk} - \sum_{m \in [d]} \beta_{jm} (\Lambda^{-1})_{mk} - \sum_{l \in [d]} (\Lambda^{-1})_{jl} \beta_{kl} + \sum_{m,l \in [d]} \beta_{jm} (\Lambda^{-1})_{ml} \beta_{kl}$$

• A sufficient condition for $(\Sigma^{-1})_{jk} = 0$ is that every RHS term vanishes.

3.2.1 Lemma

For any $V_i \neq V_k$, we have

$$W[V_j \hookrightarrow * \longleftrightarrow V_k \text{ in } G] = \emptyset \Longrightarrow V_j \perp \!\!\!\perp V_k \mid V \setminus \{V_j, V_k\} \text{ under } P.$$

- $V_j \hookrightarrow * \longleftrightarrow V_k$ means a walk from V_j to V_k where **every non-endpoint is a collider**.
- Proof on blackboard. (*Hint:* First assume $\beta = 0$.)

3.3 Towards the general case

• Notation: Write $W[\cdots] = \emptyset$ as **not** \cdots .

3.3.1 Goal

We would like to establish a graphical condition for $J \perp \!\!\! \perp K \mid L$.

- Because V is Gaussian, it suffices to consider $V_j \perp \!\!\! \perp V_k \mid L$ for all $V_j \in J, V_k \in K$.
- Using the last Lemma, we have (let $\tilde{V} = \{V_j, V_k\} \cup L$)

not
$$V_j \hookrightarrow * \longleftrightarrow V_k$$
 in $\operatorname{margin}_{\tilde{V}}(G) \Longrightarrow V_j \perp \!\!\! \perp V_k \mid L$ under P .

3.3.2 Main problem

Can we conclude **not** $V_j \hookrightarrow * \longleftrightarrow V_k$ **in** margin_{\tilde{V}}(G) **using** G **directly**?

3.4 General blocking

3.4.1 Definition

- We say a walk in $G \in \mathbb{G}(V)$ is (ancestrally) blocked by $L \subseteq V$, if
 - 1. the walk contains a collider m such that $m \notin L$ (and $m \not\rightsquigarrow L$), or
 - 2. the walk contains a non-colliding non-endpoint m such that $m \in L$.
- Let $W[V \leadsto * \longleftrightarrow V \mid L$ in G] collect all walks that are not blocked by L.
- We say $J,K\subseteq V$ are **m-separated** given L if **not** $J \leadsto * \Longleftrightarrow K \mid L$ **in** G.

3.4.2 Remarks

- All walks are separated by 0, 1, or more colliders.
- $W[V \leadsto * \Longleftrightarrow V] \neq W[V \leadsto * \Longleftrightarrow V \mid \emptyset] = W[V \leadsto V].$
- The literature usually uses ancestral blocking with paths (see next Proposition).

3.4.3 Example

• Find all m-separations in the running example. (*Hint:* There are 2 in total.)

3.5 Graph separation

- **t-separation**: only consider $\stackrel{t}{\longleftrightarrow} * \stackrel{t}{\longleftrightarrow}$ (one or more treks).
- **d-separation**: only consider walks consisting of directed edges only.

3.5.1 Lemma

For any $G \in \mathbb{G}(V)$ and $J, K, L \subseteq \tilde{V} \subseteq V$, we have

$$J \stackrel{\mathrm{t}}{\Longleftrightarrow} * \stackrel{\mathrm{t}}{\Longleftrightarrow} K \mid L \text{ in } \mathrm{margin}_{\tilde{V}}(G) \Longleftrightarrow J \stackrel{\mathrm{t}}{\Longleftrightarrow} * \stackrel{\mathrm{t}}{\Longleftrightarrow} K \mid L \text{ in } G.$$

3.5.2 Lemma

Consider $G \in \mathbb{G}(V)$ and $\{j\}, \{k\}, L \subseteq V$. If G is canonical, then

(i)
$$j \stackrel{\mathsf{t}}{\longleftrightarrow} * \stackrel{\mathsf{t}}{\longleftrightarrow} k \mid L \iff$$
 (ii) $j \rightsquigarrow * \iff k \mid L \iff$ (iii) $P[j \rightsquigarrow * \iff k \mid_a L] \neq \emptyset$.

Furthermore, if G is canonically directed, then

(i), (ii), (iii)
$$\iff$$
 (iv) $j \stackrel{\mathrm{d}}{\leadsto} * \stackrel{\mathrm{d}}{\longleftrightarrow} k \mid L \iff$ (v) $P[j \stackrel{\mathrm{d}}{\leadsto} * \stackrel{\mathrm{d}}{\longleftrightarrow} k \mid_a L] \neq \emptyset$.

3.6 General result

3.6.1 Theorem

Suppose $P \in \mathbb{N}^+(G)$ for some $G \in \mathbb{G}^*(V)$ and $(\mathrm{Id} - \beta)$ is principally non-singular. Then for all disjoint $J, K, L \subseteq V$, we have

not
$$J \leadsto * \Longleftrightarrow K \mid L \text{ in } G \Longrightarrow J \perp \!\!\! \perp K \mid L \text{ under } P$$
.

• Proof on blackboard using the results above.

4 Lecture 4: Linear structural equation model and identifiability

4.1 Potential outcome

4.1.1 Motivation

We can represent Hooke's law by (X force, Y compression distance, β elasticity):

$$X \longrightarrow Y$$
 and $Y = \beta X$.

- But equations have no direction: $Y = \beta X$ is equivalent to $X = Y/\beta$.
- To emphasize "force causes compression", we can write $Y(x) = \beta x$ for all x.

4.1.2 Definition

- Let $V(V_{\mathcal{I}} = v_{\mathcal{I}})$ (often abbreviated as $V(v_{\mathcal{I}})$) denote the **potential outcome** of the entire system under an intervention that sets $V_{\mathcal{I}}$ to $v_{\mathcal{I}}$.
- A causal model is a collection of probability distributions P on the potential outcomes schedule $V(\cdot) = (V(v_{\mathcal{I}}) : \mathcal{I} \in [d])$ such that

$$P(V(v_{\mathcal{I}}, v_{\mathcal{I}}) = V(v_{\mathcal{I}}) \mid V_{\mathcal{I}}(v_{\mathcal{I}}) = v_{\mathcal{I}}) = 1$$
, for all disjoint $\mathcal{I}, \mathcal{J} \subseteq [d], v \in \mathbb{V}$.

4.2 Linear structural equation model (Linear SEM)

4.2.1 Definition

We say $V(\cdot)$ follows a **linear SEM** with respect to $G \in \mathbb{G}(V)$, if there exist β and Λ compatible with G such that

$$V_j(v_{\mathcal{I}}) = \sum_{k \in \mathrm{pa}(j) \cap \mathcal{I}} \beta_{kj} v_k + \sum_{k \in \mathrm{pa}(j) \setminus \mathcal{I}} \beta_{kj} V_k(v_{\mathcal{I}}) + E_j, \text{ for all } j \in [d] \text{ and } \mathcal{I} \subseteq [d],$$

for some $E = (E_1, \dots, E_d)$ with $Cov(E) = \Lambda$ and $pa_G(j) = \{l \in [d] : V_l \longrightarrow V_j \text{ in } G\}$.

• In words, every equation still "holds" (thus is "structural") under any intervention.

4.2.2 Example

In the running example, how do the structural equations look like under the intervention $(V_2, V_3) = (v_2, v_3)$?

4.3 Single-world intervention graphs

We can rewrite the structural equations for $V(v_{\mathcal{I}})$ in matrix form:

$$\begin{pmatrix} v_{\mathcal{I}} \\ V_{\mathcal{I}}(v_{\mathcal{I}}) \\ V_{\mathcal{I}^c}(v_{\mathcal{I}}) \end{pmatrix} = \begin{pmatrix} v_{\mathcal{I}} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ \beta_{\mathcal{I},\mathcal{I}}^T & 0 & \beta_{\mathcal{I}^c,\mathcal{I}}^T \\ \beta_{\mathcal{I},\mathcal{I}^c}^T & 0 & \beta_{\mathcal{I}^c,\mathcal{I}^c}^T \end{pmatrix} \begin{pmatrix} v_{\mathcal{I}} \\ V_{\mathcal{I}}(v_{\mathcal{I}}) \\ V_{\mathcal{I}^c}(v_{\mathcal{I}}) \end{pmatrix} + \begin{pmatrix} 0 \\ E_{\mathcal{I}} \\ E_{\mathcal{I}^c} \end{pmatrix}.$$

So $(v_{\mathcal{I}}, V(v_{\mathcal{I}}))$ follows a linear system with respect to the **single-world intervention graph** (SWIG) $G(v_{\mathcal{I}})$ obtained by modifying G as follows:

- 1. each intervened vertex $i \in \mathcal{I}$ is split into two vertices, $V_i(v_{\mathcal{I}})$ and v_i , and each non-intervened vertex $j \notin \mathcal{I}$ is relabeled as $V_i(v_{\mathcal{I}})$.
- 2. the "random" vertex $V_i(v_{\mathcal{I}})$ inherits all "incoming" edges of V_i (edges like $* \longrightarrow V_i$ or $* \longleftrightarrow V_i$) in G;
- 3. the "fixed" vertex v_i inherits all "outgoing" edges of V_i (edges like $V_i \longrightarrow *$) in G.

(Example on blackboard.)

4.4 Causal effects in linear SEM

Due to linearity, we can define the (joint) causal effect of $V_{\mathcal{I}}$ on V as the matrix

$$D_{\mathcal{I}} = \{\nabla_{v_{\mathcal{I}}} V(v_{\mathcal{I}})\}^T \text{ with entries } D_{ij} = \frac{\partial}{\partial v_i} V_j(v_{\mathcal{I}}), \ i \in \mathcal{I}, j \in [d].$$

4.4.1 Theorem

Suppose P is a linear SEM with respect to $G \in \mathbb{G}(V)$ and β is principally stable. Then

$$\{\nabla_{v_{\mathcal{I}}} V(v_{\mathcal{I}})\}^T = \sigma(W[V_{\mathcal{I}} \leadsto V \mid V_{\mathcal{I}} \text{ in G}]).$$

Thus if G is acyclic, the total causal effect of V_i on V_j is

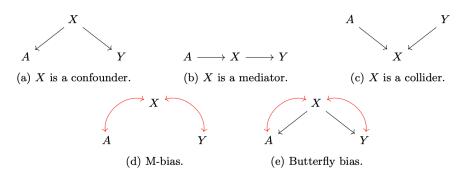
$$\frac{\mathrm{d}V_j(v_i)}{\mathrm{d}v_i} = \sigma(P[V_i \leadsto V_j]).$$

• Proof on blackboard.

4.5 Correlation is not causation

- Statistical dependence: \longleftrightarrow (local), $\stackrel{t}{\longleftrightarrow}$ (global), t/m-connection (conditional).
- Causal dependence: \longrightarrow (local), \rightsquigarrow (global).

4.5.1 Examples



Assuming all variables are Gaussian and have unit variance, find Cov(A, Y), $Cov(A, Y \mid X)$ and the causal effect of A on Y.

4.6 Identifiability

A central question of causal inference is identifiability. In linear models, this is asking whether the following map is injective:

$$\Sigma : (\beta, \Lambda) \mapsto (\mathrm{Id} - \beta)^{-T} \Lambda (\mathrm{Id} - \beta)^{-1}.$$

We say $\mathbb{N}^+(G)$ is

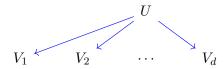
- globally identifiable if $\Sigma^{-1}(\Sigma(\beta,\Lambda))$ is a singleton for all (β,Λ) ;
- generically identifiable if $\Sigma^{-1}(\Sigma(\beta,\Lambda))$ is a singleton for almost all (β,Λ) ;
- locally identifiable if $\Sigma^{-1}(\Sigma(\beta, \Lambda))$ does not contain an open neighborhood of (β, Λ) for all (β, Λ) .

4.7 Examples

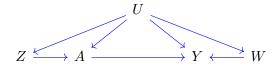
1. Instrumental variables.

$$Z \longrightarrow A \xrightarrow{\longleftarrow} Y$$

2. Factor analysis (U is not observed).



3. Double negative controls (U is not observed).



5 Lecture 5: Conditional independence and undirected graphical models

5.1 Conditional independence

Let $\mathbb{P}(\mathbb{V})$ denote all absolutely continuous probability distributions wrt \mathbb{V} (usually \mathbb{R}^d). Let p denote the density function of $P \in \mathbb{P}(\mathbb{V})$. Consider disjoint $V_{\mathcal{J}}, V_{\mathcal{K}}, V_{\mathcal{L}} \subseteq V$.

5.1.1 Definition

• The conditional density function of $V_{\mathcal{I}}$ given $V_{\mathcal{K}}$ is given by

$$\mathsf{p}(V_{\mathcal{J}} = v_{\mathcal{J}} \mid V_{\mathcal{K}} = v_{\mathcal{K}}) = \frac{\mathsf{p}(V_{\mathcal{J}} = v_{\mathcal{J}}, V_{\mathcal{K}} = v_{\mathcal{K}})}{\mathsf{p}(V_{\mathcal{K}} = v_{\mathcal{K}})},$$

which is well defined at any value $v_{\mathcal{K}}$ such that $p(V_{\mathcal{K}} = v_{\mathcal{K}}) > 0$. We often abbreviate this as $p(v_{\mathcal{J}} \mid v_{\mathcal{K}})$.

- We write $V_{\mathcal{J}} \perp \!\!\! \perp V_{\mathcal{K}} \mid V_{\mathcal{L}}$ under P if one of the next equivalent conditions hold:
 - 1. $p(v_{\mathcal{T}}, v_{\mathcal{K}} \mid v_{\mathcal{L}}) = p(v_{\mathcal{T}} \mid v_{\mathcal{L}}) p(v_{\mathcal{K}} \mid v_{\mathcal{L}}).$
 - 2. $p(v_{\mathcal{J}} \mid v_{\mathcal{L}}, v_{\mathcal{K}}) = p(v_{\mathcal{J}} \mid v_{\mathcal{L}}).$
 - 3. $\log p(v_{\mathcal{J}}, v_{\mathcal{K}}, v_{\mathcal{L}}) = g_{\mathcal{J}, \mathcal{K}}(v_{\mathcal{J}}, v_{\mathcal{K}}) + g_{\mathcal{K}, \mathcal{L}}(v_{\mathcal{K}}, v_{\mathcal{L}})$ for some $g_{\mathcal{J}, \mathcal{K}}$ and $g_{\mathcal{K}, \mathcal{L}}$.

5.2 Graphoid axioms

5.2.1 Proposition

Consider $P \in \mathbb{P}(\mathbb{V})$ and disjoint subvectors $J, K, L, M \subseteq V$. We have

Symmetry $(J \perp\!\!\!\perp K \mid L) \iff (K \perp\!\!\!\perp J \mid L);$

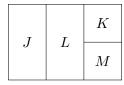
Chain rule $(J \perp\!\!\!\perp K \mid L, M)$ and $(J \perp\!\!\!\perp M \mid L) \Longleftrightarrow (J \perp\!\!\!\perp K, M \mid L)$.

If p(v) > 0 for all v, then we also have

Intersection $(J \perp\!\!\!\perp K \mid L, M)$ and $(J \perp\!\!\!\perp M \mid K, L) \Longrightarrow (J \perp\!\!\!\perp K, M \mid L)$.

(Proof is left as an exercise.)

• A ternary relation that satisfy these axioms is called a **graphoid**. The terminology is justified by the following visualization.



5.3 Separation in undirected graphs

5.3.1 Definition

- Let $\mathbb{UG}(V)$ denote the collection of all simple undirected graphs with vertex set V.
- Given $G \in \mathbb{UG}(V)$ and disjoint subsets $J, K, L \subset V$, we say L separate J and K in G and write

not
$$J \longrightarrow * \longrightarrow K \mid L$$
 in G

if every path from a vertex in J to a vertex in K in G contains a non-endpoint in L.

5.3.2 Interpretation

This is "dual" to separation in bidirected graphs:

- $J \longrightarrow L \longrightarrow K$, $J \longleftrightarrow M \longleftrightarrow K$ are blocked given L;
- $J \longrightarrow M \longrightarrow K$, $J \longleftrightarrow L \longleftrightarrow K$ are not blocked given L.

5.4 Undirected graphical models

• Let $\mathbb{P}_{GM}(G)$ collects all $P \in \mathbb{P}(\mathbb{V})$ that satisfies the **global Markov property** wrt $G \in \mathbb{UG}(V)$: for all disjoint $J, K, L \subset V$,

not
$$J \longrightarrow * \longrightarrow K \mid L$$
 in $G \Longrightarrow J \perp \!\!\! \perp K \mid L$ under P .

• Let $\mathbb{P}_{\mathcal{F}}(G)$ collects all $\mathsf{P} \in \mathbb{P}(\mathbb{V})$ that **factorizes** wrt $G \in \mathbb{UG}(V)$:

$$p(v) = \prod_{V_{\mathcal{T}} \in \mathcal{C}(G)} f_{\mathcal{J}}(v_{\mathcal{J}}),$$

for some $f_{\mathcal{J}}$, $\mathcal{J} \subseteq [d]$, where $\mathcal{C}(G)$ collects all "cliques" (complete subgraphs) of G.

5.4.1 Theorem (Hammersley-Clifford)

For any $G \in \mathbb{UG}(V)$, we have $\mathbb{P}_F(G) \subseteq \mathbb{P}_{GM}(G)$ and $\mathbb{P}_F^+(G) = \mathbb{P}_{GM}^+(G)$.

• Proof of the first part. (\mathbb{P}^+ means positive density functions.)

5.5 Graph augmentation

Graph separations in undirected and directed graphs are closely related via the augmentation map $\operatorname{aug}: \mathbb{G}^*(V) \to \mathbb{U}\mathbb{G}(V)$ defined by

$$V_j \longrightarrow V_k$$
 in aug(G) $\iff V_j \longrightarrow * \longleftrightarrow V_k$ in G, for all $V_j \neq V_k$.

- When restricted to $\mathbb{G}_{\mathrm{DA}}^*(V)$, this is called **moralization** in the literature because it connects any two parents of the same child.
- For $J \subseteq V$, define $\operatorname{an}(J) = \{V_k \in V : V_k \leadsto J \text{ in G}\}$ and $\overline{\operatorname{an}}(J) = \operatorname{an}(J) \cup J$ (the smallest ancestral set containing J).

5.5.1 Proposition

For any $G \in \mathbb{G}^*(V)$ and disjoint $J, K, L \subset V$, we have, with $\tilde{V} = \overline{\operatorname{an}}(J \cup K \cup L)$,

$$J \leftrightsquigarrow * \leftrightsquigarrow K \mid L \text{ in } \mathbf{G} \Longleftrightarrow J \longrightarrow * \longrightarrow K \mid L \text{ in } \mathrm{aug} \circ \mathrm{margin}_{\tilde{V}}(\mathbf{G}).$$

• Proof on blackboard.

6 Lecture 6: DAG models and ADMG models

6.1 DAG models

6.1.1 Definition

• Let $\mathbb{P}_{\mathrm{F}}(G)$ collects all $\mathsf{P} \in \mathbb{P}(\mathbb{V})$ that **factorizes** wrt $\mathsf{G} \in \mathbb{G}_{\mathrm{DA}}^*(V)$:

$$p(v) = \prod_{j=1}^{p} p(v_j \mid v_{\text{pa}_{G}(j)}).$$

• Let $\mathbb{P}_{GM}(G)$ collects all $P \in \mathbb{P}(\mathbb{V})$ that satisfies the **global Markov property** wrt $G \in \mathbb{G}^*_{DA}(V)$: for any disjoint subsets $J, K, L \subset V$,

$$\mathbf{not}\ J \overset{\mathrm{d}}{\leftrightsquigarrow} * \overset{\mathrm{d}}{\leftrightsquigarrow} K \mid L \ \mathbf{in} \ \mathbf{G} \Longrightarrow J \perp \!\!\! \perp K \mid L \ \mathbf{under} \ \mathsf{P} \, .$$

6.1.2 Theorem

For any $G \in \mathbb{G}_{DA}^*(V)$, we have $\mathbb{P}_F(G) = \mathbb{P}_{GM}(G)$.

• Proof on blackboard.

6.2 ADMG models

• Let $\mathbb{P}_{GM}(G)$ collects all $P \in \mathbb{P}(\mathbb{V})$ that satisfies the **global Markov property** wrt $G \in \mathbb{G}_A^*(V)$: for any disjoint subsets $J, K, L \subset V$,

not
$$J \leadsto * \leftrightsquigarrow K \mid L \text{ in } G \Longrightarrow J \perp \!\!\! \perp K \mid L \text{ under } \mathsf{P}$$
.

• Alternatively, we can define ADMG models by using simpler expanded graphs.

6.2.1 Graph expansion

• We say G' is an **expansion** of $G \in G^*(V)$ if it is in

$$\operatorname{expand}(\mathbf{G}) = \operatorname{margin}_V^{-1}(\mathbf{G}) = \bigcup_{V' \supseteq V} \{ \mathbf{G}' \in \mathbb{G}^*(V') : \operatorname{margin}_V(\mathbf{G}') = \mathbf{G} \}.$$

- Often, bidirected edges in G correspond to certain latent variables in G'.
- If we are satisfied with an expansion G' of G, we can use $\operatorname{margin}_V(\mathbb{P}_{\operatorname{GM}}(G'))$ as the model for G.

6.3 ADMG models

- Pairwise expansion: replace every $V_j \longleftrightarrow V_k$ with $V_j \longleftrightarrow U_{jk} \longrightarrow V_k$.
- Clique expansion: replace every bidirected clique $V_{\mathcal{J}}$ (complete bidirected subgraph) with directed edges $U_{\mathcal{J}} \longrightarrow V_j$, $j \in \mathcal{J}$.
- Noise expansion: add $U_j \longrightarrow V_j$ such that U_j inherits all bidirected edges of V_j .
- Example on blackboard.

Let the corresponding models be denoted as $\mathbb{P}_{PE}(G)$, $\mathbb{P}_{CE}(G)$, $\mathbb{P}_{NE}(G)$.

6.3.1 Proposition

For any $G \in \mathbb{G}_{A}^{*}(V)$, we have

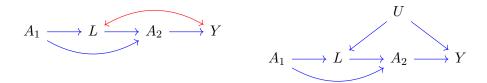
$$\mathbb{P}_{PE}(G) \subseteq \mathbb{P}_{CE}(G) \subseteq \mathbb{P}_{NE}(G) \subseteq \mathbb{P}_{GM}(G),$$

and \subseteq in above cannot be replaced by = in general.

• The latent variable models (PE/CE/NE) have additional equality and inequality constraints.

6.4 Additional equality constraints

Consider the following (trimmed) ADMG and its expansion (U is latent).



Suppose $P \in \mathbb{P}_{PE}(G)$ (PE,CE,NE are actually equivalent in this example). Then

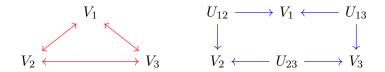
$$\int \mathsf{p}(y\mid a_1,l,a_2)\,\mathsf{p}(l\mid a_1)\,\mathrm{d}l \text{ does not depend on }a_1.$$

- Proof on blackboard.
- This can be understood as a "hidden" independence $Y \perp \!\!\! \perp A_1$ in the kernel

$$p(a_1, l, y \mid do(a_2)) = \frac{p(a_1, l, a_2, y)}{p(a_2 \mid a_1, l)} = p(a_1) p(l \mid a_1) p(y \mid a_1, l, a_2).$$

6.5 Additional inequality constraints

Consider the following bidirected clique and its pairwise expansion.



If $P \in \mathbb{P}_{PE}(G)$ and $\mathbb{V} = \{-1, 1\}^3$, the following "perfect correlation" is impossible:

$$P(V_1 = V_2 = V_3 = 1) = P(V_1 = V_2 = V_3 = -1) = \frac{1}{2}.$$

- Heuristically, if $V_1 = V_2$, then V_1 cannot depend on U_{13} .
- $\mathbb{P}_{CE}(G)$ or $\mathbb{P}_{NE}(G)$ have no such constraints.
- Other related examples: Bell's inequality in quantum mechanics; Balke-Pearl bound for instrumental variable graph.

6.6 Advantages of the noise expansion model

1. It is equivalent to a **natural nonparametric generalization** of the linear SEM: if $P \in \mathbb{P}_{NE}(G)$, then V satisfies

$$V_j = f_j(V_{\mathrm{pa}_{\mathrm{G}}(j)}, E_j)$$

for some functions f_1, \ldots, f_d and noise variables E_1, \ldots, E_d that satisfy

$$V_{\mathcal{I}} \leftrightarrow V_{\mathcal{K}} \text{ in } G \Longrightarrow E_{\mathcal{I}} \perp \!\!\!\perp E_{\mathcal{K}}.$$

- 2. Let $\mathbb{G}^*_{\mathrm{UA}}(V)$ collects all **unconfounded ADMGs** $(V_j \longleftrightarrow V_k \text{ in } G, V_j \neq V_k \text{ implies } \mathrm{pa}_G(j) = \emptyset)$ with vertex set V. Then
 - For all $G \in \mathbb{G}^*_{UA}(V)$, we have $\mathbb{P}_{NE}(G) = \mathbb{P}_{GM}(G)$.
 - For all $G \in \mathbb{G}_A^*(V)$, we have

$$\mathbb{P}_{NE}(G) = \bigcup_{V' \supseteq V} \bigcup_{G'} \operatorname{margin}_{V}(\mathbb{P}_{NE}(G')).$$

(The second union is over $G' \in \text{expand}(G) \cap \mathbb{G}^*_{UA}(V')$.)

7 Lecture 7: Causal Markov model

7.1 Causal Markov model

Recall that a causal model is a collection of consistent probability distributions on the potential outcomes schedule $V(\cdot)$.

7.1.1 Definition

Let $\mathbb{CP}(G)$ collect all distributions P on $V(\cdot)$ that is **causal Markov** wrt $G \in \mathbb{G}_A^*(V)$:

1. Recursive substitution: With P-probability 1, we have

$$V_j(v_{\mathcal{I}}) = V_j(v_{\operatorname{pa}_G(j)\cap\mathcal{I}}, V_{\operatorname{pa}_G(j)\setminus\mathcal{I}}(v_{\mathcal{I}})) \text{ for all } j \in [d], \mathcal{I} \subseteq [d], v \in \mathbb{V}.$$

2. Basic potential outcomes are Markov wrt bidirected subgraph:

$$V_{\mathcal{J}} \leftrightarrow V_{\mathcal{K}}$$
 in $G \Longrightarrow V_{\mathcal{J}}(v) \perp \!\!\!\perp V_{\mathcal{K}}(v)$ under P for all disjoint $\mathcal{J}, \mathcal{K} \subset [d]$ and $v \in \mathbb{V}$.

Example: What is $Y(a_1, a_2)$? What is $Y(a_1)$?

$$A_1 \longrightarrow L \xrightarrow{\searrow} A_2 \longrightarrow Y$$

7.2 Properties

Suppose $G \in \mathbb{G}_A^*(V)$ and $P \in \mathbb{CP}(G)$.

7.2.1 Property 1 (Consistency of potential outcomes)

$$P(V(v_{\mathcal{I}}, v_{\mathcal{J}}) = V(v_{\mathcal{I}}) \mid V_{\mathcal{J}}(v_{\mathcal{I}}) = v_{\mathcal{J}}) = 1$$
, for all disjoint $\mathcal{I}, \mathcal{J} \subseteq [d], v \in \mathbb{V}$.

7.2.2 Property 2 (Simplifying potential outcomes)

For any $V_{\mathcal{J}}, V_{\mathcal{K}}, V_{\mathcal{L}} \subseteq V$, $V_{\mathcal{K}} \cap V_{\mathcal{L}} = \emptyset$, we have

$$\mathbf{not}\ V_{\mathcal{L}} \leadsto V_{\mathcal{J}} \mid V_{\mathcal{K}} \ \mathbf{in} \ \mathbf{G} \Longrightarrow \mathsf{P}(V_{\mathcal{J}}(v_{\mathcal{K}}, v_{\mathcal{L}}) = V_{\mathcal{J}}(v_{\mathcal{K}})) = 1, \ \text{for all} \ v_{\mathcal{K}} \in \mathbb{V}_{\mathcal{K}}, v_{\mathcal{L}} \in \mathbb{V}_{\mathcal{L}}.$$

7.2.3 Property 3 (SWIG Markov property)

We have $\operatorname{margin}_{V(v_{\mathcal{I}})}(\mathsf{P}) \in \mathbb{P}_{\operatorname{GM}}(\mathsf{G}(v_{\mathcal{I}}))$ for all $V_{\mathcal{I}} \subseteq V$ and $v \in \mathbb{V}$.

• Proof on blackboard.

8 Lecture 8: Causal identification and confounder selection

8.1 Identification by fixing

Consider $G \in \mathbb{G}_{A}^{*}(V)$.

- We say $V_j \in V$ is **fixable** in G if there exists no $V_k \in V$ such that $V_j \leadsto V_k$ and $V_j \longleftrightarrow * \longleftrightarrow V_k$ in G.
- For $V_j \in V$, its Markov background in G is defined as

$$\operatorname{mbg}_{\mathbf{G}}(V_i) = \{V_k \in V : V_k \longleftrightarrow * \longleftrightarrow V_i \text{ in } \mathbf{G}\}.$$

8.1.1 Proposition

Consider $G \in \mathbb{G}_A^*(V)$ and $P \in \mathbb{CP}(G)$. If $V_j \in V$ is fixable in G, then

$$\frac{\mathsf{p}(V_{j}(v_{j}) = \tilde{v}_{j}, V_{-j}(v_{j}) = v_{-j})}{\mathsf{p}(V_{j} = v_{j}, V_{-j} = v_{-j})} = \frac{\mathsf{p}(V_{j} = \tilde{v}_{j} \mid V_{\mathrm{mbg}(j)} = v_{\mathrm{mbg}(j)})}{\mathsf{p}(V_{j} = v_{j} \mid V_{\mathrm{mbg}(j)} = v_{\mathrm{mbg}(j)})}, \text{ for all } v \in \mathbb{V} \text{ and } v_{j}^{*} \in \mathbb{V}_{j},$$

whenever $p(V_j = v_j \mid V_{\text{mbg}(j)} = v_{\text{mbg}(j)}) > 0.$

• Proof on blackboard.

8.2 Example

$$A_1 \longrightarrow L \xrightarrow{A_2} Y$$

Show that the equality constraint

$$\int \mathsf{p}(y\mid a_1,l,a_2)\,\mathsf{p}(l\mid a_1)\,\mathrm{d}l \text{ does not depend on }a_1.$$

corresponds to

- the independence $Y(a_2) \perp \!\!\! \perp A_1$; or
- no direct $A_1 \longrightarrow Y$ effect: $Y(a_1, a_2) = Y(a_2)$.

8.3 Back-door criterion

Consider $G \in \mathbb{G}_A^*(V)$, $P \in \mathbb{CP}(G)$, $A, Y \in V$. Interested in the causal effect of A on Y.

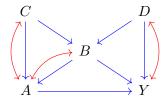
8.3.1 Theorem

Suppose $X \subset V$, $X \cap \{A, Y\} = \emptyset$ satisfies

- 1. $A \rightsquigarrow X$ in G;
- 2. $P[A \leftrightarrow * \leftrightarrow Y \mid_a X] = \emptyset$.

Then $p(Y(a) = y \mid X = x) = p(Y = y \mid A = a, X = x).$

- Proof on blackboard.
- Example: Which $X \subseteq \{B, C, D\}$ meet the back-door criterion?



8.4 Confounder selection

Can we select a set of confounders X without knowing the full graph G?

8.4.1 Definition (symmetric back-door criterion)

- $X \subseteq V \setminus \{A,Y\}$ is an **adjustment set** for $A,Y \in V$ if $A \rightsquigarrow X$ and $Y \rightsquigarrow X$.
- An adjustment set X is sufficient if $P[A \leftrightarrow * * \leftrightarrow Y \mid_a X] = \emptyset$.
- An adjustment set X is **primary** if $P[A \iff Y \mid X] = \emptyset$.

8.4.2 Heuristics

Directly blocking all confounding paths is difficult, because

$$P[A \longleftrightarrow * \longleftrightarrow Y \mid_a X] = \emptyset \not\Rightarrow P[A \longleftrightarrow * \longleftrightarrow Y \mid_a \tilde{X}] = \emptyset \text{ for } X \subset \tilde{X}.$$

But we can block confounding arcs recursively, because

$$P[A \longleftrightarrow Y \mid X] = \emptyset \Rightarrow P[A \longleftrightarrow Y \mid X'] = \emptyset \text{ for } X \subset X'.$$

8.5 District criterion

8.5.1 Theorem (marginalization preserves confounding arcs and paths)

Consider $G \in \mathbb{G}_A^*(V)$, distinct $A, Y \in V$, $X \subseteq V \setminus \{A, Y\}$. For any vertex set \tilde{V} such that $\{A, B\} \cup C \subseteq \tilde{V} \subseteq V$, we have

$$\begin{split} P[A &\longleftrightarrow Y \mid X \text{ in } \mathbf{G}] = \emptyset &\iff P[A &\longleftrightarrow Y \mid X \text{ in } \mathrm{margin}_{\tilde{V}}(\mathbf{G})] = \emptyset, \\ P[A &\longleftrightarrow * &\longleftrightarrow Y \mid_a X \text{ in } \mathbf{G}] = \emptyset &\iff P[A &\longleftrightarrow * &\longleftrightarrow Y \mid_a X \text{ in } \mathrm{margin}_{\tilde{V}}(\mathbf{G})] = \emptyset. \end{split}$$

As a corollary, we have

$$P[A \leftrightsquigarrow Y \mid X \text{ in } G] = \emptyset \iff \text{not } A \longleftrightarrow Y \text{ in } \operatorname{margin}_{\{A,Y\} \cup X}(G),$$

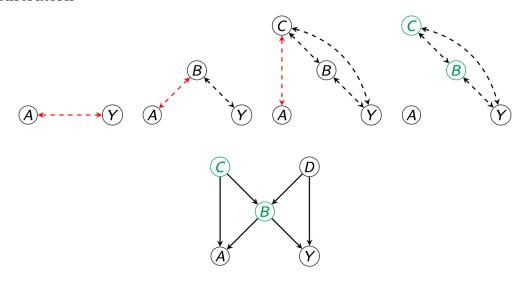
$$P[A \leftrightsquigarrow * \leftrightsquigarrow Y \mid_a X \text{ in } G] = \emptyset \iff \text{not } A \longleftrightarrow * \longleftrightarrow Y \text{ in } \operatorname{margin}_{\{A,Y\} \cup X}(G).$$

8.6 Iterative graph expansion

```
1: procedure ConfounderSelect(A, Y)
 2:
           \mathcal{R} = \emptyset
 3:
           procedure GraphExpand(X, \mathcal{B}_y, \mathcal{B}_n)
 4:
                if A \longleftrightarrow * \longleftrightarrow Y by edges in \mathcal{B}_y then
 5:
                 else if not A \longleftrightarrow * \longleftrightarrow Y by edges in (X \cup \{A,Y\}) \times (X \cup \{A,Y\}) \setminus \mathcal{B}_n then
 6:
 7:
                      \mathcal{R} = \mathcal{R} \cup \{X\}
 8:
 9:
                 (C \leftrightarrow D) = \text{SelectEdge}(A, Y, X, \mathcal{B}_y, \mathcal{B}_n)
10:
                 for X' in FindPrimary(C \leftrightarrow D, X) do
11:
```

```
12: GRAPHEXPAND(X \cup X', \mathcal{B}_y, \mathcal{B}_n \cup \{C \leftrightarrow D\})
13: end for
14: GRAPHEXPAND(X, \mathcal{B}_y \cup \{C \leftrightarrow D\}, \mathcal{B}_n)
15: end procedure
16: GRAPHEXPAND(\emptyset, \emptyset, \emptyset)
17: return \mathcal{R}
18: end procedure
```

8.7 Illustration



Shiny app: https://ricguo.shinyapps.io/InteractiveConfSel/