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Sensitivity analysis

Sensitivity analysis is widely found in any area that uses mathematical
models.

The broader concept [Saltelli et al., 2004]

I “The study of how the uncertainty in the output of a
mathematical model or system (numerical or otherwise) can be
apportioned to different sources of uncertainty in its inputs”.

I Model inputs may be any factor that “can be changed in a model
prior to its execution”, including “structural and epistemic
sources of uncertainty”.

In observational studies
I The most typical question is:

How do the qualitative and/or quantitative conclusions of the
observational study change if the no unmeasured confounding
assumption is violated?



Sensitivity analysis for observational studies

State of the art
I Gazillions of methods specifically designed for different problems.

I Various forms of statistical guarantees.

I Often not straightforward to interpret

Goal of this talk: A high-level overview

1. What is the common structure behind?

2. What are some good principles and ideas?

The perspective of this talk: global and frequentist.

Prototypical setup
Observed iid copies of O = (X ,A,Y ) from the underlying full data
F = (X ,A,Y (0),Y (1)), where A is a binary treatment, X is covariates,
Y is outcome.



Outline

Motivating example

Component 1: Sensitivity model

Component 2: Statistical inference

Component 3: Interpretation



Example: Child soldiering [Blattman and Annan, 2010]

I From 1995 to 2004, about 60, 000 to 80, 000 youths were abducted
in Uganda by a rebel force.

I Question: What is the impact of child soldiering (e.g. on the years of
education)?

I The authors controlled for a variety of covariates X (age, household
size, parental education, etc.) but were concerned about ability to
hide from the rebel as a unmeasured confounder.

I They used the following model proposed by Imbens [2003]:

A ⊥⊥ Y (a) | X ,U, for a = 0, 1,

U | X ∼ Bernoulli(0.5),

A | X ,U ∼ Bernoulli(expit(κTX + λU)),

Y (a) | X ,U ∼ N(βa + νTX + δU, σ2) for a = 0, 1,

I U is an unobserved confounder. (λ, δ) are sensitivity parameters;
λ = δ = 0 corresponds to a primary analysis assuming no
unmeasured confounding.



Main results of Blattman and Annan [2010]

I Their primary analysis found that the ATE is -0.76 (s.e. 0.17).

I Sensitivity analysis can be summarized with a single calibration plot:

Figure 5 of Blattman and Annan [2010].



Three components of sensitivity analysis

1. Model augmentation: Need to extend the model used by primary
analysis to allow for unmeasured confounding.

2. Statistical inference: Vary the sensitivity parameter, estimate the
causal effect, and control suitable statistical errors.

3. Interpretation of the results: Sensitivity analysis is often quite
complicated (because we need to probe different “directions” of
unmeasured confounding).



Some issues with the last analysis

Recall the model:

A ⊥⊥ Y (a) | X ,U, for a = 0, 1,

U | X ∼ Bernoulli(0.5),

A | X ,U ∼ Bernoulli(expit(κTX + λU)),

Y (a) | X ,U ∼ N(βa + νTX + δU, σ2) for a = 0, 1,

I Issue 1: The sensitivity parameters (λ, δ) are identifiable in this
model. So it is logically inconsistent for us to vary the sensitivity
parameter.

I Issue 2: In the calibration plot, partial R2 for observed and
unobserved confounders are not directly comparable because they
use different reference models.



Visualization the the identifiability of (λ, δ)
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I Red dots are the MLE;

I Solid curves are rejection regions for the likelihood ratio test;

I Dashed curves are where estimated ATE is reduced by a half.

Lesson: Parametric sensitivity models need to be carefully constructed to
be useful.



What is a sensitivity model?

General setup

Observed data O infer
=⇒ Distribution of the full data F .

Recall our prototypical example: O = (X ,A,Y ),
F = (X ,A,Y (0),Y (1)).

An abstraction
A sensitivity model is a family of distributions Fθ,η of F that satisfies:

1. Augmentation: Setting η = 0 corresponds to a primary analysis
assuming no unmeasured confounders.

2. Model identifiability: Given η, the implied marginal distribution Oθ,η
of the observed data O is identifiable.

Statistical problem
Given η (or the range of η), use the observed data to make inference
about some causal parameter β = β(θ, η).



Understanding sensitivity models

Observational equivalence

I Fθ,η and Fθ′′,η′ are said to be observationally equivalent if
Oθ,η = Oθ′,η′ . We write this as Fθ,η ' Fθ′,η′ .

I Equivalence class [Fθ,η] = {Fθ′,η′ | Fθ,η ' Fθ′,η′}.

Types of sensitivity models

Testable models When Fθ,η is not rich enough, [Fθ,η] is a singleton and
η can be identified from the observed data (should be
avoided in practice).

Global models For any (θ, η) and η′, there exists θ′ s.t. Fθ′,η′ ' Fθ,η.

Separable models For any (θ, η), Fθ,η ' Fθ,0.



A visualization
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Left: Global sensitivity models; Right: Separable sensitivity models.



Model augmentation
In general, there are 3 ways to build a sensitivity model (underlined are
nonidentifiable distributions):

1. Simultaneous model:

fX ,U,A,Y (a)(x , u, a′, y)

=fX (x) · fU|X (u | x) · fA|X ,U(a′ | x , u) · fY (a)|X ,U(y | x , u).

2. Treatment model (also called selection model, primal model, Tukey’s
factorization):

fX ,A,Y (a)(x , a′, y) = fX (x) · fA|Y (a),X (a′ | y , x) · fY (a)|X (y | x).

3. Outcome model (also called pattern mixture model, dual model):

fX ,A,Y (a)(x , a′, y) = fX (x) · fA|X (a′ | x) · fY (a)|A,X (y | a′, x).

Different sensitivity models amount to different ways of specifying the
nonidentifiable distributions [National Research Council, 2010]. Our
paper gives a comprehensive review.



Statistical inference
Modes of inference

1. Point identified sensitivity analysis is performed at a fixed η.

2. Partially identified sensitivity analysis is performed simultaneously
over η ∈ H for a given range H.

Statistical guarantees of interval estimators

1. Confidence interval [CL(O1:n; η),CU(O1:n; η)] satisfies

inf
θ0,η0

Pθ0,η0

{
β(θ0, η0) ∈ [CL(η0),CU(η0)]

}
≥ 1− α.

2. Sensitivity interval (also called uncertainty interval, confidence
interval) [CL(O1:n;H),CU(O1:n;H)] satisfies

inf
θ0,η0

Pθ0,η0

{
β(θ0, η0) ∈ [CL(H),CU(H)]

}
≥ 1− α. (1)

They look almost the same, but (1) is actually equivalent to

inf
θ0,η0

inf
Fθ,η'Fθ0,η0

Pθ0,η0

{
β(θ, η) ∈ [CL(H),CU(H)]

}
≥ 1− α.



Methods for sensitivity analysis

I Point identified sensitivity analysis is basically the same as primary
analysis with known “offset” η.

I Partially identified sensitivity analysis is much harder.

Partially identified inference
Let Fθ0,η0 be the truth. There are essentially two approaches:

Method 1 Directly make inference about the two ends:

βL = inf
η∈H
{β(θ, η) | Fθ,η ' Fθ0,η0},

βU = sup
η∈H
{β(θ, η) | Fθ,η ' Fθ0,η0}.

Method 2 Take the union of point identified interval estimators.



Method 1: Bound estimation

Suppose H = HΓ is indexed by a hyperparameter Γ. Consider

βL(Γ) = inf
η∈HΓ

{β(θ, η) | Fθ,η ' Fθ0,η0}

Method 1.1: Separable bounds

I Suppose Fθ∗,0 ' Fθ0,η0 (existence from global sensitivity model).

I For some models we can solve the optimization analytically and
obtain

βL(Γ) = gL(β∗, Γ)

for known function gL.

I “Separable” because the primary analysis (for β∗) is separated from
the sensitivity analysis. Inference is thus a trivial extension of the
primary analysis.

I Examples: Cornfield’s bound [Cornfield et al., 1959]; E-value [Ding
and VanderWeele, 2016].



Method 1: Bound estimation
Suppose H = HΓ is indexed by a hyperparameter Γ. Consider

βL(Γ) = inf
η∈HΓ

{β(θ, η) | Fθ,η ' Fθ0,η0}

Method 1.2: Tractable bounds
I In other cases we may derive

βL(Γ) = gL(θ∗, Γ)

for some tractable functions gL.

I Can then estimate βL(Γ) by replacing θ∗ with its empirical estimate.

I Inference typically relies on establishing asymptotic normality:

√
n(β̂L − βL)

d→ N(0, σ2
L).

I Example: Vansteelandt et al. [2006]; Yadlowsky et al. [2018].

I Note: With large-sample theory, things get a bit tricky because
confidence/sensitivity intervals can be pointwise or uniform. See
Imbens and Manski [2004]; Stoye [2009].



Method 1: Bound estimation
Suppose H = HΓ is indexed by a hyperparameter Γ. Consider

βL(Γ) = inf
η∈HΓ

{β(θ, η) | Fθ,η ' Fθ0,η0}

Method 1.3: Stochastic programming

I Suppose the model is separable and we may write
β(θ, η) = Eθ,η[β(O; η)] = Eθ,0[β(O; η)].

I βL(Γ) is then the optimal value for the optimization problem

minimize Eθ0,0[β(O; η)]

subject to η ∈ HΓ.

I This is known as stochastic programming in the optimization
literature. Solving the empirical version of the optimization problem
is known as sample average approximation.

I In nice problems with compact HΓ, the sample optimal value has a
central limit theorem [Shapiro et al., 2014].

I Example: Tudball et al. [2019].



Method 2: Combining point identified inference
Method 2.1: Union confidence interval
I Suppose [CL(η),CU(η)] are confidence intervals that satisfy

inf
θ0,η0

Pθ0,η0

{
β(θ0, η0) ∈ [CL(η0),CU(η0)]

}
≥ 1− α.

I Then [CL(H),CU(H)] = ∪η∈H [CL(η),CU(η)] is a sensitivity interval:

inf
θ0,η0

Pθ0,η0

{
β(θ0, η0) ∈ [CL(H),CU(H)]

}
≥ 1− α.

I Proof is a simple application of the union bound.

I Note: Can be improved to cover the partially identified region if the
intervals have the same tail probabilities [Zhao et al., 2019].

I Using asymptotic theory, we often have

[CL(η),CU(η)] = β̂(η)∓ z1−α2 ·
σ̂(η)√

n

I Computationally challenging because σ̂(η) is usually complicated.



Method 2: Combining point identified inference

Method 2.2: Percentile bootstrap [Zhao et al., 2019]

1. For fixed η, use percentile bootstrap (b indexes data resample):

[CL(η),CU(η)] =
[
Qα

2

(
ˆ̂
βb(η)

)
,Q1−α2

(
ˆ̂
βb(η)

)]
.

2. Use the generalized minimax inequality to interchange quantile and
infimum/supremum:

Percentile bootstrap sensitivity interval

Qα
2

(
inf
η

ˆ̂βb(η)
)
≤ inf

η
Qα

2

(
ˆ̂βb(η)

)
≤ sup

η
Q1−α

2

(
ˆ̂βb(η)

)
Union sensitivity interval

≤ Q1−α
2

(
sup
η

ˆ̂βb(η)
)
.

Advantages

I Computation is reduced to repeating Method 1.3 over resamples.

I Only need coverage guarantee for [CL(η),CU(η)] for fixed η.



An analogue

Point-identified parameter: Efron’s bootstrap

Bootstrap

Point estimator ============⇒ Confidence interval

Partially identified parameter: Three ideas

Optimization Percentile Bootstrap Minimax inequality

Extrema estimator ============⇒ Sensitivity interval



Method 2: Combining point identified inference

Method 2.3: Supreme of p-value

I Rosenbaum’s sensitivity analysis is the hypothesis testing
analogue of Method 2.1 (Union CI).

I Suppose we have valid p-values (for fixed η) that satisfies

inf
θ0,η0

Pθ0,η0{p(O1:n; η0) ≤ α} ≤ α.

I Then their supremum can be used for partially identified inference:

inf
θ0,η0

Pθ0,η0

{
sup
η∈H

p(O1:n; η) ≤ α
}
≤ α

I Rosenbaum [1987, 2002] used randomization tests to construct the
p-value (for matched observational studies).

I He then used Holley’s inequality in probabilistic combinatorics to
efficiently compute sup

η∈H
p(O1:n; η).



Interpretation of sensitivity analysis

Two good ideas

1. Sensitivity value.

2. Calibration using measured confounders.

Idea 1: Sensitivity value

I Sensitivity value (or sensitivity frontier) is the value of the sensitivity
parameter η (or hyperparameter Γ) where some qualitative
conclusions change.

I Example: In Blattman and Annan [2010], this is where the
estimated ATE is halved.

I Example: In Rosenbaum’s sensitivity analysis, this is where we can
no longer reject the causal null hypothesis.

I Analogue to the p-value for the primary analysis.

I Often exists a phase transition for partially identified inference: if Γ
is too large (compared to the treatment effect), can never reject the
causal null even with enormous n [Rosenbaum, 2004; Zhao, 2019].



Interpretation of sensitivity analysis

Calibration using measured confounders

I A practical solution to quantifying the sensitivity.

I Some good heuristics [e.g. Imbens, 2003; Hsu and Small, 2013] but
often with subtle issues. Easier in carefully parameterized models
[Cinelli and Hazlett, 2020].

I No unifying framework, lots of work needed.

I Perhaps what we need is to build calibration into the sensitivity
model (e.g. let HΓ be defined by calibration).



Take-home messages

I Three components of a sensitivity analysis: model augmentation,
statistical inference, interpretation.

I Sensitivity model = Parametrizing the full data distribution =
Overparameterizing the observed data distribution.
Understand them by observational equivalence classes.

I Different ways of model augmentation by different factorizations
of the full data distribution.

I Point identified inference versus partially identified inference.

I Two general approaches for partially identified inference:

1. Bound estimation;
2. Combining point identified inference.

I Two good ideas for interpretation:

1. Sensitivity value;
2. Calibration using measured confounders.

I Lots of future work needed!
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