Discovering Mechanistic Heterogeneity using Mendelian Randomization

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

Joint work with Daniel Iong (who made most of the slides) and Yang Chen

September 26, 2020 @ PCIC
Outline

1 Motivation

2 Mechanistic Heterogeneity in MR

3 MR-PATH
 • Model Assumptions
 • Statistical inference

4 Results
 • HDL-CHD
 • BMI-T2D

5 Conclusion
Mendelian randomization (MR)

- MR = Using genetic variation as instrumental variables.
- Surging interest in epidemiology and genetics.

Number of publications in MR by year (Source: Web of Science).
Example: Causal effect of the LDL-cholesterol

Basic idea: People who inherited certain alleles of \textit{rs17238484} and \textit{rs12916} have \textbf{naturally} higher concentration of LDL cholesterol.
Example: Causal effect of the LDL-cholesterol

Basic idea: People who inherited certain alleles of rs17238484 and rs12916 have naturally higher concentration of LDL cholesterol.
Motivation

Motivation for this work

- **Exclusion restriction**: Instruments (genetic variants) can only affect the outcome through the risk exposure.
 - In MR, this assumption may be violated due to pleiotropy.
 - Many pleiotropy-robust MR methods (e.g. MR-RAPS) have been developed.
- Most robust MR methods rely on the “effect homogeneity” assumption: the risk exposure has the same causal effect for every individual.

Our contributions

1. A novel concept—**Mechanistic heterogeneity**.
2. A transparent mixture model—**MR-PATH**.
For exposure X, outcome Y, unobserved confounding variables U, and SNPs Z_1, \ldots, Z_p, the commonly assumed linear structural equation model is given by

$$X = \sum_{i=1}^{p} \theta_{X_i} Z_i + \eta_X U + E_X,$$

$$Y = \beta X + \sum_{i=1}^{p} \alpha_i Z_i + \eta_Y U + E_Y.$$
Review: Linear structural equation model for MR

\[X = \sum_{i=1}^{p} \theta X_i Z_i + \eta X U + E_X, \]

\[Y = \beta X + \sum_{i=1}^{p} \alpha_i Z_i + \eta Y U + E_Y \]

- If \(Z_i \) is a valid instrument, \(\theta X_i \neq 0 \), \(Z_i \perp \{U, E_X, E_Y\} \), and \(\alpha_i = 0 \).
- However, it is often the case that \(\alpha_i \neq 0 \) due to pleiotropy and multiple causal pathways.
- If \(\alpha_i \neq 0 \) for some SNPs, then the causal effect \(\beta \) cannot be estimated consistently without further assumptions on \(\alpha_i \).
 - e.g. \(\alpha_i \sim N(0, \tau^2) \) for most SNPs.
Two scenarios of mechanistic heterogeneity

(a) Scenario 1: Multiple pathways of horizontal pleiotropy.

(b) Scenario 2: Multiple mechanisms for the exposure X.
Two scenarios of mechanistic heterogeneity

If we interpret the diagrams in the previous slide as linear structural equations as before, we can derive the Wald estimands for each pathway.

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Pathway</th>
<th>Effect of M on X</th>
<th>Effect of M on Y</th>
<th>Wald estimand</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{1,1}, \ldots, Z_{1,p_1}$</td>
<td>M_1</td>
<td>θ_1</td>
<td>$\theta_1 \beta$</td>
<td>β</td>
</tr>
<tr>
<td>$Z_{2,1}, \ldots, Z_{2,p_2}$</td>
<td>M_2</td>
<td>θ_2</td>
<td>$\theta_2 \beta + \alpha_2$</td>
<td>$\beta + \alpha_2/\theta_2$</td>
</tr>
<tr>
<td>$Z_{3,1}, \ldots, Z_{3,p_3}$</td>
<td>M_3</td>
<td>θ_3</td>
<td>$\theta_3 \beta + \alpha_3$</td>
<td>$\beta + \alpha_3/\theta_3$</td>
</tr>
</tbody>
</table>

- SNPs on the same pathway have the same Wald estimand, while SNPs across different pathways generally have different estimands.
- Mechanistic heterogeneity can arise even when all SNPs are valid instruments (Scenario 2).
Mechanism-specific causal effect

The same clustering phenomenon also occurs in nonlinear models.

- It is well known that assuming **monotonicity**, IV nonparametrically estimates the **complier average treatment effect** (Angrist et al., *JASA*, 1996).

- By assuming **monotonicity** and Pearl’s nonparametric structural equation model with independent errors (**NPSEM-IE**), our paper showed that (if X, Z, M are all binary variables)

\[
\begin{align*}
\mathbb{E}[Y(X = 1) - Y(X = 0) \mid X(Z_{kj} = 1) > X(Z_{kj} = 0)] = & \\
= \mathbb{E}[Y(X = 1) - Y(X = 0) \mid X(M_k = 1) > X(M_k = 0)],
\end{align*}
\]

where k indexes the mechanism and j indexes the gene within.
Assumption (Error-in-variables regression)

The observed SNP-exposure and SNP-outcome associations are distributed as

\[
\begin{pmatrix}
\hat{\theta}_X_i \\
\hat{\theta}_Y_i
\end{pmatrix}
\overset{\text{indep.}}{\sim} N\left(
\begin{pmatrix}
\theta X_i \\
\beta_i \theta X_i
\end{pmatrix},
\begin{pmatrix}
\sigma^2 X_i & 0 \\
0 & \sigma^2 Y_i
\end{pmatrix}
\right), \quad i = 1, \ldots, p,
\]

where \(\sigma X_i, \sigma Y_i\) are (fixed) measurement errors.

Assumption (Mixture model for mechanistic heterogeneity)

\[
Z_i \sim \text{Categorical} \left(\pi_1, \ldots, \pi_K\right),
\]

\[
\beta_i | Z_i = k \sim N(\mu_k, \sigma^2_k), \quad k = 1, \ldots, K.
\]
MR-PATH: Statistical Inference

1. Monte-Carlo EM algorithm for obtaining model parameter estimates
2. Approximate confidence intervals for quantifying uncertainty of the estimates
3. Modified Bayesian Information criterion (BIC) for selecting number of clusters

- We perform simulation studies to verify the efficacy of these inference procedures.
- See paper for implementation details.
Example: HDL-CHD

Data (Three-sample MR design)

- **Selection dataset:** Teslovich et al. 2010¹
- **Exposure dataset:** Kettunen et al. 2016²
- **Outcome dataset:** Nikpay et al. 2015³

Example: HDL-CHD

Results of MR-RAPS.

Qingyuan Zhao (Cambridge)
Example: HDL-CHD

Results of MR-PATH (http://danieliong.me/mr-path/.)
Example: HDL-CHD

Results

HDL-CHD

95% Posterior Credible Interval

Cluster membership prob.

Qingyuan Zhao (Cambridge)

MR-PATH

September 26, 2020 @ PCIC
Example: HDL-CHD
Example: BMI-T2D

Data (Three-sample MR design)

- **Selection dataset**: Akiyama et al. 2017\(^1\)
- **Exposure dataset**: Locke et al. 2015\(^2\)
- **Outcome dataset**: Mahajan et al. 2018\(^3\)

Example: BMI-T2D

Results of MR-RAPS.
Example: BMI-T2D

Results of MR-PATH.
Example: BMI-T2D
Example: BMI-T2D

SNP association with peak blood insulin

SNP-specific slope

rs9068222
rs7903146
rs6444082
rs2237892
rs7020996
rs7923837
rs7020996
rs10906111

1 2
Concluding remarks

- A few other related methods:
 - MR-Clust: Constructs mixture model based on SNP-specific Wald estimators.
 - GRAPPLE: A visualization tool that does not attempt to model different mechanisms explicitly.
 - BESIDE-MR: A Bayesian model averaging approach extends the profile likelihood used in MR RAPS.

- Advantages of MR-PATH:
 - Does not require individually strong instruments.
 - Accounts for measurement error in the summary data.
 - An interpretable generative model for multiple causal mechanisms.
 - Potential extensions to multivariable MR with correlated SNPs.

- Further information: http://danieliong.me/mr-path/.