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Precision medicine or Jenga?
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This talk

Motivation
Statistical inference for precision medicine needs to be reliable.

Two attempts

1. Post-selection inference for effect modifiers.
I Reference: Qingyuan Zhao, Dylan S Small, and Ashkan Ertefaie. “Selective inference for

effect modification via the lasso. arXiv:1705.08020 (2017).

2. Sensitivity analysis for individualized treatment rules.
I Reference: Bo Zhang, Jordan Weiss, Dylan S Small, Qingyuan Zhao. “Selecting and ranking

individualized treatment rules with unmeasured confounding”. Journal of the American
Statistical Association 116.533 (2021): 295–308.
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Outline

Post-selection inference for effect modifiers

Sensitivity analysis for individualized treatment rules
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Motivations

Effect modifiction = Treatment effect varies across individuals.

I Equivalently, there is an interaction effect between treatment and covariates.

I Synonyms: heterogeneous treatment effect, subgroup analysis.

Why investigate effect modification?

I Optimal treatment regime (Murphy 2003; Kosorok and Laber 2019).

I Extrapolation of average causal effect to a different population (Stuart et al. 2011).

I Better understanding the causal mechanism (Grobbee and Hoes 2009; VanderWeele and
Robins 2007).

I Make inference less sensitive to unmeasured confounding (Hsu et al. 2013).
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Existing methods

Classical methods: Subgroup analysis and regression analysis
I Prespecified subgroups/interactions:

I Strengths: Free of selection bias; scientifically rigorous.
I Limitations: Cannot test too many; no flexibility.

I Post hoc subgroups [Scheffé, Tukey (1950s)].
I Limitations: Low power.

I Sample splitting: use part of the data for discovery and the other part for confirmation.
I Limitations: Some information is discarded.

More recent methods (list is not complete)

I Bayesian ensemble (Hill 2011; Green and Kern 2010).

I Outcome-weighted classification (Zhao et al. 2012).

I Lasso-regularized regression (Qian and Murphy 2011; Imai and Ratkovic 2013; Tian et al. 2014).

I Tree-based statistical learning (Hsu et al. 2015; Athey et al. 2019; Powers et al. 2018).
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A General Setup

A nonparametric structural mean model:

E[Yi (t) | Xi ] = η(Xi ) + t ·∆(Xi ), i = 1, . . . , n.

I ∆(x) is the parameter of interest.

I Saturated if treatment is binary, t ∈ {0, 1}.
I In this case, ∆(x) = E[Y (1)− Y (0) | X = x ] is the conditional average treatment

effect (CATE).

Assumption (Standard assumptions for point identification)

(A) Consistency of the observed outcome: Yi = Yi (Ti );

(B) Unconfoundedness: Yi (t) ⊥⊥ Ti | Xi , ∀t ∈ T ;

(C) Positivity/Overlap: Var(Ti | Xi = x) exists and is bounded away from 0 for all x.

Randomized experiments would be a special case for (B).
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Prediction or inference?

Objective of most statistical methods: Accurate estimation/prediction

I CATE: ∆(x); or

I Optimal treatment rule: I (∆(x) > 0).

Objective in practice: Often less straightforward
Example: In 2017 Atlantic Causal Inference Conference, a workshop was organized to compare different
approaches to investigate the effect modification. The organizers asked the following questions:

1. Was the (educational) intervention effective?

2. Two variables were hypothesized to modify the treatment effect. Are these hypotheses supported
by empirical data?

3. Are there other effect modifiers?
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One solution: Post-selection inference

Tradeoff: Accuracy vs. Interpretability

Univariate Selected submodel Full model Machine learning

Model of ∆(x) αj + xT
j βj αM̂ + xT

M̂βM̂ α + xT
β e.g. additive trees

Accuracy Poor Good Good Very good

Interpretability Very good Good Poor Very poor

Inference
Easy, but many Need to consider Semiparametric

No clear objective
false positives model selection or high dim. theory

Overview of the method
1. De-confounding: Remove confounding bias without making parametric assumptions.

2. Model selection: Obtain a simple and reasonably good approximation of ∆(x).

3. Post-selection inference: Make statistical inference for the selected submodel.
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Background: Post-selection inference

Suppose we have noisy observations of ∆: Yi = ∆(Xi ) + εi , i = 1, . . . , n.

I Model selection procedure: {Xi ,Yi}ni=1 7→ M̂.

I Conditional confidence interval:

P
((

β∗M
)
j
∈ [D−j ,D

+
j ]
∣∣∣ M̂ =M

)
≥ 1− q, ∀M.

I Submodel parameter:

β∗M = arg min
α,βM

n∑
i=1

(
∆(Xi )− α− XT

i,MβM

)2

.

I Key result (Lee et al. 2016): For linear selection rules (e.g. lasso, forward stepwise)(
β̂M̂

)
j
|AY ≤ b is a truncated normal with mean

(
β∗M̂

)
j
.

I Relaxation of normality and improvement by randomization (Tian and Taylor 2018).
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Background: Eliminate the nuisance parameter

I Back to the causal model (of the observables)

Yi = η(Xi ) + Ti ·∆(Xi ) + εi , i = 1, . . . , n.

I Problem: how to eliminate the nuisance parameter η(x)?

Robinson (1988)’s transformation
Let µy (x) = E[Yi | Xi = x] and µt(x) = E[Ti | Xi = x], so µy (x) = η(x) + µt(x)∆(x). An
equivalent model is

Yi − µy (Xi ) =
(
Ti − µt(Xi )

)
·∆(Xi ) + εi , i = 1, . . . , n.

I The new nuisance parameters µy (x) and µt(x) can be directly estimated from the data.

I This is called R-learning in an independent work by Nie and Wager (2021).
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Our complete proposal

1. Deconfounding: Estimate µy (x) and µt(x) using machine learning algorithms (e.g.
random forest).

2. Model selection: Select a model for effect modification by solving a lasso problem

min
α,β

n∑
i=1

[
(Yi − µ̂y (Xi ))−

(
Ti − µ̂t(Xi )

)
· (α + XT

i β)
]2

+ λ‖β‖1.

3. Selective inference: Use the pivotal statistic in Lee et al. (2016) to obtain selective
confidence intervals of

β∗M̂ = arg min
α,βM̂

n∑
i=1

(Ti − µt(Xi ))2
(
∆(Xi )− α− XT

i,M̂βM̂
)2
.



12/27

Main theoretical result

Assumption

I ‖µ̂t − µt‖2 = op(n−1/4);

I ‖µ̂y − µy‖2 = op(1);

I ‖µ̂t − µt‖2 · ‖µ̂y − µy‖2 = op(n−1/2).

Remark
I Necessary for efficient estimation in partially linear models (Robinson 1988).

I In randomized experiments, µt(x) is known.

Theorem
Under additional assumptions (boundedness of |M̂|, minimal sparse eigenvalue > 0,
smoothness of the pivot), the selective confidence interval is asymptotically valid.
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Real data example

Motivation: An epidemiological study

I Visser et al. “Elevated C-reactive protein levels in overweight and obese adults”. JAMA
282, 1999.

I Prespecified subgroup analysis found effect modification by gender. Within women, they
found effect modification by age group.

The dataset
I We used a more recent dataset from NHANES 2007–2008 and 2009–2010.

I T : obesity (BMI ≥ 25).

I Y : C-reactive protein level.

I X: gender, age, income, race, marital status, education, vigorous work activity, vigorous
recreation activities, smoking, estrogen usage, bronchitis, asthma, emphysema, thyroid,
arthritis, heart attack, stroke, liver condition, gout.

I n = 9677, p = 27 (365 if all the interactions are used).
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Results

Our method
1. Use random forest to estimate µt(x) and µy (x).

2. Use lasso to select a submodel to approximate ∆(x).

3. Use the truncated normal pivot to obtain selective CI.

Estimate p-value CI low CI up
Gender (Female) 0.476 0.000 0.330 0.624 ***

Age -0.019 0.000 -0.024 -0.015 ***
Stroke -0.515 0.311 -0.899 1.256

Gout -0.475 0.493 -0.852 2.295

(a) Using only main effects to model effect modification.

Estimate p-value CI low CI up
Gender (Female) 0.471 0.000 0.323 0.618 ***

Age -0.020 0.000 -0.024 -0.016 ***
Age × Vigorous recreation 0.018 0.371 -0.052 0.027

Age × Stroke -0.036 0.069 -0.054 0.014 .

(b) Using main effects and first-order interactions.
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Naive inference is biased
Data snooping

1. Use random forest to estimate µt(x) and µy (x).

2. Use lasso to select a submodel to approximate ∆(x).

3. Use the usual regression inference ignoring model selection:

lm(Y - µ̂y ∼ (T - µ̂t) X).

Estimate p-value CI low CI up
Gender (Female) 0.476 0.000 0.332 0.620 ***

Age -0.019 0.000 -0.023 -0.015 ***
Stroke -0.514 0.016 -0.933 -0.096 *

Gout -0.473 0.038 -0.919 -0.026 *

(a) Using only main effects to model effect modification.

Estimate p-value CI low CI up
Gender (Female) 0.471 0.000 0.327 0.615 ***

Age -0.020 0.000 -0.024 -0.016 ***
Age × Vigorous recreation 0.018 0.001 0.008 0.028 ***

Age × Stroke -0.036 0.000 -0.055 -0.017 ***

(b) Using main effects and first-order interactions.
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Outline

Post-selection inference for effect modifiers

Sensitivity analysis for individualized treatment rules



17/27

Motivation

Background

I Individualized treatment rule (ITR): r : X → A.

I Optimal treatment regime = ITR with the best value E[Y (r)].

I Dynamic treatment regimes = extension to multiple decision points.

I They are central to precision medicine (see e.g. Kosorok and Laber 2019).

I Existing methods usually assume (sequential) unconfoundedness. This allows us to
estimate the value of any ITR.

Rosenbaum’s sensitivity model
The odds ratio of receiving the treatment for any two individuals with the same observed
covariates is bounded between 1/Γ and Γ (Rosenbaum 1987).

I Γ ≥ 1; Γ = 1 corresponds to no unmeasured confounders.

Our question
How do we select and rank ITRs under Rosenbaum’s sensitivity model?
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Key conclusion: Value 6= Robustness

The estimated value from some observational data assuming ignorability is a poor indicator for
robustness.

A counter-intuitive example
Let r2 �Γ r1 or simply r2 � r1 denote that the value of r2 is always greater than r1 under the
Γ-sensitivity model.
Then, it is possible that

I Under Γ = 1, r2 � r1 � r0 (so r2 � r0);

I Under some Γ > 1, r1 � r0 but r2 6� r0.

Why?

I Value is only partially identified in Rosenbaum’s (and other) sensitivity model.

I So value only induces a partial order between ITRs.
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Notation

Running example: Malaria in West Africa
Dataset from Hsu et al. (2013): 1560 matched pairs of Nigerians.

I Treatment A ∈ A = {0, 1}. A = 1: receives treatment (insecticide spray + drug).

I Covariates X ∈ X (gender and age);

I Outcome Y (amount of malaria-causing parasites in blood).

I ITR r : X → A (six rules: r0, r1, . . . , r5, where ri assigns treatment to the youngest
i × 20%.)

I Potential outcomes Y (0) and Y (1), so Y (r) = Y (0)1{r(X )=0} + Y (1)1{r(X )=1}.

I Value function V (r) = E[Y (r)].
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Comparing two ITRs

No unmeasured confoudners
I The value difference is V (r2)− V (r1) = E[Y (r2)− Y (r1) | r2 6= r1] · P(r2 6= r1).

I In our example (nested ITRs),
V (r2)− V (r1) = E[Y (1)− Y (0) |Age ∈ [7, 20)] · P(Age ∈ [7, 20)).

I Point identified under standard assumptions (consistency, unconfoundedness, positivity).

Unmeasured confoudners
I Define r1 ≺Γ,δ r2 if V (r2)− V (r1) > δ for all distributions in the Γ-sensitivity model.

Can verify this is a partial order.

I Can be tested adapting the studentized test for Neyman’s weak null (Fogarty 2020).
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Comparing multiple ITRs

Related problem: selecting subpopulations

I Suppose we observe Yi
ind.∼ N(µi , 1) for subpopulation i .

I Gibbons et al. (1999) has defined seven possible goals for ranking and selecting
subpopulations.

Our problem
Given R = {r0, r1, . . . , rK}, three goals are relevant for comparing multiple ITRs:

1. What is the ordering of all the ITRs?

2. Which ITRs are among the best?

3. Which ITRs are better than the control rule r0?

Cannot directly use existing methods because ≺Γ is only a partial order.
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Comparing multiple ITRs

Some definitions
I The maximal rules Rmax,Γ are the ones not dominated by others.

I The positive rules Rpos,Γ (or null rules Rnul,Γ) are the ones which dominate (or don’t
dominate) the control rule r0.

Possible objectives

1. Construct a set of ordered ITR pairs, ÔΓ ⊂ {(ri , rj), i , j = 0, . . . ,K , i 6= j}, such that

P(ri ≺Γ rj , ∀(ri , rj) ∈ ÔΓ) ≥ 1− α.

2. Construct R̂max,Γ ⊆ R such that P(Rmax,Γ ⊆ R̂max,Γ) ≥ 1− α.

3. Construct R̂pos,Γ ⊆ R such that P(R̂pos,Γ ∩Rnull,Γ = 6 ∅) ≥ 1− α.

Proposed solution
Use multiple testing procedures that control the family-wise error rate, but use a planning
sample to reduce the number of tests (Heller et al. 2009; Zhao et al. 2018).
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1. Construct a set of ordered ITR pairs, ÔΓ ⊂ {(ri , rj), i , j = 0, . . . ,K , i 6= j}, such that

P(ri ≺Γ rj , ∀(ri , rj) ∈ ÔΓ) ≥ 1− α.
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Objective 1: Ordered pairs

Malaria example: denote Hij : ri 6≺Γ rj .

Ordered hypotheses after using the planning sample

I Γ = 1: H01,H02,H03,H04,H05,H13,H12,H14,H15,H23, . . . .

I Γ = 2: H02,H01,H03,H04,H05,H12,H13,H14,H15,H45, . . . .

r1 r2 r3 r4 r5

r0

|Ô| = 5

r2 r3

r1r4 r5

r0

|Ô| = 7

Hasse diagrams for Γ = 2: Bonferroni’s correction (left) and our proposal (right).
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Objective 2 & 3

Selecting maximal ITRs

I Key observation: P(ri 6≺Γ rj is rejected | ri ∈ Rmax,Γ) ≤ α.

I This motivates us to use all the “leaves” in the Hasse diagram as the maximal elements.

r2 r3

r1r4 r5

r0

=⇒ R̂max = {r2, r3, r4, r5}

I This satisfies P(Rmax,Γ 6⊆ R̂max,Γ) ≤ α if the FWER for ÔΓ is less than α.

Selecting positive ITRs

I Simply needs to test the hypotheses H0i : r0 6≺Γ ri , i = 1, . . . ,K .

I Use the same multiple testing procedure as before.



24/27

Objective 2 & 3

Selecting maximal ITRs

I Key observation: P(ri 6≺Γ rj is rejected | ri ∈ Rmax,Γ) ≤ α.

I This motivates us to use all the “leaves” in the Hasse diagram as the maximal elements.

r2 r3

r1r4 r5

r0

=⇒ R̂max = {r2, r3, r4, r5}

I This satisfies P(Rmax,Γ 6⊆ R̂max,Γ) ≤ α if the FWER for ÔΓ is less than α.
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Malaria example: Results

Γ R̂max,Γ R̂pos,Γ

1.0 {r3, r4, r5} {r1, r2, r3, r4, r5}
1.5 {r2, r3, r4, r5} {r1, r2, r3, r4, r5}
3.5 {r1, r2, r3, r4, r5} {r1, r2, r3}
4.0 {r1, r2, r3, r4, r5} {r1, r2}
6.0 {r0, r1, r2, r3, r4, r5} ∅

I A more complicated example can be found in the paper.
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Discussion

I Another consideration in decision making: Reliability/robustness of causal inference
and individulized treatment.
I Post-selection inference for effect modifiers;
I Selecting ITRs with unmeasured confounders.

I This talk only considered the most classical settings (binary treatment, linear model,
Rosenbaum’s sensitivity model).

I Selective inference for partially identified/ordered problems: a potentially new topic?
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