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Motivating example: Vitamin studies.

In 1990s, several studies have found a strong inverse association of antioxidant vitamins with
cardiovascular disease, cancer, and all-cause mortality.

However, well conducted randomised controlled trials later have shown that supplementation with
antioxidants does not protect against these diseases.

What went wrong? (Figure from D. A. Lawlor et al., The Lancet 363, 1724–1727 (May 2004).)
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Confounder = Common cause of treatment and effect

Vitamin

Health-awareness

Disease

How can we balance observed confounders? Better design (e.g. blocking).

How can we balance unobserved confounders (stochastically)? Randomization!
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Randomization as a basis of inference

Randomization is now widely regarded as the “gold standard” for causal inference. But in the early
days, many people find it difficult to accept.

Example

Suppose a physician is allowed to administer a promising new drug to 5 out of 10 patients.

The physician thinks the best way to prove the effectiveness of the drug is to give it to the 5
patients that are the most ill.

What’s the flaw in this design?

Randomization introduces an objective basis of inference which anyone else can use.
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A mathematical formalization of causal inference

The treatment (e.g. vitamin) and outcome (e.g. disease status) of the ith individual are represented
by two variables, Ai and Yi , respectively.

Key concept: Potential/Counterfactual outcome

Let Yi (a) be the value of the outcome of individual i if the treatment is Ai = a.
There are two ways to interpret this:

Prospectively, Yi (a) is the (potential) value of Yi if we assign treatment value a to this individual.

Retrospectively, Yi (a) is the (counterfactual) value of Yi had this individual received treatment
value a.

Some call this the Neyman-Rubin causal model.
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The inferential problem
Under the N-R model, we are interested in making inference about Yi (1)− Yi (0).
(e.g. Will the disease status be different if we do or do not take vitamin supplements?)

A common presumption for statistical inference is the stable unit treatment value assumption
(SUTVA): Yi = Yi (Ai ) for all i .

This links potential/counterfactual outcomes with realized/factual outcomes.

This can be violated, for example, if there is interference (e.g. if we are studying the effect of a
vaccine).

Fundamental problem of causal inference

Only one potential outcome can ever be observed!

i Yi (0) Yi (1) Ai Yi

1 ? 1 1 1
2 0 ? 0 0
3 ? 0 1 0
...

...
...

...
...
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Imputation of potential outcomes

We are interested in testing the null hypothesis H0 : Yi (0) = Yi (1) for all i .

Under H0, we may impute all the potential outcomes by Yi (0) = Yi (1) = Yi .

Example

i Yi (0) Yi (1) Ai Yi

1 1 1 1 1
2 0 0 0 0
3 0 0 1 0
...

...
...

...
...
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Causal identification

Suppose (Ai ,Yi (0),Yi (1),Xi ), i = 1, . . . , n are independent and identically distributed. We say the
causal effect of A on Y have no unmeasured confounders if

Ai ⊥⊥ Yi (a) | Xi , for a = 0, 1.

Theorem (Identification of average treatment effect)

Assuming SUTVA, no unmeasured confounders, and positivity (i.e. 0 < P(Ai = 1 | Xi ) < 1), we have

E[Yi (1)− Yi (0) | Xi = x ] = E[Yi | Ai = 1,Xi = x ]− E[Yi | Ai = 0,Xi = x ].

Proof: For any a and x,

Yi (a) | Xi = x
d
= Yi (a) | Xi = x ,Ai = a (by unconfoundedness and positivity)

d
= Yi | Xi = x ,Ai = a. (by SUTVA)
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Contingency tables and conditional independence

A simple example

Observed three discrete random variables (e.g., genotypes): (Ai ,Bi ,Ci ), i = 1, . . . , n.

Data as a contingency table: Yabc =
n∑

i=1

1{Ai=a,Bi=b,Ci=c} (a/b/c is a level of A/B/C ).

Let πabc = P(A = a,B = b,C = c). It is common to model the counts by Yabc
ind∼ Poisson(µ ·πabc).

glm formula in R Poisson log-linear model Joint distribution Independence

Y∼A+B+C logµabc = log µ+ log πa + log πb + log πc πabc = πaπbπc A ⊥⊥ B ⊥⊥ C

Y∼A+B*C logµabc = log µ+ log πa + log πbc πabc = πaπbc A ⊥⊥ (B,C)

Y∼A*B+B*C logµabc = log µ+ log πab + log πbc πabc = πabπbc A ⊥⊥ C | B
Y∼A*B+B*C+C*A logµabc = log µ+ log πab + log πbc + log πac πabc = πabπbcπac No (but no three-way

interaction)

Y∼A*B*C logµabc = log µ+ log πabc πabc = πabc No

Qingyuan Zhao (Stats Lab, Cambridge) Causal Inference September, 2022 11 / 28



Contingency tables and conditional independence

A simple example

Observed three discrete random variables (e.g., genotypes): (Ai ,Bi ,Ci ), i = 1, . . . , n.

Data as a contingency table: Yabc =
n∑

i=1

1{Ai=a,Bi=b,Ci=c} (a/b/c is a level of A/B/C ).

Let πabc = P(A = a,B = b,C = c). It is common to model the counts by Yabc
ind∼ Poisson(µ ·πabc).

glm formula in R Poisson log-linear model Joint distribution Independence

Y∼A+B+C logµabc = log µ+ log πa + log πb + log πc πabc = πaπbπc A ⊥⊥ B ⊥⊥ C

Y∼A+B*C logµabc = log µ+ log πa + log πbc πabc = πaπbc A ⊥⊥ (B,C)

Y∼A*B+B*C logµabc = log µ+ log πab + log πbc πabc = πabπbc A ⊥⊥ C | B
Y∼A*B+B*C+C*A logµabc = log µ+ log πab + log πbc + log πac πabc = πabπbcπac No (but no three-way

interaction)

Y∼A*B*C logµabc = log µ+ log πabc πabc = πabc No

Qingyuan Zhao (Stats Lab, Cambridge) Causal Inference September, 2022 11 / 28



Undirected graphical models

Add an edge if there is an interaction in the joint distribution.

Blocking all paths ⇒ conditional independence.

A

B C

(a) Formula Y∼A+B+C ⇒ A ⊥⊥ B ⊥⊥ C .

A

B C

(b) Formula Y∼A+B*C ⇒ A ⊥⊥ (B,C).

A

B C

(c) Formula Y∼A*B+B*C ⇒ A ⊥⊥ C | B.

A

B C

(d) Formula Y∼A*B+B*C+C*A or Y∼A*B*C.
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Undirected graphical models: Rigorous definitions

Basic theorem: Hammersley-Clifford

Suppose X has a positive mass/density function fX (·), then

fX (x) =
∏

clique C⊆V

ψC (xC ) for some ψC (·),C ⊆ V︸ ︷︷ ︸
f factories according to G

⇐⇒ J ⊥⊥ K | L [G]⇒ XJ ⊥⊥ XK | XL,∀distinct J,K , L ⊂ V︸ ︷︷ ︸
‘’Global Markov property”

.
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Undirected graphical models: Examples

A

B C

A

B C

glm formula Poisson log-linear model Joint distribution Independence

Y∼A+B*C logµabc = log µ+ log πa + log πbc πabc = πaπbc A ⊥⊥ (B,C)

Y∼A*B+B*C logµabc = log µ+ log πab + log πbc πabc = πabπbc A ⊥⊥ C | B

Verify that the joint distribution factories according to the corresponding graph.

Verify conditional independence by graph separation.
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DAG models

Graph terminology

Directed graph = all edges are directed.

Path is a sequence of distinct, adjacent nodes. Directed path = all arrows are going “forward”.

Cycle is a directed path with the modification that the first and last nodes are the same.

Directed acyclic graph (DAG) = directed graph with no cycles.

If A→ B, A ∈ pa(B) parent set of B; B ∈ ch(A) child set of A.

Ancestors = parents, parents of parents, ...; Descendants = children, children of children, ....

We say the distribution of X factories according to a DAG G (also called a Bayesian network) if its
density satisfies

f (x) =
∏
i∈V

fi|pa(i)(xi | xpa(i)),

where fi|pa(i)(xi | xpa(i)) is the conditional density of Xi given Xpa(i).
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DAG factorisation: Examples

1

2

3

4

5

6

7

f (x) = f (x1)f (x2 | x1)f (x3 | x1)f (x4 | x2, x3)f (x5 | x2)f (x6 | x3, x4)f (x7 | x4, x5, x6).

(To simplify notation, we omit the subscripts indexing density functions.)
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DAG models: Conditional independence
In undirected graphical models, factorisation is equivalent to the global Markov property (conditional
independence by graph separation). How do we test XJ ⊥⊥ XK | XL in DAG models?

Conditional independence: Intuitions

X1 X2 X3

chain/mediator

X1

X2

X3

fork/confounder

X1

X2

X3

collider

Figure: Possible DAGs with 3 vertices and 2 edges.

X1 ⊥⊥ X3 is true in graph 3 but not in 1 & 2.

X1 ⊥⊥ X3 | X2 is true in graphs 1 & 2 but not in 3.

Exercise: verify these by using the DAG factorisation.
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Graphical criteria
Suppose we are interested in testing XJ ⊥⊥ XK | XL.

Converting to undirected graph

1 Obtain the subgraph containing J, K , L, and
their ancestors;

2 Moralisation: join parents with a common
child; then ignores all direction edges.

3 Examine whether L blocks J from K .

d-separation

In B → A← C , A is called a collider.

A path is blocked by L ⊆ V if there exists A
on the path such that either

I A is not a collider and A ∈ L; or
I A is a collider and A and all its descendants

are not in L;

J and K are d-separated by L (written as
J ⊥⊥ K | L [G]) if every path from J to K is
blocked by L.

Theorem
1 These two criteria are equivalent.

2 Factorisation according to DAG G ⇐⇒ J ⊥⊥ K | L [G]⇒ XJ ⊥⊥ XK | XL,∀distinct J,K , L ⊂ V︸ ︷︷ ︸
Global Markov property

.
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Graph separation: Examples

1

2

3

4

5

6

7

1 X2 6⊥⊥ X6 | X4 (2← 1→ 3→ 6 is unblocked);

2 X5 6⊥⊥ X6 | X4 (5← 2→ 4← 3→ 6 and 5← 2← 1→ 3→ 6 are unblocked);

3 X5 ⊥⊥ X6 | {X3,X4};
Exercise: verify X2 6⊥⊥ X6 | X3 and X2 6⊥⊥ X7 | {X4,X5}.
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Causal inference: Correlation is not causation

Up till now, graphs are used to model the distribution of observed data.

However, the model may not generalise to other settings.

Example

Imagine we have only observed X1,X3,X4 (three proteins) but not X2 (another protein).

X1

X2

X3 X4

(a) True causal DAG ⇒ X1 ⊥⊥ X4,X1 6⊥⊥ X4 | X3.

X1 X3 X4

(b) Encodes the same conditional independence relations.

Figure: Arrow in probabilistic DAG models 6= causality.
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Causal DAGs
A causal graphical model means that the (almost same) graph also holds under interventions.

Example in last slide: X1 → X3 ← X4 is a probabilistic DAG but not a causal DAG.

Formalising causality: Two cultures

Structural equation models (SEMs)

Xj = gj(Xpa(j), εj), j ∈ V .

gj(·) describes how Xj depends on its parents
mechanically.

εj is noise variable.

Structural/causal: if we make an intervention
and change some of Xpa(j), the equations still
hold.

Counterfactuals/Potential outcomes

For k ∈ pa(j), recursively define

Xj(xk) = gj(xk ,Xpa(j)\{k}(xk), εj).

For example, in the graph
X1 → X2 → X3 X1 → X3, we have

X2(x1) = g2(x1, ε2),

X3(x1) = g3(x1,X2(x1), ε3).

May define causal effect of X1 on X3 as
X3(x1)− X3(x ′1).
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Graphical criterion for causal identification

Theorem (Backdoor adjustment/Confounder adjustment, Pearl)

A

U X

Y

We have E[Y (A = 1)− Y (A = 0) | X = x ] = E[Y | A = 1,X = x ]− E[Y | A = 0,X = x ] if

X blocks all “backdoor” paths from A to Y (paths with an arrow into A).

X contains no descendants of A.

Proof: Under these graphical conditions, Y (a) ⊥⊥ A | X . That is, there are no unmeasured
confounders!
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Single-world intervention graphs (SWIGs)
It turns out that there is a nice unification of the potential outcome and graphical approaches to causal
inference: Given a causal DAG, the “single-world” counterfactuals (potential outcomes under the same
intervention) will factorize according to a modified graph:

Split the intervention node into two halves: a random half that inherits all incoming arrows and a
fixed half that inherits all outgoing arrows.

Change (the downstream) variables to the corresponding counterfactuals.

Example

In this example, A and Y (a) are d-separated by X .
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Connections to medicine

It is fair to say that causal inference (especially the potential outcomes approach) is ubiquitous in
clinical research and practice.

Randomized clinical trials were developed after theoretical advancements in the design and
analysis of experiments.

In epidemiology, it is essential to distinguishing causality from correlation by identifying the
correct confounders.

Much of precision medicine is about inferring different aspects of the conditional average
treatment effect E[Y (1)− Y (0) | X ].

Another related problem in precision medicine is dynamic treatment regimes, where we are
interested in designing the optimal sequence of treatment based on information we collected about
the patients.

When there are concerns about unmeasured confounders, instrumental variables provide a
useful strategy to (partially) identify the causal effect.
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Connections to machine learning

To develop artificial intelligence, graphical models were brought in to computer science in 1980s.
They are now ubiquitous in machine learning.

Graphical rules such as d-separation were developed in hope that we can make reasoning
automatic.

Graphical algorithms such as message passing were developed to make probabilistic inference on
graphs. They are now widely used in Bayesian inference.

In reinforcement learning, policy evaluation is closely related to causal effect estimation.

Transfer learning is closely related to generalizability of causal inference.
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