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Outline

Some interesting history

Bristol → Admiral William Penn → William Penn →
Pennsylvania (Penn’s woods).

This talk is based on joint work with

Jingshu Wang, Dylan Small (Penn).

Jack Bowden (Bristol).

Manuscript and slides are available on my webpage
http://www-stat.wharton.upenn.edu/~qyzhao/.

Part 0 Primer of instrumental variable (IV) and Mendelian
randomization (MR).

Part 1 Two-sample IV using heterogeneous samples.

Part 2 New methods for two-sample MR using GWAS summary
statistics.

http://www-stat.wharton.upenn.edu/~qyzhao/
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Causal inference

The general problem of causal inference

Without randomized controlled experiments, can we still
estimate the causal effect of variable X on variable Y?

Three general identification strategies

1 Condition on all common causes of X and Y .

2 Study all causal mechanisms by which X influences Y .

3 Use instrumental variables (IV) or natural experiments.

Z X M Y

C

3 2 2

1 1
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Instrumental variables

Core IV assumptions

1 IV causes the exposure (X ).

2 IV is independent of the unmeasured confounder (C ).

3 IV cannot have any direct effect on the outcome (Y ).

Z X Y

C

1

2
×

3
×
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Why does IV work?

Z X Y

C

γ

×

β

×

Heuristic: Effect of Z on Y entirely goes through X .

Wald ratio estimator

β =
lm(Y ∼ Z )

lm(X ∼ Z )
.

Two-stage least squares (LS)

β = lm(Y ∼ X̂ ), where X̂ = E[X |Z ] = predict(lm(X ∼ Z )).
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Can we trust an IV analysis?

Success of an IV analysis depends on
1 Using good instrument(s).

Can we reasonably justify the core IV assumptions?
Is the IV-exposure association strong enough?

2 Statistical inference.

Can we establish consistency and asymptotic normality?

3 Robustness.

Can we check if the data satisfies the modeling
assumptions?
How sensitive is the conclusion to violations of the
identification and modeling assumptions?
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Mendelian randomization (MR)

A brilliant idea [Katan, 1986, Davey Smith and Ebrahim, 2003]

Use genetic variants as IV.

Recall the three core IV assumptions:

1 Need to find SNPs that are associated with the exposure.
2 Independence of unmeasured confounder is self-evident.

The only minor concern is population stratification.

3 Direct effect on the outcome is possible (pleiotropy).
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Next

Two great ideas

1 Two-sample IV: don’t need the full data (Z ,X ,Y ) for all
individuals.

Use (Z ,X , NA) to estimate lm(X ∼ Z ).
Use (Z , NA,Y ) to estimate lm(Y ∼ Z ).
Dates back at least to Klevmarken [1982] (thanks to David
Pacini). The most well known references are Angrist and
Krueger [1992], Inoue and Solon [2010].

2 MR with GWAS summary statistics: don’t need individual
level data.

Next:

Part 1 What if the two samples are from different populations?

Part 2 New statistical methods for two-sample MR.
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An example

An easy way to confirm heterogeneity of the two samples:
check allele frequency.

SNP Gene Allele
Frequency

Sample a Sample b

rs12916 HMGCR C 0.40 0.43
rs1564348 LPA C 0.18 0.16
rs2072183 NPC1L1 C 0.29 0.25
rs2479409 PCSK9 G 0.32 0.35

Table : The instrumental variables usually have different distributions
in two-sample Mendelian randomization. In this Table we included
four single nucleotide polymorphisms (SNPs) used in Hemani et al.
[2016, Figure 2] to estimate the effect of low-density lipoprotein
(LDL) cholesterol lowering on the risk of coronary heart disease.
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Summary of results

Question

Is this a big problem (for identification and estimation)?

Surprisingly, little is known even though two-sample IV is
widely used in econometrics.

Main messages

Additional untestable assumptions are needed for
identification.

The IV analysis is no longer robust to misspecified
instrument-exposure model.

The two stage LS is not asymptotically efficient.
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Some notations

Data: (zsi , x
s
i , y

s
i ), i = 1, 2, . . . , ns and s ∈ {a, b} is the sample

index.

The two-sample instrumental variable problem

Suppose only Za, xa, Zb, and yb are observed (in other words
ya and xb are not observed).
If x is endogenous, what can we learn about the
exposure-outcome relationship by using the IVs z?
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Message 1: Identification

Assumption Detail 1 2 3 4

(1) Structural model
Y ∼ X : y s

i = g s(xsi , u
s
i )

X X X X
X ∼ Z : xsi = f s(zsi , v

s
i )

(2) Validity of IV zsi ⊥⊥ (usi , v
s
i ) X X X X

(3.1) Linearity of Y ∼ X gb(xi , ui ) = βbxi + ui X X

(3.2) Linearity of X ∼ Z f s(zi , vi ) = (γs)T zi + vi X

(4) Structural invariance f a = f b X X X X

(5) Sampling homogeneity
of noise

va
i

d
= vb

i X

(6) Additivity of X ∼ Z f s(z, v) = f sz (z) + f sv (v) X

(7) Monotonicity f s(z, v) is monotone in z X X

Identifiable estimand βb βb βb
LATE βab

LATE

Table : Summary of some identification results and assumptions. Highlighted
assumptions (4 and 5) are new due to heterogeneity and untestable. Case 3 and 4
consider binary IV and binary exposure. βb

LATE is the local average treatment
effect (LATE) in population b [Angrist, Imbens, and Rubin, 1996].
βab
LATE = βb

LATE × Pb(complier)/Pa(complier).
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A robustness property of one-sample IV

A well known fact

In one-sample IV analysis, two stage LS is robust against
misspecified IV-exposure model.

Why? β can be identified by the estimating equation

E[h(z)(y − xβ)] = 0

for any function h of z.

IV estimate: β̂h =
[ n∑

i=1

yih(zi )
]/[ n∑

i=1

xih(zi )
]
.

Consistent and asymptotically normal if Cov(x , h(z)) 6= 0.

The most efficient choice is h∗(z) = E[x |z].

Two-stage LS: h(z) = zTγ is the best linear
approximation to h∗(z).
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Message 2

Message 2

This robustness property does not carry to two-sample IV with
heterogeneous samples.

Why?

The best parametric approximation depends on the
population!

Buja et al. [2014] described this “conspiracy” of model
misspecification and random design.
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An example of the conspiracy
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Matching

An intuitive solution: make sure the IVs has the same
distribution in both samples, for example by matching.
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Message 3

When the linear IV-exposure model is correctly specified, the
two-stage LS estimator is asymptotically efficient in the class of
limited information estimators

1 In the one-sample setting [Wooldridge, 2010], and

2 In the homogeneous two-sample setting [Inoue and Solon,
2010].

Message 3

The asymptotic efficiency does not carry to two-sample IV with
heterogeneous samples.
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Generalized method of moments (GMM)

Assume all the variables are centered. Let S be the sample
covariance matrix. For example, Ss

zy = (Zs)Tys/ns .

Over-identified estimating equations:

mn(β) = (Sb
zz)−1Sb

zy − (Sa
zz)−1Sa

zxβ.

The class of GMM estimators:

β̂n,W = arg min
β

mn(β)TWmn(β).

Two stage LS: W = Sb
zz .

Optimal choice: W ∝ Cov(mn(β))−1 =
1

nb
(Sb

zz)−1Var(yb
i |zbi ) +

1

na
(Sa

zz)−1β2Var(xa
i |zai ).
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Recap

Three messages of Part I

In two-sample IV with heterogeneous samples,

Additional untestable assumptions are needed for
identification.

The IV analysis is no longer robust to misspecified
instrument-exposure model.

The two stage LS is not asymptotically efficient.

Next:

Part 2 New statistical methods for two-sample MR using just
summary statistics.
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Setup

Suppose we are in an ideal scenario: linearity, homogeneity.

Setup

Suppose we have p SNPs, Z1, . . . ,Zp.

IV-exposure sample lm(X a ∼ Z a
j ).

Population parameter: γj .
Estimator: γ̂j ∼ N(γj , σ

2
j1), available from GWAS.

IV-outcome sample lm(Y b ∼ Zb
j ).

Population parameter: Γj .

Estimator: Γ̂j ∼ N(Γj , σ
2
j2), available from GWAS.

Statistical problem

Suppose Γj = βγj for all j = 1, . . . , p. Can we provide
consistent point estimate and valid confidence interval for β?
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Challenges

1 Measurement error: γ̂j is measured with error, so classical
linear regression cannot be directly applied.

2 Linkage disequilibrium: Γ̂j and Γ̂k (j 6= k) may be
dependent.

Can use uncorrelated SNPs (clumping).

3 How many SNPs should we use?

Selection bias/winner’s curse: typically we only use SNPs
such that |γ̂j |/σj1 is larger than some threshold.
May want toselect SNPs liberally (e.g. p-value ≤ 10−4) to
improve power. However the WR Γ̂j/γ̂j is biased towards 0
due to weak instrument.

4 Pleiotropy: the equation Γj = βγj might not always be
true.

5 ...
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A profile likelihood (PL) approach

A simple setting: γ̂j ∼ N(γj , σ
2
j1), Γ̂j ∼ N(Γj , σ

2
j2), all

independent and variances are known. Γj ≡ βγj .
Log-likelihood:

l(β,γ) = −1

2

 p∑
j=1

(γ̂j − γj)2

σ2
j1

+

p∑
j=1

(Γ̂j − γjβ)2

σ2
j2

 .
Challenge: a lot of nuisance parameters γ1, . . . , γp.

Profile log-likelihood:

l(β) = −1

2

p∑
j=1

(Γ̂j − βγ̂j)2

σ2
j2 + σ2

j1β
2
.

Profile likelihood estimator: β̂ = arg max l(β).

Turns out to be the same as the 2nd order weighted
estimator [Bowden et al., 2017].
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Theoretical results I

Assumption (Variance is O(1/n))

Let n = min(na, nb) be the sample size. There exists C ≥ 1 such that
C−1/n ≤ σ2

j1, σ
2
j2 ≤ C/n for all j .

Assumption (Collective strength of IV)

C−1 ≤ ‖γ‖2
2 ≤ C .

Theorem (Consistency)

If p/n2 → 0 and the above assumption holds, then β̂
p→ β.
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Theoretical results II

Assumption

Suppose p/n→ κ <∞. If κ > 0, there exists δ > 0 such that

1

p1+δ

p∑
j=1

(nγ2
j + 1)1+δ → 0.

Theorem (Asymptotic normality)

Under the preceding assumptions,

V2√
V1

(β̂ − β)
d→ N(0, 1) as n→∞, where

V1 =

p∑
j=1

γ2
j σ

2
j2 + Γ2

j σ
2
j1 + σ2

j1σ
2
j2

(σ2
j2 + σ2

j1β
2)2

= O(n + p), V2 =

p∑
j=1

γ2
j σ

2
j2 + Γ2

j σ
2
j1

(σ2
j2 + σ2

j1β
2)2

= O(n).
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Should we include very weak instruments?

Theorem (Asymptotic normality)

Var(β̂) ≈ V1/V 2
2 , where

V1 =

p∑
j=1

γ2
j σ

2
j2 + Γ2

j σ
2
j1+σ2

j1σ
2
j2

(σ2
j2 + σ2

j1β
2)2

, V2 =

p∑
j=1

γ2
j σ

2
j2 + Γ2

j σ
2
j1

(σ2
j2 + σ2

j1β
2)2

.

An important observation

Including extremely weak instruments (|γj |/σj1 � 1) may increase

the variance of β̂.

Selection bias/Winner’s curse

If we select large |γ̂j |/σj1, then |γ̂j | is generally larger than |γj |
(especially if |γj | is small). The Wald ratio Γ̂j/γ̂j is biased towards 0.
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Systematic pleiotropy

A big concern of MR is Γj ≡ βγj may not hold.

A random direct effects model (overdispersion)

Suppose Γj = βγj + αj and the direct effect αj
i .i .d .∼ N(0, τ2).

Profile log-likelihood:

l(β, τ2) = −1

2

[ p∑
j=1

(Γ̂j − βγ̂j)2

τ2 + σ2
j2 + σ2

j1β
2

+ log(τ2 + σ2
j2)

]
.

Failure of the profile likelihood

∂

∂τ2
l(β, τ2) =

1

2

[ p∑
j=1

(Γ̂j − βγ̂j)2

(τ2 + σ2
j2 + σ2

j1β
2)2
− 1

τ2 + σ2
j2

]
.

However, expectation of this score is not 0 at the true (β, τ2).
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Modified score equations

Estimate β and τ2 by solving

0 =
∂

∂β
l(β, τ 2),

0 =

p∑
j=1

σ2
j1

[
(Γ̂j − βγ̂j)2

(τ 2 + σ2
j2 + σ2

j1β
2)2
− 1

τ 2 + σ2
j2+σ2

j1β
2

]
.

Can prove consistency and asymptotic normality under
similar assumptions as before.
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Idiosyncratic pleiotropy

The random effects model αj ∼ N(0, τ2) may fail to
explain some extraordinarily large “outlier”.

Recall the profile log-likelihood

l(β) = −1

2

p∑
j=1

(Γ̂j − βγ̂j)2

σ2
j2 + σ2

j1β
2
.

Problem: A single SNP can have unbounded influence.

Our solution

Robustify the likelihood/estimating equations, in the same
spirit as robust regression (e.g. Huber’s loss, Tukey’s biweight).

Consistency is difficult to prove but seems to be true in
simulations.

Asymptotic normality is still true given consistency.
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Recap

Three estimators proposed

1 No pleiotropy: PL estimator (compare to IVW).

2 Systematic pleiotropy: modified PL score equation
(compare to MR-Egger).

3 Systematic and idiosyncratic pleiotropy: robustified score
equation (compare to ???).

Diagnostic tools

1 Residual Quantile-Quantile plot. Standardized residual is

ε̂j =
Γ̂j − β̂γ̂j

τ̂ 2 + σ2
j2 + σ2

j1β̂
2
.

2 Leave-one-out plot: investigate the influence of a single SNP.

Next: Three real data examples.



Two-Sample
IV

Qingyuan
Zhao

Introduction

Part 1

Part 2

References

29/42

Example 1: BMI and coronary heart disease

Goal of this example

Theory requires us to select independent and relatively
strong instruments.

In the documentation of TwoSampleMR, the same dataset
is used for selection and inference. How large is the
selection bias?

Locke et al. [2015] reported two independent GWAS of
BMI, one for male and one for female.

Design 1: use the female dataset for both selection (based
on |γ̂j |/σj1) and statistical inference.

Design 2: use the female dataset for selection; use the
male dataset for inference.
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Design 1

Biased towards 0 due to selection bias/winner’s curse.
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Design 2

When there is no selection bias, adding weak instruments
(p-value ≈ 10−4) can still reduce the standard error.
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Example 2: LDL-c and coronary heart disease

Goal of this example

Demonstrate the necessity and effectiveness of modifying the
profile likelihood score equation.

Design 2: Two (seemingly) disjoint GWAS are used.
1 Screening: Kettunen et al. [2016] (n = 21555).
2 Inference: GLGC [2013] (n = 173082).

There are 70 SNPs left after selection.
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Example 2: LDL-c and coronary heart disease

Results of mr in TwoSampleMR:

Method β̂ se(β̂)

MR-Egger 0.391 0.040

Weighted median 0.233 0.047

Inverse variance weighted 0.377 0.036

Simple mode 0.319 0.513

Weighted mode 0.432 0.435

Results of our estimators:

Method β̂ se(β̂)

PL (Basic) 0.387 0.025

PL (Overdispersed) 0.369 0.031

PL (Overdispersed, Huber) 0.453 0.031

PL (Overdispersed, Tukey) 0.535 0.032
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Necessity of considering overdispersion

Diagnostic plots for the PL (basic) estimator:
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Outlier???

Diagnostic plots for the PL (overdispersed) estimator:
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Outlier!!!

Diagnostic plots for the PL (overdispersed, Huber) estimator:

The outlier is rs7412. I’d appreciate any biological story.
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Outlier!!!!!!

Diagnostic plots for the PL (overdispersed, Tukey) estimator:

To detect outlier, must use robust initial estimator.
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Example 3: HDL-c and coronary heart disease

Design 2: 59 SNPs after selection.

Results of mr in TwoSampleMR:

Method β̂ se(β̂)

MR-Egger -0.137 0.047

Weighted median -0.126 0.040

Inverse variance weighted -0.138 0.040

Simple mode 0.064 1.438

Weighted mode -0.103 1.475

Results of our estimators:

Method β̂ se(β̂)

PL (Basic) -0.142 0.031

PL (Overdispersed) -0.135 0.041

PL (Overdispersed, Huber) -0.134 0.043

PL (Overdispersed, Tukey) -0.135 0.043
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Diagnosis

Diagnostic plots for the PL (overdispersed, Tukey) estimator:

Looks fine (especially the Q-Q plot).
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Recap

Three messages of Part 2

1 Sample splitting is very important to obtain unbiased
estimator.

2 Pleiotropy (systematic and idiosyncratic) can be handled
by modifying the PL score equation.

3 Theoretical guarantees: statistical consistency and
asymptotic normality.

Discussion

Our results for HDL-c are different from previous studies.
A possible reason is the sample splitting design.

Future work: Goodness-of-fit test of the statistical model.

Good statistical fit ⇒ more confidence in the results??
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