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We congratulate the authors on this thought-provoking paper. Statistical
inference of causality has been thoroughly studied in randomized experiments
or observational studies, but is seldom considered when data from both ob-
servational and interventional settings are available. Peters et al. made an
important contribution by tackling this problem with their notion of invariant
causal prediction (ICP).

At first look, ICP is a corollary of structural equation models, but we think
its value might be much more substantial. Dawid [2000] noticed that causal
researchers are predominately Laplacian determinists, for who “nothing short
of a functional model relating outputs to inputs will do as a description of
nature”. Peters et al. provide an alternative approach that defines causality
by predictability instead of determinism, two different concepts that are not
logically connected [Hoefer, 2016]. In light of Breiman [2001]’s two cultures of
statistics, determinism roughly corresponds to the data modeling culture and
predictability is the spirit of Breiman’s algorithmic modeling culture.

Bearing this difference in mind, Peters et al. do not take a downright pre-
dictability approach in this paper. Rather, they consider two types of assump-
tions: invariant prediction in order to define causality and deterministic model-
ing assumptions such as linearity. This hybrid perspective becomes clear when
comparing the assumptions in Equation (4) to (24), (28) or (31). As a conse-
quence, ICP is able to make causal discovery only when the modeling assump-
tions are correct. The authors take this as a robustness property, but in our
view it also limits the applicability in practice. We did not find in the paper a
summary of the robustness of ICP, so we tried to outline in Table 1 the behavior
of linear ICP when some of its assumptions are not met. We would welcome
the authors’ comments on this summary.

To test the empirical performance of ICP, we use the authors’ software on
a protein signaling network dataset. Sachs et al. [2005] collected a combination
of observational and 9 interventional datasets to infer the causal structure of 11
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Issues ICP’s behavior
a) Intervene on Y (or a missing cause)

⋂
∅

b) Non-linear, non-additive, and/or heteroscedastic
⋂
∅

c) Not enough interventions False causal positives
d) Small sample size ∅
e) Left out a confounder

⋂
∅

f) Left out an unconfounding predictor okay
g) Misspecified model or noise distribution False positives

Table 1: Robustness properties of the ICP procedure. Under certain types of model
misspecification, ICP will return a “model reject”, denoted by ∩∅ (i.e. all subsets
including the empty set are not invariant), rather than produce false positives. (a)
when interventions are performed on Y , no predictor set can be invariant; (b) when the
homoscedastic linear model is misspecified, the prediction rule will vary depending on
the range of the predictors; (c) without enough interventions, the set of causal parents
is unidentifiable, and non-causal invariant sets exist; (d) when the sample size is small,
the hypothesis test for invariance has insufficient power to reject the invariance null,
hence many sets are accepted as invariant; (e) if a confounder is left out, this is
equivalent to intervening on Y ; (f) when an uncounfounding predictor is left out, its
effect is equivalent to i.i.d. noise; (g) under a misspecified noise model, the hypothesis
test may not be sensitive to differences in the noise distribution, leading to low power.

proteins. Using their own method, Sachs et al. [2005] reportedly recovered 15
of the known directed arcs and discovered two new putative links (not shown),
and missed 3 of the interactions which were known in the literature. In contrast,
ICP only makes three causal discoveries. Among them, only one belongs to the
known arcs. The poor performance of ICP on this dataset could be explained
by the overly-restrictive linear model.
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Figure 1: Application of ICP procedure to recover protein signaling network, taking
in turn each of the 11 variables as the response of interest and selecting the subset
of environments in which the response was not perturbed. The invariant set for each
variable can be identified as the parents of that variable in the graph. For 9 of the 11
proteins, ICP rejected the model and reported no discoveries. For the protein PIP2,
ICP correctly identified one parent, PIP3. For the protein PIP3, ICP reported Mek
and Jnk as part of the invariant set, but these do not match any interactions known
in the literature.
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