
Observational Studies () Submitted ; Published

Selective Inference for Effect Modification: An Empirical
Investigation

Qingyuan Zhao qyzhao@wharton.upenn.edu
Department of Statistics
The Wharton School, University of Pennsylvania
Philadelphia, PA 19104, USA

Snigdha Panigrahi psnigdha@umich.edu

Department of Statistics

University of Michigan

Ann Arbor, MI 48109, USA

Abstract

We demonstrate a selective inferential approach for discovering and making confident con-
clusions about treatment effect heterogeneity. Our method consists of two stages. First, we
use Robinson’s transformation to eliminate confounding in the observational study. Next
we select a simple model for effect modification using lasso-regularized regression and then
use recently developed tools in selective inference to make valid statistical inference for
the discovered effect modifiers. We analyze the Mindset Study data-set provided by the
workshop organizers and compare our approach with other benchmark methods.
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1. Methodology and Motivation

1.1 Motivation

In the 2018 Atlantic Causal Inference Conference (ACIC 2018), we were kindly invited to
participate in a workshop titled “Empirical Investigation of Methods for Heterogeneity”.
The workshop organizers provided an observational dataset simulated from the National
Study of Learning Mindsets (Mindset Study hereafter) and tasked the participants to ana-
lyze how treatment effect of the mindset intervention varies among students in the study.
This workshop, in the words of the organizers, “is not intended to be a ‘bake off’ but
rather an opportunity to understand the strengths and weaknesses of methods for address-
ing important scientific questions”. More specifically, the organizers sought answers for the
following three research questions about the Mindset Study:

Question 1: Is the intervention effective in improving student achievement?

Question 2: Do two hypothesized covariates (X1 and X2) moderate the treatment effect?

Question 3: Are there other covariates moderating the treatment effect?

In this report, we will attempt to answer these questions using a method proposed in
our earlier paper (Zhao et al., 2017) which neatly combines Robinson’s transformation
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(Robinson, 1988) to remove confounding and the recently developed selective inferential
framework (Taylor and Tibshirani, 2015) to discover and make confident conclusions about
effect modifiers (covariates moderating the treatment effect).

Effect modification or treatment effect heterogeneity is an old topic in statistics but
has gained lots of attention in recent years, possibly due to the increased complexity of
empirical datasets and the development of new statistical learning methods that are much
more powerful at discovering effect modification. Though the literature on this topic is
massive, an executive summary must include three related but different formulations of this
problem:

1. What is the optimal treatment assignment rule for future experimental objects?

2. What is the conditional average treatment effect (CATE) as a function of the covari-
ates?

3. What are the potential effect modifiers and how certain are we about them?

See Zhao et al. (2017) for more discussion and references. It is obvious that the questions of
the workshop organizers fall into the third category. In fact, we believe this is quite common
in practice. Empirical researchers often want to use observational or experimental data to
test existing scientific hypotheses about effect modification, generate new hypotheses, and
gather information for intelligent decision making. However, prior to Zhao et al. (2017),
majority of the statistical methods in the third category focused on discovering potential
effect modifiers with little attention targeted towards providing statistical inference (such
as confidence intervals for the discovered covariates). When the goal is to calibrate the
strengths of effect modifiers in such problems, the researcher often relies on sample splitting,
where some of the samples are used for discovery and the remaining samples are used for
inference (Athey and Imbens, 2016). However, sample splitting does not optimally utilize
the information in the discovery samples and often results in loss of power. Instead, the
selective inference framework described in this paper does not waste any data, as it leverages
on a conditional approach that only discards the information used in model selection (Lee
et al., 2016; Fithian et al., 2014).

1.2 Main method

To introduce the methodology let’s first fix some notations. Let Y be the observed outcome
(a continuous measure of academic achievement), Z be the binary intervention (0 for control
and 1 for treated), and X = (X1, . . . , Xp) be the covariates (p = 10 in the Mindset Study).
Furthermore, denote Y (0) and Y (1) as the two potential outcomes, thus Y = Y (Z). We
assume that there are no unmeasured confounders throughout the paper, i.e. Y (z) ⊥⊥ Z |X
for z = 0, 1.

Below we will elaborate the two-step method proposed in Zhao et al. (2017):

Step 1 (Robinson’s transformation): Use machine learning methods to estimate µz(x) =
E[Z|X = x] = P(Z = 1|X = x) (the “propensity’ score”) and µy(x) = E[Y |X = x].
Let the estimates be µ̂y(x) and µ̂z(x). In R, there are many off-the-shelf implemen-
tations available to learn µy(x) and µz(x) without any ex ante model specification.
It is helpful to use an algorithm called “cross-fitting” in this step for the purpose of
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proving theoretical properties (Schick, 1986; Chernozhukov et al., 2018). Cross-fitting
is only implemented for the post-workshop analysis. See Section 3.1 for more detail.

Notice that it is straightforward to show (see Zhao et al., 2017) that the CATE
∆(x) = E[Y (1)− Y (0)|X = x] satisfies

E[Y − µy(X) |Z,X] = (Z − µz(X))∆(X) (1)

Step 2 (Statistical inference): By approximating the CATE using a linear model, ∆(x) ≈
β0 + xTβ, equation (1) implies that

Y − µ̂y(X) ≈ (Z − µ̂z(X))(β0 +XTβ) + approximation error + noise.

This motivates us to treat Ỹ = Y−µ̂y(X) as the (transformed) response and X̃ = (Z−
µ̂z(X))X as the (transformed) predictors. We can then use different specifications of
∆(x) to answer the three questions posted by the workshop organizers:

Step 2.1 (answering Question 1): Model CATE by just an intercept term: ∆(x) ≈
β0. In R, we can report the results of the linear regression lm(Ỹ ∼ Z̃) where
Z̃ = Z − µz(X).

Step 2.2 (answering Question 2): Suppose XM are the hypothesized effect mod-
ifiers (X1 and X2 in the Mindset Study). We can model CATE by an intercept
and XM: ∆(x) ≈ β0 +XT

MβM. The coefficient βM can be interpreted as the
coefficient in the best linear approximation to the actual ∆(x). More precisely,
it is defined as (see Zhao et al., 2017):

(β0,βM) = arg min En

[
(Z − µz(X))2(∆(X)− β0 −XT

MβM)2
]
, (2)

where En stands for averaging over the n samples. In R, we can report the results
of the linear regression lm(Ỹ ∼ Z̃ + Z̃ : XM).

Step 2.3 (answering Question 3): Use lasso regularized regression in Tibshirani
(1996) (or potentially other automated variable selection methods) to select a
subset of covariates M̂ ⊆ {1, 2, . . . , p}. More specifically, M̂ contains positions
of non-zero entries in the solution to the following problem:

minimize
n

2
En

[
Ỹ − Z̃(β0 + βTX)

]2
+ λ‖β‖1. (3)

Then we can use the existing selective inference methods to make inference about
the linear submodel ∆(x) ≈ β0 + xT

M̂βM̂ that is selected using the data. The

estimand (β0,βM̂) is defined in the same way as (2) by treating M̂ as fixed.

The central idea behind the selective inferential methods is to base inference upon
a conditional likelihood that truncates the usual (pre-selection) likelihood to the
realizations of data that can lead to the same selection event. Lee et al. (2016)
proposed the first method along this conditional perspective to overcome the bias
encountered in inferring about a data-adaptive target. Assuming Gaussian noise
in a linear regression setting, Lee et al. (2016) derived a pivotal statistic that
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can be computed in closed-form and has a truncated Gaussian law for a class
of polyhedral selection rules including the lasso (3). An implementation of this
method can be found in the selectiveInference R package (Tibshirani et al.,
2017). In principle, more sophisticated selective inference can be used in this
step too. We will explore them in Section 3.

Compared to other methods, the approach outlined above has several appealing proper-
ties. First, the nuisance parameters—µz(x) and µy(x)—are estimated by flexible machine
learning methods. Because Robinson’s transformation is used, each nuisance parameter
only needs to be estimated at rate faster than n−1/4 to ensure asymptotic validity of the
non-selective or selective inference in Step 2 (Zhao et al., 2017). This echos the suggestion
of combining machine learning methods and doubly robust estimation by van der Laan and
Rose (2011); Chernozhukov et al. (2018). Second, all the the scientific questions raised by
workshop organizers can be answered in the same manner. The data analyst only needs
to change the specification of the model for ∆(x). Third, when answering Question 3, an
effective variable selection procedure (such as lasso) can often find an interpretable model
that includes most of the important effect modifiers. Selective inference can then provide
valid statistical significance and confidence interval for the selected effect modifiers. Lastly,
the implementation of this procedure is straightforward by harvesting existing softwares of
machine learning methods and selective inference. We refer the reader to Zhao et al. (2017)
for a more detailed discussion on the strengths and weaknesses of our approach.

1.3 Alternative methods

To provide a more comprehensive picture of our selective inference approach (referred to as
method “lasso” below), we decided before seeing any real data in the Mindset Study that
we would also use four benchmark methods considered in the applied example in Zhao et al.
(2017). These alternative methods are:

Method “naive”: This method simply fits a linear model with all the treatment by co-
variate interactions (and of course all the main effects). In R, we can simply use
lm(Y ∼ Z ∗ X) which is equivalent to lm(Y ∼ Z + X + Z : X). To investigate
effect modification, we can just report results for the interactions. This method is
called “naive” because the linear model may be misspecified and may be insufficient
for removing confounding.

Method “marginal”: After Robinson’s transformation (Step 1 above), this method fits
univariate linear regressions lm(Ỹ ∼ Z̃ + Z̃ : Xj) for j = 1, . . . , p. This is a special
case of Step 2.2 with fixed model M = {j}.

Method “full”: After Step 1, this method fits a full linear model lm(Ỹ ∼ Z̃ + Z̃ : X).
This is a special case of Step 2.2 with fixed model M = {1, 2, . . . , p}.

Method “snooping”: This method is similar to method “lasso” except for the very last
step. Instead of selective inference, it directly reports the results of lm(Ỹ ∼ Z̃ + Z̃ :
XM̂) treating M̂ as given rather than learned from the data. This method is used
as a straw man to illustrate that ignoring model selection (aka “data snooping”) may
lead to over-confident inference.
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2. Workshop results

2.1 Implementation details

In our workshop analysis, we used the random forest (Breiman, 2001) to estimate the
nuisance parameters in Step 1. In particular, we used the “honest” forest implementation
in the grf package (Athey et al., 2018) with tune.parameters = TRUE (so some parameters
will be tuned by cross-validation) and all other options set to default. In Step 2, categorical
covariates are transformed to dummy variables. For example, XC (with five levels: 0, 1, 2,
3, 4) is transformed to XC-1, XC-2, XC-3, XC-4. In Step 2.3, we used the theoretical value
λ = 1.1× E[‖X̃T ε‖∞] (Negahban et al., 2012) for model selection, where ε is the vector of

noise in the outcome. In the real data analysis λ is computed by simulating ε
i.i.d.∼ N(0, σ̂2)

where σ̂2 is the estimated noise level, see Lee et al. (2016). We then used the fixedLassoInf
function in the selectiveInference package to make the selective inference. Details of
the implementation can be found in the supplementary R markdown file.

2.2 Results

By simply specifying an intercept term for ∆(x) as described in Step 2.1, the (weighted)
average treatment effect is estimated to be 0.256 with confidence interval [0.235, 0.277] (this
does not exactly estimate the average treatment effect because of the regression setup, see
equation (2) above). Thus the mindset intervention is indeed effective.

Our results for effect modification are summarized in Figure 1. Notice that although
all the methods are plotted in the same figure for the ease of visualization, they may be
fitting different linear approximations to ∆(x) and the coefficients for the same covariate
may have different meanings. Several covariates (X1, X5, XC-4) are significant using method
“marginal” but non-significant using method “full”, indicating they may be correlated with
the actual effect modifier(s). We find the full model difficult to interpret because it consists
of all the covariates. The lasso-regularized regression selects two covariates, X1 and XC-3,
as potential effect modifiers, and the application of selective inference shows that XC-3

is statistically significant even after adjusting for the model selection. In contrast, the
“snooping” inference that ignores the bias from model selection would incorrectly declare
that X1 is also statistically significant.

To summarize, our workshop analysis suggests that: X1 is possibly an effect modifier
but more data is possibly needed before a decisive conclusion can be made; X2 does not
moderate the treatment effect; XC3 is an important effect modifier that the data supports.
In fact, with selective inference, we are able to estimate the strength of the effect modifier
XC3 through both interval and point estimates.

3. Post-workshop analysis

3.1 More advanced methods

A major objection to the polyhedral pivot in Lee et al. (2016) is that the selective confi-
dence intervals are often excessively long. For example, in Figure 1 (method “lasso”), the
confidence interval of X1 is very asymmetric: most of the confidence interval lies above 0
but the point estimate is indeed negative. More radical example of this kind can be found
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Figure 1: Workshop results: This figure plots the 95% confidence intervals of effect modifi-
cation by the covariates (red solid intervals do not cover 0).

in Table 1 below. This problem is due to the ill-behavior of the polyhedral pivot when the
observed data lies close to the selection boundary. Such phenomenon was observed in the
original article by Lee et al. (2016). More recently Kivaranovic and Leeb (2018) has proven
that the expected length of the selective confidence interval constructed this way is infinity.

3.1.1 Randomized response

To mitigate this problem, Tian and Taylor (2018) proposed to randomize the response
before model selection, thereby smoothing out the selection boundary. This also allows
the statistician to reserve more information in the data during the selection stage, leading
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to increased power in the inference stage. With moderate amount of injected noise, the
increase of inferential power also does not compromise the ability of model selection.

In the effect modification problem, this “randomized lasso” algorithm can be directly
applied in Step 2.3 by replacing (3) with the following optimization problem:

minimize
n

2
En

[
Ỹ − Z̃(β0 + βTX)

]2
+ λ‖β‖1 − ωTβ, (4)

where ω ∼ N (0, τ2Ip) is the injected Gaussian noise. Note that the randomized Lasso has
two tuning parameters, one being the amount of `1-penalty λ and the second one being the
amount of injected noise which is measured by τ2. In our analysis below we will use the
same penalty λ as before and set τ2 = σ̂2/2.

The polyhedral lemma of Lee et al. (2016) no longer applies to randomized lasso because
selection now depends on both the data and the injected noise ω. To construct selective
confidence intervals after randomized lasso, Tian Harris et al. (2016) proposed to use Monte
Carlo and developed a general selective sampler to sample realizations of data truncated
to the randomized selection region. To obtain a point estimate of the coefficient, Panigrahi
et al. (2016) and Panigrahi and Taylor (2018) introduced the “selection-adjusted” maxi-
mum likelihood estimate (selective MLE) that maximizes the conditional likelihood given
the selection event. These latest selective inference methods are implemented as Python
software available at https://github.com/selective-inference/Python-software.

3.1.2 Switching the target of selective inference

In our workshop analysis, the target of selective inference is the partial regression coefficient
βM̂ defined in (2). Alternatively, one might be interested in the full regression coefficient(
β{1,2,...,p}

)
M̂ which contains entries of β{1,2,...,p} that correspond to the selected covariates

XM̂. In other words, instead of targeting all the full regression coefficients as in method
“full” above, this approach focuses only on certain selected entries. The selective inference
framework in Lee et al. (2016) and Tian Harris et al. (2016) can be effortlessly applied to
full regression coefficients because they, like partial regression coefficients, can be written
as linear functions of the underlying parameters (in our case ∆(x)).

3.1.3 Cross-fitting

Cross-fitting (Schick, 1986; Chernozhukov et al., 2018) is a general algorithm in semipara-
metric inference to eliminate the dependence of nuisance parameter estimates on the cor-
responding data point (e.g. dependence of µ̂t(Xi) on Ti). In our case, it simply amounts
to split the data into two halves and estimating µt(Xi) and µy(Xi) in Step 1 using models
trained using the half of the data that does not contain the i-th data point. We imple-
mented this algorithm for our post-workshop analysis. Cross-fitting is useful for proving
theoretical properties of the semiparametric estimator. In practice we rarely find that the
usage of cross-fitting drastically changes the results.

3.2 Results

Table 1 shows the post-workshop analysis results. There are in total four analyses, targeting
partial or full coefficients and using the polyhedral pivot for lasso or selective sampler for
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Table 1: Results of different selective inference methods in the Mindset Study dataset.

Target Selective inference Method Covariate Estimate CI p-value

Partial

Lasso + polyhedral pivot
C1-11 0.223 [-∞, -2.164] 0.005
XC-3 -0.141 [-0.156, ∞] 0.234
X1 -0.025 [-0.042, 0.203] 0.736

Randomized lasso + sampler

S3 -0.013 [-0.060, 0.017] 0.908
C1-4 -0.000 [-0.106, 0.082] 0.675
C1-11 0.121 [-0.339, 0.428] 0.400
XC-3 -0.151 [-0.265, -0.045] 0.004
X4 0.002 [-0.063, 0.046] 0.596

Full

Lasso + polyhedral pivot
C1-11 0.284 [-∞, -2.103] 0.005
XC-3 -0.148 [-0.180, 4.257] 0.256
X1 -0.031 [-4.345, 0.564] 0.872

Randomized lasso + sampler

S3 -0.011 [-0.051, 0.016] 0.214
C1-4 0.061 [-0.092, 0.180] 0.185
C1-11 0.180 [-0.375, 0.505] 0.568
XC-3 -0.139 [-0.293, 0.002] 0.052
X4 0.011 [-0.046, 0.053] 0.819

randomized lasso. Thus the first analysis in Table 1 (lasso + polyhedral pivot) is the same as
method “lasso” in Figure 1 besides we used cross-fitting here. The randomized lasso selects
three more covariates in the post-workshop analysis. This is typically the case due to the
injected noise. However, all selected covariates besides XC-3 are not statistically significant
in the post-selection inference, suggesting that they are probably not effect modifiers.

The biggest advantage of using the randomized lasso and selective sampler is shorter
selective confidence interval (CI). For example, For XC-3, the CI is reduced from [−0.156,∞]
to [−0.265,−0.045]. A careful reader might have noticed that in first row of Table 1, the
naive point estimate for C1-11 obtained by regressing Y on the selected covariates—C1-11,
XC-3, and X1—is not covered by the CI. This can happen if the data is very close to the
decision boundary, see Lee et al. (2016, Fig. 5). The selective MLE point estimates (for
randomized lasso) are always covered by the CIs and close to the center of the CIs in Table 1.
Switching the inferential target from partial coefficients to full coefficients does not seem
to change the results by much. This is likely due to the lack of strong effect modifiers and
the lack of dependence between the covariates. In the full model, the covariate XC-3 is not
significant at level 0.05. One possible explanation is that using a selected model often add
power to the analysis when the data can be accurately described by a sparse generative
model (as opposed to fitting a full model). These observations demonstrate the practical
benefits of using the randomized lasso and selective MLE.

4. Discussion

In this paper we have presented a comprehensive yet transparent approach based on Zhao
et al. (2017) to analyze treatment effect heterogeneity in observational studies. The same
procedure can be applied to randomized experiments as well, and Zhao et al. (2017) has
shown that in this case it is sufficient to estimate µy consistently in order for the polyhedral
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pivot to be asymptotically valid. The proposed procedure can be easily implemented using
existing machine learning packages (to estimate µt and µy) and selective inference softwares.
The R and Python code for our analyses are attached with this report.

We want to re-emphasize some points made in Zhao et al. (2017) about when selective
inference is a good approach for analyzing effect modification. Compared to classical sta-
tistical analysis, the selective inference framework makes it possible to use the same data
to generate new scientific questions and then answer them. This is not useful for the in-
ference of the average treatment effect because it is a deterministic quantity independent
of any model selection. However, selective inference can be tremendously useful for effect
modification especially when the analyst wants to discover effect modifiers using the data
and make some confident conclusions about their effect sizes. We believe that this is indeed
the motivation behind the workshop organizers’ Question 3, making selective inference a
very appealing choice of analyzing datasets like the Mindset Study.

On the other hand, since part of the information in the data is reserved for post-selection
inference, the selective inference framework is sub-optimal at making predictions (in our
case, estimating ∆(x)). There is a long list of literature on estimating the optimal treatment
regime or the CATE from the data. This has become a hot topic recently due to the
availability of flexible machine learning methods. We refer the reader to Zhao et al. (2017)
for some references in this direction. When prediction accuracy is the foremost goal, these
machine learning methods should be preferred to selective inference.

Berk et al. (2013) proposed an alternative post-selection procedure that constructs uni-
versally valid confidence intervals regardless of the model selection algorithm. However
this may be overly conservative when the selection algorithm is pre-specified by the data
analyst (for example, the lasso with a fixed λ). Small (2018) discussed connections of this
alternative approach to observational studies.

The application in effect modification also suggests new research directions for selective
inference. For example, during the workshop several participants attempted to describe the
effect modification using decision trees. Results presented in this way are easy to interpret
and may have immediate implications in decision making. With the nodes and cutoffs
selected in a data-adaptive fashion, this poses yet another post-selection inference problem.
Reserving a hold-out data set for a confirmatory analysis on the effects may lead to a loss of
power that can be potentially avoided with selective inference. Obtaining optimal inference
post exploration via regression trees is an interesting direction for future work.
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