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Will competition-winning
methods for causal inference
also succeed in practice?
Qingyuan Zhao, Luke J. Keele, and Dylan S. Small

University of Pennsylvania

First, we would like to congratulate the authors for successfully hosting the causal
inference data competition (referred to as Competition henceforth) and contribut-
ing a unique and thought-provoking article to the literature. The authors have
provided a comprehensive and timely platform to evaluate the ever-growing num-
ber of methods used for covariate adjustment in observational studies. In our
comment, we don’t generally question the results of the Competition, but we do
wish to emphasize several other key elements about the role statistics plays in
causal inference and observational studies.

TESTING GROUNDS FOR CAUSAL INFERENCE: “IN VITRO” VERSUS
“IN VIVO”

One of the main conclusions learned from this contest was that, “methods
that flexibly model the response surface perform better overall than methods
that fail to do so”. In view of Breiman (2001)’s famous dichotomy, this would
appear to be another triumph for the algorithmic culture of statistical modeling.
Just like hundreds of online machine learning competitions (for example those
hosted by Kaggle), highly adaptive black box algorithms are shown once again
to outperform “traditional” statistical methods such as linear regression.

However, unlike the winners of machine learning competitions, we believe it is
not obvious that a “competition-winning” method for causal inference should be
immediately deployed in practice, even if the competition is as comprehensive as
the one in the paper being discussed. The first reason for our caution is the in-
herent differences between predictive inference and causal inference. In predictive
tasks, it is often straightforward to evaluate the performance of machine learn-
ing methods in real life by simply holding out a test dataset. Thus, it is easy to
create a fair testing ground for predictive methods. Unfortunately, causal infer-
ence methods cannot be evaluated this way because a successful method needs to
predict the outcome in different interventional settings, which are not available
in observational datasets.

Besides the simulation-based comparisons, another testing ground for causal
inference methods is the within-study comparison, where the control group of a
randomized experiment is replaced with an observational comparison group (this
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is discussed in Section 2.1 of the main paper). A good analogue is in vitro (mean-
ing “in the glass” or “in the test tube”) versus in vivo (meaning “in the living”)
experiments in biology. How about change the last two sentences to: Like in vitro
experiments, simulation-based comparisons can test the performance of statisti-
cal methods in highly controlled settings, thus they are simple to implement and
automate. However, they often make the simplifying assumptions that there is no
unmeasured confounding and the overlap assumption is reasonably satisfied, and
thus may not reflect the performance in real studies. Like in vivo experiments,
within-study comparisons yield critical information about the statistical methods
in actual practice, but they are often costly and difficult to conduct. The authors
should be congratulated for a clear advance in the design of “in vitro” exper-
iments for causal inference methods. Just as the predictive competitions have
been so instrumental in advancing the field of machine learning, the Competition
presented in the article has shed new light on the efficacy of flexible black box
methods in causal inference. However, we think further developments of “in vivo”
studies are also extremely important to understand the efficacy and limitations
of causal inference methods in realistic scenarios. The studies in Cook, Shadish
and Wong (2008) and Shadish, Clark and Steiner (2008) are all too rare examples
of what can be learned from “in vivo” investigations.

SOURCES OF ESTIMATION ERROR

A key limitation of the “in vitro” design is the lack of consideration of hidden
bias in real studies. In general, we can describe the estimation error of any causal
effect estimator with the following equation:

Estimator − True causal effect

= Hidden bias︸ ︷︷ ︸
Due to unmeasured confounding

+ Misspecification bias︸ ︷︷ ︸
Due to parametric modeling

+ Noise︸ ︷︷ ︸
Due to finite sample

.

(1)

The first term “hidden bias” is due to poor design of the study and can include
unmeasured confounding bias or collider bias. The next two terms reflect the
familiar bias-variance tradeoff of statistical estimators.

Before commenting on the Competition results, we want to emphasize one point
about the decomposition (1). An implicit claim in (1) is that the hidden bias does
not depend on the particular statistical method used to analyze the data. In other
words, the hidden bias is decided once we determine what data will be collected.
A simple conceptual proof of this is to imagine two estimators that both converge
to the true causal effect when there is no unmeasured confounding. They must
also converge to the same limit when there is unmeasured confounding, because
otherwise the ignorability assumption would be testable by empirical data.

In the Competition (and usually any “in vitro” comparison), the hidden bias
was fixed at zero. Thus, the submitted methods were judged entirely by their
ability to find an appealing bias-variance tradeoff between the last two terms of
(1) in a wide range of simulation settings. While such a comparison certainly
provides valuable information, we worry that readers will lose the big picture and
simply interpret the Competition results as saying that using flexible machine
learning methods is foolproof for valid causal inference. In actual studies we have
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been involved with, however, the foremost concern has almost always been the
hidden bias, the first term in (1). The rationale is that, while misspecification
error is a concern, it is still fixable by statistical methods (at least in principle).
as demonstrated by the Competition In contrast, once hidden bias is present, it
cannot be detected or corrected by any statistical method and will stick with
any subsequent analysis. We will discuss more about designing an observational
study in the next section.

The usefulness of any “in vitro” comparison thus depends on the relative mag-
nitude of the non-statistical hidden bias and the statistical error, i.e. the ratio
between the first term and the last two terms in (1). We think it is quite possible
that the data generating processes in the Competition overstated the magnitude
of misspecification bias relative to what is present in most applications. That is,
the Competition demonstrated clearly that flexible black boxes are very good
at minimizing misspecification bias, but how large is this quantity in real data?
In a recent paper, Keele and Small (2018) find that in a variety of applications,
differences in causal effect estimates between different methods due to misspeci-
fication error tended to be quite small. This suggests that while methods flexibly
modeling the response surface are more robust when misspecification bias is very
large, in many data applications this bias might be much smaller.

DESIGN TRUMPS ANALYSIS: TWO NEW INTERPRETATIONS

In an influential article, Rubin (2008) advocated the motto “design trumps
analysis” and argued that objective observational studies must “be carefully de-
signed to approximate randomized experiments, in particular, without examining
any final outcome data”. Although the three authors of this commentary have
different views on how to use outcome data in the design of observational studies,
we all agree that Rubin’s emphasis on design is appropriate in a broader sense.
Here, we want to offer two new interpretations of “design trumps analysis”.

Our first interpretation is motivated by the decomposition (1), as the hid-
den bias due to poor design cannot be corrected by any statistical estimator.
We believe the most critical stage of an observational study remains the design,
in particular, the selection of the identification strategy. The Competition was
conducted in a setting where “selection on observables” holds. Under this identi-
fication strategy, the quality of the observational study largely depends on which
confounders the investigator decides to collect in the design stage of the study.
As a side remark, frequently it will be more fruitful to find an alternative identi-
fication strategy based on an instrument, a regression discontinuity design, or a
natural experiment. We would argue that evidence for a causal effect is strength-
ened by finding that different plausible identification strategies with different
sources of bias yield similar conclusions (Rosenbaum, 2001).

Even when an observational study is based on selection on observables, other
aspects of the design stage may reduce hidden bias or increase the quality of the
evidence. Specifically, observational studies based on selection on observables will
tend to yield better evidence when combined with the use of quasi-experimental
devices such as multiple control groups and baseline outcomes that examine
whether certain sources of bias are large enough in magnitude to change the qual-
itative conclusions of a study (Cook, Campbell and Shadish, 2002), the selection
of more focused comparisons that reduce unmeasured confounding (Rosenbaum,
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2005), making use of parallel treatments (Rosenbaum, 2006), exploiting instances
instances of “refutability” including testing for hidden bias using negative con-
trol outcomes that aren’t thought to be affected by the treatment (Angrist and
Krueger, 1999; Rosenbaum, 2002; Lipsitch, Tchetgen Tchetgen and Cohen, 2010),
reporting results from sensitivity analyses (Rosenbaum, 1987; Imbens, 2003), and
using “pattern specificity” to make claims convincing (Hill, 1965).

The second new interpretation comes from the main finding of the paper be-
ing discussed: the competition-winning methods all use flexible models for the
response surface and thus have small misspecification bias. Among the methods
that do not model the response surface, ones which flexibly model the assignment
mechanism are also more robust than those which do not. Furthermore, in Section
7.3 the authors find that as long as the response surface is modeled flexibly, no
other characteristic of the methods seems to be associated with the cross-method
performance variation. The authors’ results thus all point to the same conclusion:
the use of a nonparametric model for the response surface (and also the treatment
assignment) is more important than the specific nonparametric estimator used.

THE ROLE OF STATISTICS IN CAUSAL INFERENCE

When causal inference methods are applied to answer questions in scientific
research, most of the time the investigation team will also include at least one
if not several substantive experts. As statisticians, our job is not just to develop
methods that are most efficient and robust in the statistical sense. Another im-
portant part of our job is to communicate and interact with our collaborators. For
this we would like to offer an quote from Box (1979) in his Presidential Address
to the American Statistical Association:

It is widely recognized that the advancement of learning does not proceed by conjec-
ture alone, nor by observation alone, but by an iteration involving both. Certainly,
scientific investigation proceeds by such iteration. Examination of empirical data
inspires a tentative explanation which, when further exposed to reality, may lead
to its modification. This modified explanation is again put in jeopardy by further
exposure to reality, and so on, in a continued alternation between induction and
deduction.

When collaborating with scientists as described by Box, we can think of at least
three other practical concerns beyond the efficiency and robustness properties
examined by the Competition:

Exploratory data analysis (EDA): Can meaningful EDA be performed to
detect/remove anomalies, visualize the data, and assess assumptions of the
statistical inference?

Ease to explain: Is it easy for us to explain the statistical method to our col-
laborators who may lack the technical skill? Is it easy for our collaborators
to explain the method to their peers?

Substantive Input: Can we effectively interact with our collaborators to in-
corporate their expert knowledge to improve the analysis? Transparency of
the analysis may aid such interactions.

In our experience, these are all critical in a successful scientific collaboration.
For example, in the context of observational studies, the statistical method should
facilitate the removal of treated units that are far away from the support of the
control group. This can often be examined after matching by the covariates. As
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another example, if certain covariates are believed to be more important con-
founders by our collaborators, our statistical method should be able to incorpo-
rate this information. This is straightforward for methods based on the treatment
assignment such as matching (c.f. Zubizarreta, 2012; Pimentel et al., 2015) and
propensity score weighting (c.f. Zhao, 2018) by requiring more stringent balanc-
ing constraint on these covariates. These methods may perform slightly (or even
much) worse in the Competition because the response surface is not explicitly
modeled, but their transparency may better aid the data visualization and other
collaborative needs listed above.

Unfortunately, it is nearly impossible to incorporate these considerations into
simulation-based comparisons. In fact, such “in vitro” testing is more challenging
for design-based method because domain knowledge cannot be used (the covari-
ates are usually coded as X1, X2, . . . , with no physical meaning attached). In an
“in vivo” comparison using five empirical applications, Keele and Small (2018)
find that carefully designed matching methods and black box machine learning
methods only modeling the regression surface mostly produce identical results.
Interestingly, in one case they find that prioritizing certain covariates in matching
can substantially change the causal effect estimate. Thus, a priori knowledge can
possibly play an important role in observational studies in practice.

CONCLUSION

We want to thank the authors again for their efforts in creating this data com-
petition. The main message that the response surface should be flexibly modeled
is well received. We welcome the usage of machine learning in causal inference
and we are also thinking about incorporating it in future research designs. One
possibility is to use matching with covariate prioritization and black box methods
in conjunction and check if the results agree, see Keele and Small (2018).

Our main conclusion is that, while machine learning methods have become
indispensable instruments for statisticians in modern large-scale problems, we
should not be complacent and become the “data analyst” of the study. On the
contrary, we should be even more conscientious about the design of an obser-
vational study and continue to find ways to better interact with our scientific
collaborators. For this we would like to end with another quote from Box (1979):

Please can Data Analysts get themselves together again and become whole Statis-
ticians before it is too late? Before they, their employers, and their clients forget
the other equally important parts of the job statisticians should be doing, such as
designing investigations and building models? By invention of the concept of Ex-
perimental Design, Fisher promoted the statistician from a curator of dusty relics
to a valued member of a scientific team, responsible for planning and taking part in
the conduct of an investigation. Let us not allow him to be relegated to his previous
passive and inferior role by an injudicious choice of a name, “Our Data Analyst” is
too close for my liking to “Our Tame Statistician,” a poor thing if that is all he is.
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