Beginning of the story...

- In April 2017 I received a talk advertisement:

 Zhang, Nancy R <nzh@wharton.upenn.edu>
 to stat_dept_all

 Dear All,

 I think this talk will be of interest to many of you (see flyer). **Nancy Cox** is a leader in quantitative genetics and has recently done exciting work on applying causal inference ideas (without describing them as such) to medical and biological sciences.

 ...

- A flyer says she will integrate data from “genome \(\times \) transcriptome \(\times \) electronic health records”.

- I went to the talk. There were many pictures crossing databases, but the hardest math is something like this:

 \[
 \text{GReX}_g = \sum_k \hat{w}_{k,g} X_k .
 \]

- So I didn’t understand much.
Then...

- A few days later, Jingshu (my long time collaborator from graduate school, who is Nancy Zhang’s postdoc) came to me and said: “I discussed with Nancy and I think I understand their procedure. Intuitively it seems correct but I don’t know why.”

- After several hours of heated discussion, we realized that the geneticists were **reinventing the two-stage least squares**. It is also apparent from the references that the authors had no idea about this.
But IV...

- Two-stage least squares is the most widely used method for instrumental variable (IV) regression.
- But I was never a big believer in IV. The first time I learned it, I thought the teacher was being crazy about assuming “no direct effect”. Obviously this is not the teacher’s fault. I was a newbie to causal inference and the whole language seemed so foreign.
- After working on Mendelian randomization I become a believer (now my coauthors probably think I am crazy).

Two points about the story

1. Don’t hesitate to ask questions if you just heard about IV.
2. I hope I will show today that causal inference \approx doing statistics with caution.
So what were the geneticists doing?

1. Regress gene expression on SNPs (GTEx data + Lasso).

\[\hat{GReX}_g = \sum_k \hat{w}_{k,g} X_k. \]

2. Regress trait on *predicted* gene expressions (GWAS data).

Figure: From bioRxiv:020164.
Why does this make sense?

The geneticists are using genetic variation as instrumental variables (IV):

Core IV assumptions

1. IV is associated with the exposure \((X)\).
2. IV is independent of the unmeasured confounder \((C)\).
3. IV cannot have any direct effect on the outcome \((Y)\).
Why does IV work?

Heuristic: Effect of Z on Y entirely goes through X.

Wald’s ratio estimator

$$\hat{\beta} = \frac{\text{Im}(Y \sim Z)}{\text{Im}(X \sim Z)}.$$

Two-stage least squares

$$\hat{\beta} = \text{Im}(Y \sim \hat{X}), \text{ where } \hat{X} = \mathbb{E}[X|Z] = \text{predict(Im}(X \sim Z)).$$

Caveat: cannot directly use the standard error of $\hat{\beta}$ from lm.
An epidemiologist’s perspective

This is just **Mendelian randomization (MR)**!

Brief history of MR

- Publications per year: only 5 in 2003, almost 400 in 2017.

More background

- Epidemiology ≈ Why certain people are ill?
- What’s the **causal effect** of obesity on heart attack?
- Main challenge: Unmeasured confounding.
- MR: No need to enumerate all confounders.
MR = using genetic variants as IVs

"An Epidemiologist’s dream?" (Hernán & Robins, 2006)

Condition 1 No longer a problem with modern GWAS.
Condition 2 Almost comes free in many cases, due to Mendel’s Second Law of random assortment.
 • A minor concern: population stratification
Condition 3 Not clear.
 • A wide-spread phenomenon in genetics called pleiotropy, a.k.a. multi-function of genes.
Different perspectives

Epidemiologists:
- Not necessary to enumerate confounders.
- Exposure X is usually more “downstream” in the causal chain, like BMI or cholesterol level.
- Seeks valid inference (of a single causal effect).

Geneticists:
- How does the genome affect a complex trait?
- Exposure X is more “upstream”, like gene expression or protein abundance.
- Seeks efficient screening method.

Statisticians:
- What’s the most appropriate model for pleiotropy?
- What theoretical guarantee and robustness properties can we provide?
Motivating example

Question
What is the causal effect of Body Mass Index (BMI) on Systolic Blood Pressure (SBP)?

Exposure variable X: BMI.
Outcome variable Y: SBP.

Traditional observational studies
Control for common causes of X and Y:
Confounders C: age, gender, lifestyle (food, smoking, ...) ...

Mendelian randomization
No need to enumerate C, if we have
Instrumental variables Z: genetic variants (SNPs).
This talk: MR using summary data

Individual-level data (restricted access)

Run two-stage least squares (or other methods) on \((X, Y, Z)\).

Summary-level data (using public databases)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BMI-FEM</th>
<th>BMI-MAL</th>
<th>SBP-UKBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>GIANT (female)</td>
<td>GIANT (male)</td>
<td>UKBB</td>
</tr>
<tr>
<td>Sample size</td>
<td>171977</td>
<td>152893</td>
<td>317754</td>
</tr>
<tr>
<td>GWAS</td>
<td>(\text{Im}(X \sim Z_j))</td>
<td>(\text{Im}(X \sim Z_j))</td>
<td>(\text{Im}(Y \sim Z_j))</td>
</tr>
<tr>
<td>Coefficient</td>
<td>Selection</td>
<td>(\hat{\gamma}_j)</td>
<td>(\hat{\Gamma}_j)</td>
</tr>
<tr>
<td>Std. Err.</td>
<td>(\sigma_{Xj})</td>
<td>(\sigma_{Y_j})</td>
<td></td>
</tr>
</tbody>
</table>

Step 1 Use BMI-FEM to select significant \((p\text{-value} \leq 5 \times 10^{-8})\) and uncorrelated SNPs \((p = 25)\).

Step 2 Use BMI-MAL to obtain \((\hat{\gamma}_j, \sigma_{Xj}), j = 1, \ldots, p\).

Step 3 Use SBP-UKBB to obtain \((\hat{\Gamma}_j, \sigma_{Y_j}), j = 1, \ldots, p\).
Model: Errors-in-variables regression

- Observe mutually independent random variables:
 \(\hat{\gamma}_j \sim N(\gamma_j, \sigma^2\gamma_j) \) and \(\hat{\Gamma}_j \sim N(\Gamma_j, \sigma^2\Gamma_j) \).

- For some real number \(\beta_0 \),
 \[\Gamma_j \approx \beta_0 \gamma_j \text{ for almost all } j. \]

- \(\beta_0 \) can be regarded as the “causal effect” of \(X \) on \(Y \).
Example

Figure: Scatter plot of $\hat{\gamma}_j$ versus $\hat{\gamma}_j$ in the BMI-SBP example ($p = 25$). The goal is to fit a straight line across the origin.

- Observation: effects are tiny but many are significant.
Reasonable model?

Some assumptions

1. Measurement error is normal.
2. \((\hat{\gamma}_1, \ldots, \hat{\gamma}_p) \perp \perp (\hat{\Gamma}_1, \ldots, \hat{\Gamma}_p)\).
3. \(\hat{\gamma}_j \perp \perp \hat{\gamma}_k \) and \(\hat{\Gamma}_j \perp \perp \hat{\Gamma}_k\) if \(j \neq k\).
4. (Implicitly) \(\gamma \neq 0\). Otherwise no information for \(\beta_0\).
5. \(\hat{\gamma}_j\) is unbiased: \(E[\hat{\gamma}_j] = \gamma_j\).

Pre-processing guarantees these assumptions

1. Large sample size \(\Rightarrow\) CLT.
2. Two-sample MR: \(\hat{\gamma}\) and \(\hat{\Gamma}\) are computed from independent samples (GIANT males and UKBB).
3. Selecting uncorrelated and significant SNPs using another independent dataset (GIANT females).
MR estimates causal effect

Remaining assumptions

1. Why should the model $\Gamma_j \approx \beta_0 \gamma_j$ be linear?
2. Why is β_0 causal?

Heuristic

Consider the following linear model:

$$
X = \sum_{j=1}^{p} \gamma_j Z_j + \eta_X C + E_X,
$$

$$
Y = \beta_0 X + \eta_Y C + E_Y = \sum_{j=1}^{p} (\beta_0 \gamma_j) Z_j + \ldots
$$

- Key assumption: $Z \perp (C, E_X, E_Y)$, i.e. Z are valid instruments.
Linear model (for summary data) is very robust

- Surprisingly, \(\Gamma_j \approx \beta_0 \gamma_j \) is true if the individual-level model for \((X, Y, Z, C)\) are non-linear.

Heuristic

- Each SNP corresponds to a very small randomized trial.
- Maybe the relationship between \(\Gamma \) and \(\gamma \) is nonlinear, but it is locally linear near \(\gamma = 0 \).

- Can formalize this argument (see the paper) and show:

\[
\beta_0 \approx \lim_{\Delta x \to 0} \frac{\mathbb{E}[Y(X + \Delta x) - Y(X)]}{\Delta x}.
\]

- \(Y(x) \) is the counterfactual or “potential outcome”.
- The approximate linear model is still true even if the \(\hat{\gamma}_j \) are computed from glm(\(Y \sim Z_j \)).
Recap

Recap: Two-sample summary-data MR

\[(\hat{\gamma}_j, \hat{\Gamma}_j, \sigma_{\chi_j}^2, \sigma_{\gamma_j}^2)_{j=1}^p\]
Genetic associations \[\xrightarrow{\text{Inference}}\] Epidemiological causation

Recap: Statistical model

1. Observe mutually independent random variables:
 \[\hat{\gamma}_j \sim N(\gamma_j, \sigma_{\chi_j}^2)\] and \[\hat{\Gamma}_j \sim N(\Gamma_j, \sigma_{\gamma_j}^2)\].
2. For some real number \(\beta_0\), \(\Gamma_j \approx \beta_0 \gamma_j\) for almost all \(j\).

Coming next: Three models of \(\alpha_j = \Gamma_j - \beta_0 \gamma_j\)

1. No pleiotropy: \(\alpha_j \equiv 0\).
2. Systematic pleiotropy: \(\alpha_j \sim N(0, \tau_0^2)\).
3. Systematic and idiosyncratic pleiotropy:
 \[\alpha_j \sim (1 - \epsilon)N(0, \tau_0^2) + \epsilon G.\]
Model 1

Model (No pleiotropy)

The linear model $\Gamma_j = \beta_0 \gamma_j$ is true for every $j = 1, \ldots, p$.

- Log-likelihood of the data (up to additive constant):

$$l(\beta, \gamma_1, \ldots, \gamma_p) = -\frac{1}{2} \left[\sum_{j=1}^{p} \frac{(\hat{\gamma}_j - \gamma_j)^2}{\sigma_j^2 X_j} + \sum_{j=1}^{p} \frac{(\hat{\Gamma}_j - \gamma_j \beta)^2}{\sigma_j^2 Y_j} \right].$$

Profile likelihood

$$l(\beta) = \max_{\gamma} l(\beta, \gamma) = -\frac{1}{2} \sum_{j=1}^{p} \frac{(\hat{\Gamma}_j - \beta \hat{\gamma}_j)^2}{\sigma_j^2 X_j \beta^2 + \sigma_j^2 Y_j}.$$

- Profile score (PS): $\psi(\beta) = (d/d\beta)l(\beta)$.
- Estimator: $\hat{\beta}_{PS} = \arg \max_{\beta} l(\beta)$ solves $\psi(\beta) = 0$.

- Can prove consistency and asymptotic normality.
Diagnostic plots

Residual Q-Q plot

Under model 1, standardized residuals follow $\mathcal{N}(0, 1)$ if $\hat{\beta} = \beta_0$:

$$\hat{t}_j = \frac{\hat{\gamma}_j - \hat{\beta}^\prime \hat{\gamma}_j}{\sqrt{\hat{\beta}^2 \hat{\sigma}^2_{\chi_j} + \hat{\sigma}^2_{\gamma_j}}}.$$

Influence of a single SNP

Using asymptotic expansion or leave-one-out estimate.
Example: BMI-SBP (continued)

- Same three datasets, selected 160 uncorrelated SNPs that have p-values $\leq 10^{-4}$ in BMI-FEM.
- Diagnostic plots:

- Clear overdispersion!
Model 2

- The most likely explanation of the lack of fit is pleiotropy (direct effects).

Heuristic (Direct effect of Z_j is α_j)

\[
X = \sum_{j=1}^{p} \gamma_j Z_j + \eta_X C + E_X,
\]

\[
Y = \beta_0 X + \sum_{j=1}^{p} \alpha_j Z_j + \eta_Y C + E_Y = \sum_{j=1}^{p} \left(\beta_0 \gamma_j + \alpha_j \right) Z_j + \ldots
\]

Model (Systematic pleiotropy)

Assume $\alpha_j = \Gamma_j - \beta_0 \gamma_j \sim i.i.d. \ N(0, \tau_0^2)$ for all j.
Connection to population genetics

We assumed the normal random effects model because of

- The observed overdispersion.
- Statistical convenience.

This is consistent (or not inconsistent) with genetics:

- Fisher’s (1918) infinitesimal model.
- New perspective on pleiotropy:¹

In summary, we conclude that there is an extremely large number of causal variants with tiny effect sizes on height and, moreover, that these are spread very widely across the genome, such that most 100-kb windows contribute to variance in height. More generally, the heritability of complex traits and diseases is spread broadly across the genome (Loh et al., 2015; Shi et al., 2016), implying that a substantial fraction of all genes contribute to variation in disease risk. These observations seem inconsis-

The profile likelihood of Model 2 is given by

\[l(\beta, \tau^2) = -\frac{1}{2} \sum_{j=1}^{p} \frac{(\hat{\Gamma}_j - \beta \hat{\gamma}_j)^2}{\sigma_j^2 \beta^2 + \sigma_{Yj}^2 + \tau^2} + \log(\sigma_{Yj}^2 + \tau^2), \]

Easy to verify

\[\mathbb{E}\left[\frac{\partial}{\partial \beta} l(\beta_0, \tau_0^2) \right] = 0. \]

But the other score function is biased:

\[\frac{\partial}{\partial \tau^2} l(\beta, \tau^2) = \frac{1}{2} \sum_{j=1}^{p} \frac{(\hat{\Gamma}_j - \beta \hat{\gamma}_j)^2}{(\sigma_j^2 \beta^2 + \sigma_{Yj}^2 + \tau^2)^2} - \frac{1}{\sigma_{Yj}^2 + \tau^2}. \]

This is not too surprising as we are profiling out \(p \) nuisance parameters \(\gamma_1, \cdots, \gamma_p \) (the Neyman-Scott problem).
Adjusted profile score

- There exist many ways to modify the profile likelihood.
- We will take the approach of McCullagh and Tibshirani (1990).

Adjusted profile score (APS)

\[
\psi_1(\beta, \tau^2) = -\frac{\partial}{\partial \beta} l(\beta, \tau^2),
\]

\[
\psi_2(\beta, \tau^2) = \sum_{j=1}^{p} \sigma_j^2 \left[\frac{(\hat{\gamma}_j - \beta \hat{\gamma}_j)^2}{(\sigma_j^2 \beta^2 + \sigma_j^2 Y_j + \tau^2)^2} - \frac{1}{\sigma_j^2 \beta^2 + \sigma_j^2 Y_j + \tau^2} \right].
\]

- Trivial root: \(\beta \rightarrow \pm \infty \) or \(\tau^2 \rightarrow \infty \).
- Let \(\hat{\beta}_{APS} \) be the non-trivial finite solution.
- Can prove consistency (non-trivial) and asymptotically normality.
Example: BMI-SBP (continued)

- Same 160 SNPs.

- A clear outlier: rs11191593.
- Slightly underdispersed.
Model 3

Model (Systematic and idiosyncratic pleiotropy)

Most $\alpha_j \sim (1 - \epsilon)N(0, \tau_0^2)$, but some $|\alpha_j|$ might be much larger.

- An asymptotic expansion of $\hat{\beta}_{PS}$:

$$
\hat{\beta}_{PS} = \frac{1 + o_p(1)}{V_2} \sum_{j=1}^{p} \frac{(\hat{r}_j - \beta_0 \hat{\gamma}_j)(\hat{r}_j \sigma^2_{Xj} \beta_0 + \hat{\gamma}_j \sigma^2_{Yj})}{(\sigma^2_{Xj} \beta_0^2 + \sigma^2_{Yj})^2}.
$$

- Problem: a single SNP can have unbounded influence (same for APS).
- Our solution: robustify the adjusted profile score.
A method robust to outliers

- Standardized residual:

\[
t_j(\beta, \tau^2) = \frac{\hat{\Gamma}_j - \beta \hat{\gamma}_j}{\sqrt{\sigma_{X_j}^2 \beta^2 + \sigma_{Y_j}^2 + \tau^2}}.
\]

Robust adjusted profile score (RAPS)

\[
\psi_1^{(\rho)}(\beta, \tau^2) = \sum_{j=1}^{p} \rho'(t_j) \cdot \frac{\partial}{\partial \beta} t_j,
\]

\[
\psi_2^{(\rho)}(\beta, \tau^2) = \sum_{j=1}^{p} \sigma_{X_j}^2 \frac{t_j \cdot \rho'(t_j) - \delta}{\sigma_{X_j}^2 \beta^2 + \sigma_{Y_j}^2 + \tau^2}.
\]

- \(\rho \) is robust loss, \(\delta = \mathbb{E}[T \rho'(T)] \) for \(T \sim \mathcal{N}(0, 1) \).
- Reduces to solution 2 (APS) when \(\rho(t) = t^2 / 2 \).
Example: BMI-SBP (continued)

- Same 160 SNPs.
- Huber’s loss function.

- Influence of the outlier is limited.
Example: BMI-SBP (continued)

- Same 160 SNPs.
- Tukey’s biweight function.

- Influence of the outlier is essentially 0.
Summary of BMI-SBP

<table>
<thead>
<tr>
<th>Method</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile score (PS)</td>
<td>0.61</td>
<td>0.05</td>
</tr>
<tr>
<td>Adjusted PS (APS)</td>
<td>0.30</td>
<td>0.16</td>
</tr>
<tr>
<td>Robust APS (RAPS, Huber)</td>
<td>0.38</td>
<td>0.12</td>
</tr>
<tr>
<td>Robust APS (RAPS, Tukey)</td>
<td>0.40</td>
<td>0.11</td>
</tr>
<tr>
<td>Inverse variance weighted (IVW)</td>
<td>0.47</td>
<td>0.18</td>
</tr>
<tr>
<td>Weighted median</td>
<td>0.33</td>
<td>0.11</td>
</tr>
<tr>
<td>MR Egger</td>
<td>0.51</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Existing meta-analysis methods for MR

1. IVW: weighted average of $\hat{\Gamma}_j/\hat{\gamma}_j$.
2. Weighted median of $\hat{\Gamma}_j/\hat{\gamma}_j$.
3. MR Egger: weighted least squares of $\hat{\Gamma}_j$ against $\hat{\gamma}_j$.

They all ignore measurement error in $\hat{\gamma}_j$ and weak IV bias.
High-level comparison of existing methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Sum. data</th>
<th>EIV</th>
<th>Pleiotropy</th>
<th>Weak</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SLS</td>
<td>?</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>LIML</td>
<td>?</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2SHT</td>
<td>?</td>
<td>✓</td>
<td>idio.</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>IVW</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>?</td>
</tr>
<tr>
<td>Egger</td>
<td>✓</td>
<td>✗</td>
<td>sys.</td>
<td>✗</td>
<td>?</td>
</tr>
<tr>
<td>W. Med.</td>
<td>✓</td>
<td>✗</td>
<td>idio.</td>
<td>✗</td>
<td>?</td>
</tr>
<tr>
<td>Mod. IVW</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>PS</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>APS</td>
<td>✓</td>
<td>✓</td>
<td>idio.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RAPS</td>
<td>✓</td>
<td>✓</td>
<td>idio. & sys.</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Acronyms:
- 2SLS = two-stage least squares;
- LIML = limited information maximum likelihood;
- 2SHT = two-stage hard thresholding;
- EIV = errors in variables.
Another real data example: BMI-BMI

BMI-GIANT: full dataset from the GIANT consortium (i.e. combining BMI-FEM and BMI-MAL), used to select SNPs.

BMI-UKBB-1: half of the UKBB data, used as the “exposure”.

BMI-UKBB-2: another half of UKBB data, used as the “outcome”.

- Because exposure and outcome, $\gamma_j \equiv \Gamma_j$.
- So true $\beta_0 = 1$ and there is no “direct effect”.

BMI-BMI results (GIANT, UKBB-1, UKBB-2)

<table>
<thead>
<tr>
<th>p_{sel}</th>
<th># SNPs</th>
<th>Mean F</th>
<th>IVW</th>
<th>W. Median</th>
<th>W. Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-9</td>
<td>48</td>
<td>78.6</td>
<td>0.983 (0.026)</td>
<td>0.945 (0.039)</td>
<td>0.941 (0.042)</td>
</tr>
<tr>
<td>1e-8</td>
<td>58</td>
<td>69.2</td>
<td>0.983 (0.024)</td>
<td>0.945 (0.039)</td>
<td>0.939 (0.044)</td>
</tr>
<tr>
<td>1e-7</td>
<td>84</td>
<td>55.0</td>
<td>0.988 (0.024)</td>
<td>0.945 (0.036)</td>
<td>0.933 (0.041)</td>
</tr>
<tr>
<td>1e-6</td>
<td>126</td>
<td>44.1</td>
<td>0.986 (0.022)</td>
<td>0.944 (0.034)</td>
<td>0.931 (0.038)</td>
</tr>
<tr>
<td>1e-5</td>
<td>186</td>
<td>34.3</td>
<td>0.986 (0.019)</td>
<td>0.943 (0.033)</td>
<td>0.928 (0.039)</td>
</tr>
<tr>
<td>1e-4</td>
<td>287</td>
<td>26.1</td>
<td>0.981 (0.017)</td>
<td>0.941 (0.031)</td>
<td>0.929 (0.035)</td>
</tr>
<tr>
<td>1e-3</td>
<td>474</td>
<td>18.8</td>
<td>0.955 (0.015)</td>
<td>0.903 (0.027)</td>
<td>0.917 (0.231)</td>
</tr>
<tr>
<td>1e-2</td>
<td>812</td>
<td>12.7</td>
<td>0.928 (0.014)</td>
<td>0.879 (0.023)</td>
<td>0.739 (7.130)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{sel}</th>
<th># SNPs</th>
<th>Median F</th>
<th>Egger</th>
<th>PS</th>
<th>RAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-9</td>
<td>48</td>
<td>51.8</td>
<td>0.926 (0.055)</td>
<td>0.999 (0.023)</td>
<td>0.998 (0.026)</td>
</tr>
<tr>
<td>1e-8</td>
<td>58</td>
<td>42.0</td>
<td>0.928 (0.050)</td>
<td>0.999 (0.023)</td>
<td>0.998 (0.025)</td>
</tr>
<tr>
<td>1e-7</td>
<td>84</td>
<td>32.1</td>
<td>0.905 (0.048)</td>
<td>1.012 (0.021)</td>
<td>1.004 (0.025)</td>
</tr>
<tr>
<td>1e-6</td>
<td>126</td>
<td>27.4</td>
<td>0.881 (0.043)</td>
<td>1.017 (0.019)</td>
<td>1.009 (0.023)</td>
</tr>
<tr>
<td>1e-5</td>
<td>186</td>
<td>21.0</td>
<td>0.874 (0.036)</td>
<td>1.020 (0.018)</td>
<td>1.013 (0.020)</td>
</tr>
<tr>
<td>1e-4</td>
<td>287</td>
<td>15.8</td>
<td>0.921 (0.031)</td>
<td>1.023 (0.017)</td>
<td>1.018 (0.018)</td>
</tr>
<tr>
<td>1e-3</td>
<td>474</td>
<td>10.8</td>
<td>0.913 (0.027)</td>
<td>1.010 (0.016)</td>
<td>1.006 (0.016)</td>
</tr>
<tr>
<td>1e-2</td>
<td>812</td>
<td>5.6</td>
<td>0.909 (0.022)</td>
<td>1.010 (0.015)</td>
<td>1.005 (0.015)</td>
</tr>
</tbody>
</table>
Selection bias (UKBB-1, UKBB-1, UKBB-2)

<table>
<thead>
<tr>
<th>p_{sel}</th>
<th># SNPs</th>
<th>Mean F</th>
<th>IVW</th>
<th>W. Median</th>
<th>W. Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-9</td>
<td>110</td>
<td>68.63</td>
<td>0.851 (0.02)</td>
<td>0.83 (0.025)</td>
<td>0.896 (0.046)</td>
</tr>
<tr>
<td>1e-8</td>
<td>168</td>
<td>57.00</td>
<td>0.823 (0.017)</td>
<td>0.8 (0.022)</td>
<td>0.885 (0.053)</td>
</tr>
<tr>
<td>1e-7</td>
<td>228</td>
<td>50.08</td>
<td>0.799 (0.016)</td>
<td>0.768 (0.019)</td>
<td>0.886 (0.058)</td>
</tr>
<tr>
<td>1e-6</td>
<td>305</td>
<td>43.92</td>
<td>0.761 (0.015)</td>
<td>0.736 (0.019)</td>
<td>0.865 (0.079)</td>
</tr>
<tr>
<td>1e-5</td>
<td>443</td>
<td>36.98</td>
<td>0.721 (0.013)</td>
<td>0.667 (0.016)</td>
<td>0.824 (0.12)</td>
</tr>
<tr>
<td>1e-4</td>
<td>652</td>
<td>30.68</td>
<td>0.678 (0.012)</td>
<td>0.616 (0.015)</td>
<td>0.593 (0.122)</td>
</tr>
<tr>
<td>1e-3</td>
<td>929</td>
<td>25.36</td>
<td>0.629 (0.011)</td>
<td>0.57 (0.014)</td>
<td>0.576 (0.096)</td>
</tr>
<tr>
<td>1e-2</td>
<td>1289</td>
<td>20.70</td>
<td>0.592 (0.01)</td>
<td>0.528 (0.013)</td>
<td>0.554 (0.093)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{sel}</th>
<th># SNPs</th>
<th>Median F</th>
<th>Egger</th>
<th>PS</th>
<th>RAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-9</td>
<td>110</td>
<td>49.20</td>
<td>1.071 (0.051)</td>
<td>0.871 (0.015)</td>
<td>0.862 (0.021)</td>
</tr>
<tr>
<td>1e-8</td>
<td>168</td>
<td>41.12</td>
<td>1.018 (0.046)</td>
<td>0.848 (0.014)</td>
<td>0.831 (0.018)</td>
</tr>
<tr>
<td>1e-7</td>
<td>228</td>
<td>37.12</td>
<td>1.016 (0.043)</td>
<td>0.824 (0.012)</td>
<td>0.803 (0.016)</td>
</tr>
<tr>
<td>1e-6</td>
<td>305</td>
<td>33.68</td>
<td>1.006 (0.041)</td>
<td>0.793 (0.011)</td>
<td>0.763 (0.016)</td>
</tr>
<tr>
<td>1e-5</td>
<td>443</td>
<td>28.74</td>
<td>0.957 (0.037)</td>
<td>0.762 (0.01)</td>
<td>0.716 (0.015)</td>
</tr>
<tr>
<td>1e-4</td>
<td>652</td>
<td>23.23</td>
<td>0.89 (0.033)</td>
<td>0.724 (0.009)</td>
<td>0.66 (0.014)</td>
</tr>
<tr>
<td>1e-3</td>
<td>929</td>
<td>19.12</td>
<td>0.823 (0.03)</td>
<td>0.687 (0.008)</td>
<td>0.594 (0.013)</td>
</tr>
<tr>
<td>1e-2</td>
<td>1289</td>
<td>15.26</td>
<td>0.749 (0.025)</td>
<td>0.657 (0.008)</td>
<td>0.541 (0.012)</td>
</tr>
</tbody>
</table>
This talk

Paper:

Slides:

Software:
- R package mr.raps is currently on CRAN.
- Can be directly called from the TwoSampleMR platform (https://github.com/MRCIEU/TwoSampleMR).
Overview of MR (Epidemiology):

Overview of MR (more Stats):

Human genetics:

Robust MR methods (individual-level data):

Robust MR methods (summary-level data):

- Bowden, J. et al. (2016). Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. *Genetic Epidemiology*.

Pleiotropy:

Questions?

Thank you for your attention!

Next: supplemental slides.

- Some theoretical results for the proposed estimators.
- Additional simulation results.
Some theory for PS

Assumption

\[
\sigma^2_{X_j} = O(1/n) = \sigma^2_{Y_j}. \quad \|\gamma\|_2 \text{ is bounded (even if } p \to \infty).
\]

Heuristic

Linear structural model:
\[
X = \sum_{j=1}^{p} \gamma_j Z_j + \eta_X C + E_X.
\]

- \(\|\gamma\|_2\) is like the variance of \(X\) explained by \(Z\).

Theorem (Consistency)

Under Model 1, \(\hat{\beta}_{PS} \xrightarrow{p} \beta_0\) if \(p/n^2 \to 0.\)
Some theory for PS (continued)

Theorem

Suppose $n \to \infty$, and further p is fixed or $p \to \infty$ but $\|\gamma\|_3/\|\gamma\|_2 \to 0$, then

$$\frac{V_2}{\sqrt{V_1}} (\hat{\beta}_{PS} - \beta_0) \xrightarrow{d} N(0, 1),$$

where

$$V_1 = \sum_{j=1}^{p} \frac{\gamma_j^2 \sigma_{Yj}^2 + \Gamma_j^2 \sigma_{Xj}^2 + \sigma_{Xj}^2 \sigma_{Yj}^2}{(\sigma_{Xj}^2 \beta_0^2 + \sigma_{Yj}^2)^2}, \quad V_2 = \sum_{j=1}^{p} \frac{\gamma_j^2 \sigma_{Yj}^2 + \Gamma_j^2 \sigma_{Xj}^2}{(\sigma_{Xj}^2 \beta_0^2 + \sigma_{Yj}^2)^2}. $$

- V_1 and V_2 can be consistently estimated from data.
- Necessity IV selection: adding Z_{p+1} hurts if $\gamma_{p+1} = 0$. But adding even very weak SNPs usually reduces variance.
Some theory for APS

Theorem

Assume that Model 2 is true, \((\beta_0, p\tau_0^2)\) is in a bounded set \(\mathcal{B}\), \(p \to \infty\) and \(p/n^2 \to 0\). Then

1. With probability going to 1 there exists a solution in \(\mathcal{B}\).
2. All solutions in \(\mathcal{B}\) are consistent: \(\hat{\beta}_{\text{APE}} \xrightarrow{p} \beta_0\) and \(p\hat{\tau}_{\text{APS}}^2 - p\tau_0^2 \xrightarrow{p} 0\).

Can obtain similar asymptotic normality assuming \(p/n \to \lambda \in (0, \infty)\) (see the paper).
Some theory for RAPS

Two goals for robust regression:

- Consistency/asymptotic normality

- General theory is very difficult because we are solving nonlinear equations.

Theorem (Local identifiability)

In Model 2, $E[\psi^{(\rho)}(\beta_0, \tau_0^2)] = 0$ and $E[\nabla \psi^{(\rho)}]$ has full rank.

- Asymptotic normality can be established assuming consistency and additional technical conditions (see the paper).
Simulation setting

- Create simulated datasets to mimic the BMI-SBP example with known β_0.
- $\hat{\gamma}_j \overset{ind.}{\sim} N(\gamma_j, \sigma^2_\chi_j)$ where $(\gamma_j, \sigma^2_\chi_j)$ come from the real data.
- Γ_j are generated in 6 different ways ($\beta_0 = 0.5$):
 - Model 1: $\Gamma_j = \gamma_j \beta_0$ (i.e. $\alpha_j \equiv 0$);
 - Model 2: $\alpha_j \overset{i.i.d.}{\sim} N(0, \tau_0^2)$, where $\tau_0 = 2 \cdot (1/p) \sum_{j=1}^p \sigma_\gamma_j$;
 - Model 3: Same as 2 but add $5 \cdot \tau_0$ to α_1.
- Heavy-tailed α: $\alpha_j \overset{i.i.d.}{\sim} \tau_0 \cdot \text{Lap}(1)$.
- Heteroskedastic α: $\text{Var}(\alpha_j) \propto \gamma_j^2$ and normal.
- Many outliers: Add $5 \cdot \tau_0$ to 10% randomly selected α_j.
Simulation results \((p = 25)\)

- **Black**: boxplot of point estimate over 1000 realizations.
- **Red**: quartile using median standard error.

![Simulation results graph](image_url)
Simulation results \((p = 160)\)

- **Black**: boxplot of point estimate over 1000 realizations.
- **Red**: quartile using median standard error.