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Abstract

Markov chains are widely used to model various dynamical systems that evolve randomly
in time. Differential equations on the other hand model deterministic processes and can
often be handled more easily. It is of interest to us to try to approximate a Markov chain
by a differential equation, since in this way we can get more insight on the behaviour of the
stochastic system.

In this essay we present the general theory and then use it to approximate three different
Markov models from three different application areas.

The first one is a viral model (a biological application) where we apply the homogenization
technique to prove a limit theorem.

The second one is the 3-Satisfiability problem of Computer Science. We analyze an algorithm
which gives us a lower bound for the 3-satisfiability threshold. The method: we investigate a
Markov chain, approximate it by a differential equation using the homogenization technique
again and finally deduce facts about the Markov chain by looking at the ODE. The ODEs
we obtain are the limit as θ→ 0 of the ODEs given in [4].

Finally we consider an application in the area of communication networks, which is a model
of the popular filesharing BitTorrent network. The basic feature of it is the segmentation of
a file into chunks that peers either download or swap in order to get the whole file. We model
the number of users that own a particular set of chunks as a Markov chain. We prove that it
is positive recurrent and then we approximate it by a set of differential equations. Moreover,
we prove, under assumptions, that the stationary process converges to the equilibrium point
of the differential equation.



Supervisor: Prof J.R. Norris

In Chapter 1, I give an overview of the methods that are used in the next chapters. Citations
are given where appropriate.

In Chapter 2, I present an approximation of a viral model which has been analyzed before
and is cited accordingly, but the method that I am using is novel. The idea to apply
the homogenization technique was suggested to me by my supervisor, but the details were
implemented by me.

In Chapter 3, I analyze an algorithm for the 3-Satisfiability problem using differential equa-
tions, in a different way to the ones used before. Again the idea to apply the homogenization
technique was my supervisor’s and I implemented it.

Chapter 4 contains an analysis of BitTorrent, which is joint work with Professor Takis
Konstantopoulos (Heriot-Watt University) and Professor George Kesidis (The Pennsylvania
State University) and will appear in Proceedings of Net-Coop 2008, Springer Lecture Notes
in Computer Science 5425. The detailed formulation of the Markov model as well as all
the calculations for the vector field were done by me. The proof of the convergence to the
differential equation was done originally by me by applying the technique from Chapter
1, but the proof that is presented here is more general and does not require Markovian
assumptions and is due to Takis Konstantopoulos. In this essay I slightly changed the
model and the theorems proved in Section 4.4.2 are my work and citations are given where
appropriate. The simulations were generated by Youngmi Jin, who is a student of George
Kesidis, and I thank them for giving them to me.
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Chapter 1

Fluid limits and homogenization

1.1 General theory

In this chapter we will recall the set-up used in [1] and [2]. In the next chapters we are going
to use this machinery to approximate some Markov chain models by differential equations.

Let X = (Xt)t≥0 be a continuous-time Markov chain in a countable state space S with
generator Q having elements q(ξ, ξ ′) giving the jump rate from ξ to ξ ′ for ξ 6= ξ′. We
assume that q(ξ) (the total jump rate) is finite for all ξ ∈ S and that X does not explode.
Let x be a mapping x : S → Rd. In practice, x will give the coordinates of the Markov
chain that we want to approximate. Then we can write

x(Xt) = x(X0) +Mt +

∫ t

0
β(Xs)ds, (1.1)

where β is the drift vector field

β(ξ) =
∑

ξ′ 6=ξ

q(ξ, ξ′)(x(ξ′)− x(ξ))

and M is a martingale given by

Mt =

∫ t

0

∫

S
(x(y)− x(Xs−))(µ− ν)(ds,dy),

with µ and ν being the following measures:

µ = δ(Jn,Yn), ν(ds,dy) = q(Xs−,dy)ds,

with (Jn)n being the jump times and (Yn)n the embedded discrete time jump chain.

Consider now the following differential equation

ẋt = b(xt),
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started from x0 ∈ U , U being an open subset of Rd, and defined for all t < ζ (maximal
solution) and where b is a Lipschitz vector field chosen to be “close” to β in a sense to be
made explicit below. So xt satisfies the equation

xt = x0 +

∫ t

0
b(xs)ds. (1.2)

Our goal is to prove convergence of the Markov chain, or more precisely of the function x

of the Markov chain, to the solution of the differential equation under some assumptions to
be analyzed below. What we are basically going to do in what follows is to compare the
equations (1.1) and (1.2). To this end, we define the following events:

Ω0 = {|x(X0)− x0| ≤ δ}, Ω1 = {

∫ T∧t0

0
|β(Xt)− b(x(Xt))|dt ≤ δ} and

Ω2 = {

∫ T∧t0

0
α(Xt)dt ≤ At0},

where α is the variance field given by

α(ξ) =
∑

ξ′ 6=ξ

|x(ξ′)− x(ξ)|2q(ξ, ξ′)

and T = inf{t ≥ 0 : x(Xt) /∈ U}.

We assume that b is Lipschitz with Lipschitz constant K on U with respect to the Euclidean
norm |.| and we take t0 such that

∀ξ ∈ S and t ≤ t0, |x(ξ)− xt| ≤ ε =⇒ x(ξ) ∈ U.

We also take ε > 0, δ = εe−Kt0/3 and A > 0. The reason why we define α is to control the
expectation of the square of the martingale term appearing in (1.1), because this martingale
term, M , satisfies the following equation:

M2
t = local martingale +

∫ t

0
α(Xs)ds.

Now we are ready to state the main theorem which we are going to use in various examples.

Theorem 1.1.1. Under the above assumptions, we have the following convergence of the
Markov chain to the solution of the differential equation:

P (sup
t≤t0

|x(Xt)− xt| > ε) ≤
4At0
δ2

+ P (Ωc
0 ∪Ωc

1 ∪Ωc
2). (1.3)

From here we see that in order to have a useful estimate, A must be small compared to ε2.
In the applications to follow, we will always try to prove that the second term appearing in
the right hand side of (1.3) is sufficiently small.

There are many physical models where this theorem can be applied. However, there are
many models of interest where we cannot apply it to approximate a given Markov chain.
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The problem arises, because some components of the Markov chain oscillate rapidly and
randomly and so there is no hope for a differential equation approximation for them. We
may though want to approximate the slow components, but we cannot ignore the presence
of the fast components, because the drift vector field may depend on them. A way to
overcome this problem is proposed in [2]. The idea is to change the coordinate process
by adding a corrector term so that the drift vector field for the modified process loses its
strong dependence on the fast components. We will then be able to approximate using the
machinery already introduced the modified process by a differential equation. Finally, we
will have to prove that the corrector remains small in a suitable sense, so that we can transfer
the approximation back to the original coordinate process which is of interest to us. So, the
question that arises now is how to find the corrector so as to satisfy the above requirements.
In the examples we elaborate, a closed form of the corrector is found and we can get this
in two different ways. Either by straightforward calculations or by using a formula for the
corrector given in [2]. Here is what we need in order to apply the homogenization technique
analysed in [2].

1.2 Homogenization

Suppose that for the coordinate process x the drift vector field is not only a function of
x(ξ) but also a function of the other components that are the “fast” ones, so it is given by
b(x(ξ), y) and Y = y(X) oscillates rapidly and randomly, where y : S → I. In the examples
we will encounter, when we freeze the value of X to some x ∈ S, then the process Y behaves
“aproximately” as a Markov chain with transition rates G = (g(x, y, y ′) : y, y′ ∈ S) for a
fixed x. In our cases, this Markov chain is positive recurrent and so there exists a stationary
distribution which for a fixed x we denote by π(x, y). Now, we set

b̄(x) =
∑

y

b(x, y)π(x, y),

which will give us the vector field for the differential equation.
Next, we consider two Markov chains Y and Z started from y and z respectively each with
the above generator and coupled so that they meet at time T = inf{t ≥ 0 : Yt = Zt}. Here
is then the expression for the corrector:

χ(x, y) = E

[∫ T

0
(b(x,Zt)− b(x, Yt))dt

]
.

We are free to start Z from wherever we like and we are also free to choose the coupling of
the two processes that gives us the smallest corrector. In [2] there are a few assumptions
imposed on b (for instance boundedness of b), which in our cases didn’t hold, but still we
were able to prove that the corrector remained “small” with high probability.

Here is what we do when we apply the homogenization technique:
We change the coordinate process to x̄ by substracting the corrector:

x̄(ξ) = x(ξ)− χ(x(ξ), y(ξ)).

Next, we compute the new drift vector field β̄ for the new coordinate process x̄ and then
we apply Theorem 1.1 with coordinate process x̄, drift vector field β̄ and vector field for the
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differential equation given by b̄ defined above. Hence, we want to show that x̄(Xt) can be
approximated by the solution of the differential equation:

ẋt = b̄(xt).

But, our primary goal was to approximate x, so we want to transfer somehow this ap-
proximation to the original process of interest to us. So, what we are going to do in the
applications to come is to show that the corrector remains small in a suitable sense.
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Chapter 2

Approximation to the viral model

2.1 Introduction

In this chapter we will find a differential equation approximation to the viral model consid-
ered in [1] illustrating the homogenization technique analyzed in [2]. This model has been
analyzed in [1] and a differential equation approximation has been found there. The novelty
here is that we are using the homogenization analysis in order to obtain the corrector and
the vector field for the differential equation. Obviously we will obtain the same differential
equation as in [1]. We also worked out the corrector and it turned out to be the same as
in [1] again, hence the proof of the convergence of the Markov model to the solution of the
differential equation will be exactly the same as the one given in [1] and we will not include
it here. For the sake of completeness though, we will introduce the model here (taken from
[1, p.53]):

There are three species, G, T and P which represent the genome, template and structural
protein of a virus, respectively. We denote by ξ1, ξ2, ξ3 the respective numbers of molecules
of each type. There are six reactions, forming a process which may lead from a single virus
genome to a sustained population of all three species and to the production of the virus.
We write the reactions as follows:

G
λ
−→ T, T

R/α
−−→ ∅, T

R
−→ T +G,

T
RN
−−→ T + P, P

R/µ
−−→ ∅, G+ P

ν/N
−−→ ∅.

Here, α > 1, R ≥ 1, N ≥ 1 and λ, µ, ν > 0 are given parameters that are of order 1. We are
looking for an approximation to the genome process (ξ1

t )t≥0, which in this case is the “slow
” component, while the processes (ξ2

t ) and (ξ3
t ) are the “fast” ones.

2.2 Finding the drift vector field b̄

In order to apply the homogenization technique we firstly have to choose the function b(x, y).
In this example Xt = (ξt

1, ξt
2, ξt

3), x(ξ) = ξ1/R and Y = y(X) = (ξ2, ξ3/N) and the obvious
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choice of b is
b(x, y) = −λx+ y2 − νxy3, where y = (y2, y3).

Given that ξ1/R = x we see that Yt evolves as a Markov chain. The first component
ξ2t evolves as an MλxR/MR

α
/∞ queue and, conditional on ξ2, ξ3t evolves as a queue with

time-dependent arrival rate, i.e. it will be an MRNξ2
t
/MR

µ
/∞ queue. So the Q-matrix

Gx = (g(x, y, y′) : y, y′ ∈ I) will be as follows:

g(x, y, y′) =





λxR, if y′ = y + (1, 0)
R
α y2, if y′ = y − (1, 0)

RNy2, if y′ = y + (0, 1
N )

R
µNy3, if y′ = y − (0, 1

N )

,where y = (y2, y3).

So in this case with this choice of Gx we have that γ(ξ, y′) = g(x(ξ), y(ξ), y′). (This will
give later that ∆2(ξ) = 0.) It can be seen that the matrix Gx is irreducible and positive
recurrent. Positive recurrence can be proved by means of a Lyapunov function. The proof
follows along the same lines as in [5, p.170,171]. Since it is positive recurrent, it follows
that there exists a stationary distribution π(x, y) for each Q-matrix Gx. It seems difficult
or even impossible to calculate the invariant distribution. Though in order to apply the
homogenization technique we need the existence of the stationary distribution and secondly
we need to compute the vector field b̄ which will give us the differential equation ẋt = b̄(xt).
The vector field b̄ is given by

b̄(x) =
∑

y∈I

π(x, y)b(x, y) =
∑

y2,y3

(−λx+ y2 − νxy3)π(x, y) = −λx+Eπ(ξ2t )−
ν

N
xEπ(ξ3t ).

We then see that what we need is the expectation under the stationary distribution of the
first and the second component. For ξ2

t we know that the stationary distribution is Poisson
of parameter αλx, hence the required expectation will be equal to αλx. Now for ξ3

t we will
proceed by finding its Laplace transform. To do so, conditional on ξ2, we express ξ3

t as
follows

ξ3t =

ξ3
0∑

k=1

1(Sk ≥ t) +

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du),

where Sk for k = 1, . . . , ξ3
0 are the service times of the customers that are initially in the

system (at time 0) and m is a Poisson random measure on [0,∞)× [0, 1] of intensity ξ2
sdsdu

and counts the number of customers that came after time 0 and are still in the system.
So, these two summands are independent by the Markov property. Let’s now compute the
Laplace transform of the second summand.

E

[
exp

(
θ

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du)

)]

= E

[
E

[
exp

(
θ

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du)

) ∣∣∣∣ξ
2
s , s ≤ t

]]

By conditioning upon ξ2
s , s ≤ t we actually obtain the integral of a function with respect

to a Poisson random measure of deterministic intensity, which we know how to compute by
Campbell’s formula. Hence,

E

[
exp

(
θ

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du)

)]
= E

[
exp

(
−RN(1− eθ)e−

R
µ

t
∫ t

0
e

R
µ

sξ2sds

)]
.
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Differentiating now with respect to θ we get

d

dθ
E

[
exp

(
θ

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du)

)]∣∣∣∣
θ=0

= E

[
RNe−

R
µ

t
∫ t

0
e

R
µ

sξ2sds

]
. (2.1)

We want to compute the expectation under the stationary distribution, so by interchanging
the integral and the expectation in the last expression using Fubini’s theorem and using the
fact that under stationarity ξ2

t is Poisson(αλx) we obtain that (3.4.2) is equal to

RNe
−R

µ
t
∫ t

0
e

R
µ

s
αλxds = αλµNx− αλµNxe−

R
µ

t
.

Hence, putting things together we deduce that

Eπ

[
ξ3t
]

= Eπ




ξ3
0∑

k=0

1(Sk ≥ t)


+ αλµNx− αλµNxe−

R
µ

t

= αλµNx− αλµNxe−
R
µ

t
+Eπ[ξ30 ]e

−R
µ

t
.

Since we are in stationary regime, the expectation under stationarity of ξ3
t should not depend

upon time t. Hence, in the last expression we must have that

αλµNxe−
R
µ

t = Eπ[ξ30 ]e
−R

µ
t.

Concluding, we get that

Eπ[ξ3t ] = αλµNx.

So, b̄ will be given by

b̄(x) = −λx+ αλx−
ν

N
xαλµNx = λ(α− 1)x− λαµνx2. (2.2)

2.2.1 Another way of calculating Eπ[ξ3
t ]

Conditional on ξ2 we can express ξ3 as follows:

ξ3t = ξ30 +A

(
RN

∫ t

0
ξ2sds

)
−D

(
R

µ

∫ t

0
ξ3sds

)
,

where A and D are two Poisson point processes of rate 1. So, the expectation under π of
ξ3t will be given by

Eπ

(
ξ3t
)

= Eπ

(
ξ30
)

+Eπ

(
RN

∫ t

0
ξ2sds

)
−Eπ

(
R

µ

∫ t

0
ξ3sds

)

= Eπ

(
ξ30
)

+RNαλxt−
R

µ
Eπ

(
ξ30
)
t,

where again the interchange of integral and expectation is justified by Fubini’s theorem and
we substituted Eπ

(
ξ3s
)

in the second integral by Eπ

(
ξ30
)
, since we are in stationary regime.

So, we will have that

Eπ

(
ξ30
)

= Eπ

(
ξ30
)

+RNαλxt−
R

µ
Eπ

(
ξ30
)
t,∀t

⇒ Eπ

(
ξ30
)

= αλNµx

8



2.3 Finding the corrector χ

Following [2] we have the following expression for the corrector χ

χ(x, y) = E

[∫ T

0
(b(x,Zt)− b(x, Yt))dt

]
= E

[∫ T

0
(ζ2

t − ξ
2
t )−

νx

N
(ζ3

t − ξ
3
t )dt

]
,

where T = inf{t ≥ 0 : Yt = Zt}, Y is the process described above starting from (y2, y3) (in

what follows y2 = ξ20 and y3 =
ξ3
0

N ), and Z is a process constructed in the following way:
we start it from (0, 0) and we allow the first component ζ 2

t to evolve as an MλxR/MR
α
/∞

by taking the same arrival and departure process for it as for ξ2
t . The first components will

meet then after all the y2 customers that were initially in queue ξ2
t leave.

Regarding the second components we couple them as follows: up until the first time
T0 = inf{t ≥ 0 : ξ2

t = ζ2
t } that the first components become equal we perform a thinning.

(What follows is not rigorous.) By that we mean that whenever we have an arrival in [t, t+h]

for ξ3
t we take the same arrival for ζ3

t with probability
R t+h
t

ζ2
sds

R t+h
t

ξ2
sds

, otherwise with probability

1 −
R t+h
t

ζ2
sds

R t+h
t

ξ2
sds

there is no arrival for ζ3
t . Thus, we obtain a new Poisson random measure of

intensity RN(ξ2
s − ζ

2
s )ds. So, in this way we count only the times that we had an arrival

in ξ3
t and not in ζ3

t . The departures of the common arrivals are then taken to be the same
in both queues. So, conditional on ξ2, ζ2, up until time T0 the difference ξ3

t − ζ
3
t can be

expressed as the sum of an integral with respect to a Poisson random measure of intensity

RN(ξ2
s − ζ

2
s )dsdu and the term

∑ξ3
0

k=1 1(Sk ≥ t), where Sk denote again the service times
of the customers initially in the queue. From time T0 and on we will have to wait until the
ξ3T0
− ζ3

T0
customers leave the ξ3 queue. (ξ3

T0
> ζ3

T0
by the construction of the coupling.)

A more rigorous way proceeds as follows: Conditional on ξ2, ζ2, take two independent Pois-
son random measures, m with intensity RN(ξ2

s − ζ
2
s )dsdu and m′ with intensity RNζ2

sdsdu.
Then their sum will be a Poisson random measure of intensity their sum, i.e. RNξ2

sdsdu.
So, now write

ξ3t =

∫ t

0

∫ 1

0
1

(
u ≤ e−

R
µ

(t−s)
)
m(ds,du)+

∫ t

0

∫ 1

0
1

(
u ≤ e−

R
µ

(t−s)
)
m′(ds,du)+

ξ3
0∑

k=1

1(Sk ≥ t)

and also

ζ3
t =

∫ t

0

∫ 1

0
1

(
u ≤ e−

R
µ

(t−s)
)
m(ds,du).

We will now have

E

[∫ T

0
(ζ2

t − ξ
2
t )dt

]
= E

[∫ T0

0
(ζ2

t − ξ
2
t )dt

]
= E


−

∫ T0

0

ξ2
0∑

k=1

1(Sk ≥ t)dt




= −

ξ2
0∑

k=1

E

[∫ T0

0
1(Sk ≥ t)dt

]
= −

ξ2
0∑

k=1

E [Sk] = −ξ2
0

α

R
,
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since T0 = max(Sk, k = 1, . . . , ξ3
0). Also,

E

[∫ T

0
(ξ3t − ζ

3
t )dt

]
= E

[∫ T0

0

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du)dt

]

+

ξ3
0∑

k=1

E

[∫ T

0
1(Sk ≥ t)dt

]
+E

[∫ T

T0

(ξ3T0
− ξ30 − ζ

3
T0

)dt

]
, (2.3)

where m is as described above, i.e. a Poisson random measure of intensity RN(ξ2
s−ζ

2
s )dsdu.

Let’s now work out the first term on the right hand side of (2.3).

E

[∫ T0

0

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du)dt

]

= E

[
E

[∫ T0

0

∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s)
)m(ds,du)dt

∣∣∣∣T0, (ξ
2
s , ζ

2
s , s ≤ T0)

]]

= E

[∫ T0

0
E

[∫ t

0

∫ 1

0
1(u ≤ e−

R
µ

(t−s))m(ds,du)

∣∣∣∣T0, (ξ
2
s , ζ

2
s , s ≤ T0)

]
dt

]

Using Campbell’s formula again, we get that this last term is equal to

E

[∫ T0

0
RNe−

R
µ

t
∫ t

0
e

R
µ

s(ξ2s − ζ
2
s )dsdt

]
= E



∫ T0

0
RNe−

R
µ

t
∫ t

0
e

R
µ

s
ξ2
0∑

k=1

1(Sk ≥ s)dsdt




=

ξ2
0∑

k=1

E

[∫ T0

0
RNe−

R
µ

t
∫ t∧Sk

0
e

R
µ

sdsdt

]
=

ξ2
0∑

k=1

E

[∫ T0

0
RNe−

R
µ

t

(
e

R
µ

(t∧Sk) − 1
R
µ

)
dt

]

=

ξ2
0∑

k=1

E

[∫ Sk

0
µNe

−R
µ

t
(
e

R
µ

t − 1
)

dt+

∫ T0

Sk

µNe
−R

µ
t
(
e

R
µ

Sk − 1
)

dt

]

=

ξ2
0∑

k=1

E

[
µNSk +

µ2N

R
e−

R
µ

Sk −
µ2N

R
−
µ2N

R
e−

R
µ

(T0−Sk) +
µ2N

R
+
µ2N

R
(e−

R
µ

T0 − e−
R
µ

Sk)

]

= µN
α

R
ξ20 −

ξ2
0∑

k=1

µ2N

R
E
[
e−

R
µ

(T0−Sk)
]

+ ξ20
µ2N

R
E
[
e−

R
µ

T0

]

The second term of (2.3) gives

ξ3
0∑

k=1

E

[∫ T

0
1(Sk ≥ t)dt

]
=
µ

R
ξ30 ,

by the same reasoning as before (for ξ2
t ).

The third term of (2.3) is given by µ
RE[ξ3

T0
− ξ30 − ζ

3
T0

], again by the same reasoning (we are
waiting for the ξ3

T0
− ξ30 − ζ

3
T0

to leave the ξ3 queue).

What we have to do last is to compute E[ξ3
T0
− ξ30 − ζ

3
T0

]. But, as discussed before this can

be written in the form E
[∫ T0

0

∫ 1
0 1(u ≤ e−

R
µ

(T0−s)
)m(ds,du)

]
, where conditional on ξ2, ζ2,

10



m is a Poisson random measure of intensity RN(ξ2
s − ζ

2
s )dsdu. Again by the same trick

of conditioning upon (T0, (ξ
2
s , ζ

2
s , s ≤ T0)) we obtain by applying Campbell’s formula once

more that

E

[∫ T0

0

∫ 1

0
1(u ≤ e−

R
µ

(T0−s)
)m(ds,du)

]
= E

[
RNe

−R
µ

T0

∫ T0

0
e

R
µ

s
(ξ2s − ζ

2
s )ds

]

= E


RNe−

R
µ

T0

∫ T0

0
e

R
µ

s
ξ2
0∑

k=1

1(Sk ≥ s)ds


 =

ξ2
0∑

k=1

RNE

[
e
−R

µ
T0

(
e

R
µ

Sk − 1
R
µ

)]

=

ξ2
0∑

k=1

(
µNE

[
e
−R

µ
(T0−Sk)

]
− µNE

[
e
−R

µ
T0

])
=

ξ2
0∑

k=1

µNE
[
e
−R

µ
(T0−Sk)

]
− ξ20µNE

[
e
−R

µ
T0

]
.

So, the third term of (2.3) will be given by

ξ2
0∑

k=1

µ2N

R
E
[
e−

R
µ

(T0−Sk)
]
− ξ20

µ2N

R
E
[
e−

R
µ

T0

]
.

Putting now things together, we conclude that

E

[∫ T

0
(ξ3t − ζ

3
t )dt

]
= µN

α

R
ξ20 +

µ

R
ξ30 .

Hence, the corrector will be given by

χ(x, y) =
1

R

(
− αy2 + αµνxy2 + µνxy3

)
,

which has exactly the same form as the corrector given in [1, p.15].
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Chapter 3

Random 3-Satisfiability problem

3.1 Introduction

In this chapter we will analyze the UCWM (unit clause with majority) algorithm for the
random 3-satisfiability problem using the homogenization technique. First, though, we will
introduce the model and the questions we are trying to answer.

We start with N Boolean variables, say x1, . . . , xN , which take values in {0, 1}, 0 meaning
false and 1 meaning true. A k-clause is a set of k literals (literal=a variable or the comple-
ment of it) joined with ∨. For instance the expression x ∨ y ∨ z is a 3-clause.
Now we choose 3 variables out of the N uniformly at random without replacement (there are(
N
3

)
ways of choosing them) and for each of those we toss a fair coin and so with probability

1
2 we take the complement of a variable and with probability 1

2 we put the variable as is
in the 3-clause. In this way we have obtained a 3-clause and then we proceed in the same
way to construct rN 3-clauses, where r is a positive constant. We proceed independently
over different clauses and finally we have rN clauses which we join with ∧. We denote the
formula we have obtained by F (N, rN) and it is said to be in conjunctive normal form.

The question that arises now is whether there exists a truth assignment to the variables
such that the formula is true. This problem has attracted the interest of many scientists
and in particular the following conjecture has gained significant popularity since it was first
put forward.

The satisfiability threshold conjecture states that for every k ≥ 2, there exists a con-
stant rk such that for all ε > 0,

lim
N→∞

P (F (N, (rk − ε)N) is satisfiable) = 1 and lim
N→∞

P (F (N, (rk + ε)N) is satisfiable) = 0.

For k = 2, this constant has been proven to be equal to 1. For k ≥ 3 much less is known and
not even the existence of the constant has been established. A big step towards proving the
above conjecture was made by Friedgut with a theorem showing that there exists a sharp
threshold around some critical sequence of values.
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Theorem 3.1.1 (Friedgut). For every k ≥ 2, there exists a sequence rk(N) such that for
all ε > 0,

lim
N→∞

P (F (N, (rk(N)− ε)N) is satisfiable) = 1 and lim
N→∞

P (F (N, (rk(N) + ε)N) is satisfiable) = 0

We are going to use the following corollary of the above theorem

Corollary 3.1.1. If r is such that limN→∞ P (F (N, rN) is satisfiable) > 0, then for any
ε > 0,

lim
N→∞

P (F (N, (r − ε)N) is satisfiable) = 1

All upper bounds for the constant r3 have been proved via probabilistic counting arguments,
while the lower bounds are algorithmic, i.e., in each case a particular algorithm is shown
to satisfy F (N, rN) w.h.p. for r below a certain value r∗. Note that if we show positive
probability of success for r < r∗ it suffices to deduce r3 ≥ r

∗, in view of Corollary 3.1.1.

In this section we are going to analyze the unit clause with majority algorithm (UCWM)
to derive a lower bound for the constant r3. This algorithm has been analyzed using an
ODE approximation to a Markov chain in [4]. In [4] though, the author had to modify
the algorithm a bit, because the Markov chain corresponding to the original one had a fast
component which couldn’t be approximated and a classical theorem due to Wormald couldn’t
be applied. The novelty here is that with the homogenization technique we succeeded in
analyzing the original algorithm, hence obtaining a slightly better bound. Basically, the
differential equations we obtained were the limit as θ → 0 of the differential equations in [4].

3.2 UCWM algorithm

Here we have the UCWM algorithm:

Unit clause with majority

1. If there are any 1-clauses, then pick a 1-clause uniformly at random and satisfy it

2. Otherwise,

(a) Pick an unset variable x uniformly at random

(b) If x appears positively in at least half the remaining 3-clauses, then set x = True

(c) Otherwise, set x = False

Let (Ci(n), i = 1, 2, 3) be the number of i clauses at step n of the execution of the algorithm.
We are going to embed that in continuous time, so as to apply the fluid limit result. Let νt

be a Poisson process of rate N , which stops when νt = (1− ε)N . Consider now the process

X(t) = (νt, C1(νt), C2(νt), C3(νt)),

which stops at the time T0 = inf{t ≥ 0 : νt = (1− ε)N}.

An explanation why X(t) is a Markov chain and a justification of the form of the transition
probabilities for the discrete chain are given in [4]. Here we will only write down the
transition probabilities which are given as follows: (∆Ci(n) = Ci(n+ 1)− Ci(n))

13



• If C1(n) = 0, then ∆C2(n) = Y −Z and ∆C3(n) = −X, where Y ∼ Y1∧Y2, where Y1 is
the number of occurences of the selected literal u in 3-clauses and Y2 is the number of

occurences of ū in 3-clauses, so Y1 ∼ Bin
(
C3(n), 3

2(N−n)

)
, Y2 ∼ Bin

(
C3(n), 3

2(N−n)

)

and Y1 + Y2 ∼ Bin
(
C3(n), 3

N−n

)
. Also X ∼ Bin

(
C3(n), 3

N−n

)
.

• If C1(n) 6= 0, then ∆C2(n) = Y ′ − Z and ∆C3(n) = −X, where again as before

X ∼ Bin
(
C3(n), 3

N−n

)
, Z ∼ Bin

(
C2(n), 2

N−n

)
and Y ′ ∼ Bin

(
C3(n), 3

2(N−n)

)
.

In the following sections we are going to approximate the number of 2 and 3-clauses by
a differential equation. For the sake of completeness, we will now explain briefly how the
differential equations will help us derive a lower bound for the constant r3. The theorems
stated below have been taken from [4] but here we present the proofs in more detail.

The next theorem states that if the density of the 2-clauses stays bounded away from 1 during
the execution of the algorithm, then the formula is satisfiable (i.e. true) with probability
tending to 1 as N → ∞. Here we have an intuitive explanation of this result: from the
above transition probabilities we see that the rate at which 1-clauses are generated at step
n of the algorithm is given by C2(n)

N−n . When a unit clause exists then at the next step we
satisfy it. So, we can think of it as a queue with one server, where at each time step one
customer is served and leaves the system and the arrival rate is bounded by 1. This queue
is then stable and we prove this result for this particular process in Theorem 3.4.3.

Theorem 3.2.1. If there exists δ > 0 such that

C2(n)

N − n
< 1− δ,∀n = 0, . . . , (1− ε)N, then r∗ ≥ r.

Proof. We note that if at step n there are no unit clauses, then the probability of a 0-clause
being generated is 0. Conditional though on C1(n) = a, then

P ( no 0-clause after step n ) =

(
1−

1

2(N − n)

)a−1

.

Now we recall that we stop the algorithm after (1− ε)N steps, so the probability that there
are no 0-clauses at the end of the algorithm is given by:

P (C0((1− ε)N) = 0) = E[P (C0((1− ε)N) = 0|C1(n), n = 0, . . . , (1 − ε)N)]

= E

[(
1−

1

2N

)C1(0)−1

· · ·

(
1−

1

2(N − (1− ε)N)

)C1((1−ε)N)−1
]
>

> E



(

1−
1

2(N − (1− ε)N)

)P(1−ε)N
n=0 C1(n)−(1−ε)N


 = E



(

1−
1

2Nε

)P(1−ε)N
n=0 C1(n)−(1−ε)N


 .

From Theorem 3.4.3 we see that we can bound this last sum
∑(1−ε)N

n=0 C1(n) < MN , so

P (C0((1− ε)N) = 0) >

(
1−

1

2εN

)(M−(1−ε))N

→ exp

(
−
M

2ε

)
, as N →∞.
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Hence, we deduce that with positive probability as N → ∞ there are no 0-clauses, so in
view of Corollary 3.1.1 the formula is satisfiable w.h.p.

If we succeed thus in approximating the number of 2-clauses during the execution of the
algorithm by a differential equation, then by looking at the ODE, we can find the values of
r such that the solution c2(t) divided by 1 − t remains bounded below 1. The reason for
introducing (1 − ε)N is clear now, since otherwise the denominator above would become
infinite.

3.3 The approximation procedure

We are going to approximate the number of 2 and 3-clauses by applying the homogenization
result. The number of 3-clauses is approximated by the same differential equation as in [4],
since its dynamics do not depend on the fast variable C1(t). For the number of 2-clauses
though, we are going to use the homogenization technique, because the drift vector field
depends heavily on the value of the number of 1-clauses, which cannot be approximated by
a differential equation.

We will thus approximate x(X(t)) = N−1(νt, C2(νt), C3(νt)), which is a Markov chain
started from the state (0, 0, r) and we will run it up to the stopping time T = inf{t ≥

0 : C2(νt)
N−νt

≥ 1 − δ} ∧ T0. The reason for introducing this stopping time follows from the
discussion in the previous section. When we obtain the differential equation though, we will
find the values of r such that the density of the 2-clauses is always bounded below 1, so this
will imply that this stopping time is basically equal to T0.

We now have all we need to start applying the homogenization result.

The drift vector field for the process x(X(t)) = N−1(νt, C2(νt), C3(νt)) is given by

β1(ξ) = 1,

β2(ξ) = 1(ξ1 = 0)

(
−ξ2

2

N − ξ0
+E

[
Bin

(
ξ3,

3

2(N − ξ0)

)
∧ Bin

(
ξ3,

3

2(N − ξ0)

)])

+1(ξ1 6= 0)

(
−ξ2

2

N − ξ0
+ ξ3

3

2(N − ξ0)

)
= −

2ξ2

N − ξ0
+ 1(ξ1 = 0)M(λ) + 1(ξ1 6= 0)λ,

β3(ξ) = −ξ3 3

N − ξ0
,

where ξ = (ξ0, ξ1, ξ2, ξ3) ∈ {(y1, y2, y3, y4) ∈ N4 : y1 ≤ (1 − ε)N, y2

N−y0 < 1} and the two
Binomial random variables appearing under the expectation sign are the variables Y1 and Y2

defined earlier. Also, λ = 3ξ3

2(N−ξ0) and M(λ) = E
[
Bin

(
ξ3, 3

2(N−ξ0)

)
∧ Bin

(
ξ3, 3

2(N−ξ0)

)]
.

As N →∞ the pair (Y1, Y2) converges in distribution to a pair of two independent Poisson
random variables, because as we discussed above ξ3/N converges to the solution of the
differential equation, which is c3(t) = r(1 − t)3, so the parameter of each will be equal to
3c3(t)
2(1−t) . We give here the proof of the convergence in distribution stated above:
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Proof.

E[eθ1Y1+θ2Y2 ] =
n∑

k+l=0

(
n

k + l

)(
k + l

k

)
pk+l(1− p)n−(k+l)

(
1

2

)k+l

eθ1keθ2l

=

n∑

k=0

n−k∑

l=0

n!

k!l!(n− (k + l))!

(p
2

)k+l
(1− p)n−(k+l)eθ1keθ2l =

n∑

k=0

eθ1k
(p

2

)k
(
n

k

)(
eθ2

p

2
+ 1− p

)n−k

=
(
eθ1

p

2
+ eθ2

p

2
+ 1− p

)n
→ e

λ
2
(eθ1−1)e

λ
2
(eθ2−1), as n→∞,

where Y1, Y2 ∼ Bin(n, p) with np→ λ as n→∞.

In order to get rid of this expectation, which doesn’t have a closed form expression, we will
do exactly the same as in [4], i.e. we will use instead the following bound

Bq(λ) = λ+

q∑

j=0

q∑

k=0

e−2λλj+k

j!k!

(
min{j, k} −

j + k

2

)
≥M(λ),

where M(λ) is the expectation of the minimum of two Poisson random variables with the

same parameter and λ stands for 3ξ3

2(N−ξ0) . In [4] they modify the algorithm a bit, so as to

be able to substitute M(λ) by Bq(λ). With probability p =
λ−Bq(λ)
λ−M(λ) they set the literal u

“by majority” and with probability 1− p “at random”.

As we noted earlier, the drift vector field for the number of 2-clauses depends significantly
on the number of 1-clauses. This is where the homogenization technique is going to be used.
What we want to do is to compensate the coordinate process x

2 so that it takes account of
this effect. We seek to find a new coordinate function x

2 on the state space of the form

x
2(ξ) =

ξ2

N
+ χ(ξ),

where χ is a small correction so that the drift vector β2(ξ) has the form

β2(ξ) = b(x(ξ)) +
∆(ξ)

N
,

where again ∆(ξ)
N is small for N large. From now on, we are going to use the technique from

[2] and the same notation again.

3.3.1 Finding the drift vector field b̄

As we said before, Xt = (νt, C1(νt), C2(νt), C3(νt)) and x(ξ) = N−1(νt, C2(νt), C3(νt)).
Moreover, Y = y(X) is the number of 1-clauses, so Yt = C1(t). The obvious choice for b is

b(x, y) = −2
x2

1− x1
+ 1(y 6= 0)

3x3

2(1 − x1)
+ 1(y = 0)M(λ),
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where λ = 3x3

2(1−x1)
.

Given that x(ξ) = x, Yt can be approximated by a Markov chain, whose Q- matrix Gx =
(g(x, y, y′), y, y′ ∈ N) is given below:

g(x, y, y′) =

{
Ne−λ λj

j! , if y = 0, y′ = j

Ne−λ λj

j! , if y > 0, y′ = y − 1 + j,

where λ = x2

1−x1 < 1. So, this Markov chain basically jumps at the points of a Poisson
process of rate N and either it jumps to a Poisson random variable if it is currently at 0, or
it jumps to a Poisson -1, if not at 0. Obviously, this Q-matrix is irreducible on the positive
integers. We now want to find the stationary distribution π of this Markov chain, and in
particular we only need π(0) in order to compute the vector field b̄.

E0(T0) = 1 +

∞∑

k=1

e−λλ
k

k!
Ek(T0),

where Ei(T0) is the expected time to hit 0 starting from i (T0 = inf{t > 0 : Yt = 0}). It is
easy to see that Ek(T0) = kE1(T0), and we also see that

E1(T0) = 1 +
∞∑

k=1

e−λλ
k

k!
Ek(T0),

which gives that E0(T0) = E1(T0), hence we deduce that

E0(T0) = 1 + λE0(T0),

and since λ < 1, the minimal nonnegative solution to the above equation is

E0(T0) =
1

1− λ
,

which yields that π(0) = 1− λ.
So, the vector field b̄ is

b̄(x) = −2
x2

1− x1
+

x2

1− x1

3x3

2(1 − x1)
+

(
1−

x2

1− x1

)
M

(
3x3

2(1− x1)

)

3.3.2 Finding the corrector χ

Following [2] we have the following expression for the corrector χ

χ(x, y) = E

[∫ T

0
(b(x,Zt)− b(x, Yt))dt

]
,

where T = inf{t ≥ 0 : Yt = Zt}, Y is the process described above starting from y (we shall
think of it as having y customers at time 0) and Z is a coupled process started from 0 and
having the same arrival process as Y . By positive recurrence, we have that E[T ] <∞. Now
the corrector will be equal to

χ(x, y) = E

[∫ T

0

(
λ(1(Yt = 0)− 1(Zt = 0)) +M(λ)(1(Zt = 0)− 1(Yt = 0))

)
dt

]
.
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Let Ti be the points of the underlying Poisson process. In the intervals [Ti, Ti+1] when
Zt = 0, Yt will not be 0, unless the initial y customers all leave. So, in these intervals only
Zt will be 0, and there will be y such intervals in total. In the intervals [Ti, Ti+1] when Zt

is not 0, nor is Yt. So, the corrector will be given by

χ(x, y) = (M(λ) − λ)
y

N
,

because E[Ti+1 − Ti] = 1
N , (Ti+1 − Ti being the interarrival times of the Poisson process of

rate N).

3.3.3 Calculations

What remains now to be proven is that the corrector is small and that β̄2 is close to b̄ in an
appropriate sense. Basically, β̄2(ξ)− b̄(x̄(ξ)) must be small, where

x̄(ξ) = x(ξ)− χ(x(ξ), y(ξ)) =
ξ2

N
−
ξ1

N
(M(λ) − λ)

and β̄2 is the drift vector field for the modified coordinate function x̄.

After some straightforward calculations, β̄2 is given by:

β̄2(ξ) =
∑

ξ′ 6=ξ

(
x̄(ξ′)− x̄(ξ)

)
q(ξ, ξ′) = β2(ξ) +

3ξ2ξ3

2(N − ξ0)(N − ξ0 − 1)

−
1

(N − ξ0 − 1)

9ξ2ξ3

2(N − ξ0)2
− 1(ξ1 6= 0)

3ξ1ξ3

2(N − ξ0)
+ 1(ξ1 6= 0)

3ξ1ξ3

2(N − ξ0 − 1)

−1(ξ1 6= 0)
1

2(N − ξ0 − 1)

9ξ1ξ3

(N − ξ0)
− 1(ξ1 6= 0)

1

2(N − ξ0 − 1)

(
3ξ3 −

9ξ3

(N − ξ0)

)(
1 +

ξ1 − 1

N − ξ0

)

−
ξ2

N − ξ0
E

[
M

(
3(ξ3 + x3)

2(N − ξ0 − 1)

)]
− 1(ξ1 6= 0)ξ1

(
E

[
M

(
3(ξ3 + x3)

2(N − ξ0 − 1)

)]
−M

(
3ξ3

2(N − ξ0)

))

+1(ξ1 6= 0)E

[
M

(
3(ξ3 + x3)

2(N − ξ0 − 1)

)](
1 +

ξ1 − 1

N − ξ0

)
.

Also recall that

β2(ξ) = −2
ξ2

N − ξ0
+ 1(ξ1 = 0)M(λ) + 1(ξ1 6= 0)λ.

The vector field b̄(x̄(ξ)) will be given by

b̄2(x̄(ξ)) = −2
ξ2 + ξ1(M(λ)− λ)

N − ξ0
+
ξ2 + ξ1(M(λ)− λ)

N − ξ0

3ξ3

2(N − ξ0)
+

(
1−

ξ2 + ξ1(M(λ) − λ)

N − ξ0

)
M(λ),

where λ = 3ξ3

2(N−ξ0)
.
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3.4 The convergence

To prove convergence, we will check that the conditions of Theorem 1.3 are all satisfied for
the coordinate process x̄

2 and then we will prove that the corrector is small in an appropriate
sense, so as to be able to transfer the approximation to the initial coordinate process x

2.

We choose t0 = 1− ε and x2
0 = 0. We also have that ξ2

N ≤ r and ξ3

N ≤ r at all times. Finally
we have that

P

(∫ T∧t0

0
|β̄2(Xt)− b̄

2(x̄(Xt))|dt ≤ δ

)
→ 1, as N →∞,

and

P (χ(x(Xt), Yt) > δ)→ 0, as N →∞

because of the Theorems 3.4.1 and 3.4.2 below. We can also compute the variance field α
and by the same theorems we can deduce that P (Ω2)→ 1, as N →∞.

Theorem 3.4.1. For the number of 1-clauses we have the following: ∀γ > 0,

P

(
sup

t=1,...,N
C1(t) ≥ γN

)
→ 0, as N →∞

Proof. C1(t) will jump at most (1− ε)N times, so that’s why the supremum above is taken
over discrete time steps. Also, C1(t) can be coupled, so that it remains always below a
Markov chain with the following transition rates:

q(y, y′) =

{
Ne−λ λj

j! , if y = 0, y′ = j

Ne−λ λj

j! , if y > 0, y′ = y − 1 + j,

where λ = 1− δ < 1.

Let t1, t2, . . . , tN be the successive times that C1(t) hits 0. Then the size of C1(t) in the
interval (ti, ti+1) cannot exceed (ti+1 − ti), because it goes down by at most 1 at each step.

Also, these lengths are i.i.d. and

P (ti+1 − ti ≥ k) = P (t1 ≥ k) = P (∀l ≤ k − 1,

l∑

i=1

Xi ≥ l)

≤ P (X1 + ...+Xk−1 ≥ k − 1) ≤ exp (k − 1)(1 − λ+ log(λ)),

by the Markov inequality and optimizing, where Xi ∼ P (λ) and 1− λ+ log(λ) < 0.

P

(
sup

t=1,...,N
C1(t) ≥ γN

)
≤ P

(
supC1(t) ≥ γN in one of the intervals (ti, ti+1)

)
≤ Ne−bN ,

for some b > 0.
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Theorem 3.4.2. M(λ) = E[P1(λ) ∧ P2(λ)], where P1(λ) and P2(λ) are two independent
Poisson random variables, satisfies the following: ∀δ > 0

M(λ+ δ) −M(λ) ≤ 2δ.

Proof. Let Y1, Y2 be two independent Poisson random variables each with parameter λ. Let
X1, X2 be two independent Poisson random variables each with parameter λ+ δ. Then we
can construct them all in such a way that X1 = Y1 + Z1 and X2 = Y2 + Z2, where Z1, Z2

are independent Poisson with parameter δ each. So, we have

M(λ+ δ)−M(λ) = E[X1 ∧X2 − Y1 ∧ Y2] = E[(Y1 + Z1) ∧ (Y2 + Z2)− Y1 ∧ Y2]

≤ E[(Y1 + Z1 + Z2) ∧ (Y2 + Z1 + Z2)− Y1 ∧ Y2] = E[Y1 ∧ Y2 + Z1 + Z2 − Y1 ∧ Y2]

= E[Z1 + Z2] = 2δ.

Theorem 3.4.3. There exists a constant M such that

P

(
N∑

t=1

C1(t) ≤MN

)
→ 1, as N →∞

Proof. Following the same logic as before,

P

(
N∑

t=1

C1(t) ≥MN

)
≤ P

(
N∑

t=1

(ti+1 − ti)
2 ≥MN

)
.

Now, write SN =
∑N

t=1(ti+1 − ti)
2, so it is the sum of N i.i.d. random variables each with

mean E[t21] <∞. By the strong law of large numbers

SN

N
→ E[t21], as N →∞.

So

P

(
N∑

t=1

(ti+1 − ti)
2 ≥MN

)
= P

(
SN

N
−E[t21] ≥M −E[t21]

)
→ 0, when M > E[t21].

So, we have proved the following theorem:

Theorem 3.4.4. The number of 2-clauses can be approximated by the following differential
equation:

dc2(x)

dx
=
c2(x)

1− x

(
3c3(x)

2(1 − x)
−

2c2(x)

1− x

)
+

(
1−

c2(x)

1− x

)(
Bq

(
3c3(x)

2(1− x)

)
−

2c2(x)

1− x

)

=
c2(x)

1− x

(
3r(1− x)2

2
−

2c2(x)

1− x

)
+

(
1−

c2(x)

1− x

)(
Bq

(
3r(1− x)2

2

)
−

2c2(x)

1− x

)
,

which is the differential equation given in [4, p.174] with θ = 0.
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Finally, we are going to describe briefly how we can terminate the algorithm, because as we
recall, we stopped after (1−ε)N steps, which means at time 1−ε of the differential equation.
We can then see that at that time the total number of clauses C2((1− ε)N) +C3((1− ε)N)
(there are no 1-clauses with positive probability) is bounded by 3

4εN , so by deleting one
literal from each 3-clause we can reduce the problem to a 2-satisfiability problem, for which
we know that r2 = 1, hence we deduce that this last formula is satisfied w.h.p.
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Chapter 4

BitTorrent-like peer-to-peer

file-sharing networks

4.1 Introduction

In this chapter, we propose a stochastic model for a file-sharing peer-to-peer network which
resembles the popular BitTorrent system: large files are split into chunks and a peer can
download or swap from another peer only one chunk at a time. We will prove that the fluid
limits of a scaled Markov model of this system are of the coagulation form, special cases of
which are well-known epidemiological (SIR) models. Peer-to-peer (p2p) activity continues
to represent a very significant fraction of overall Internet traffic, 44% by one recent account
[8]. Under BitTorrent, peers join “swarms” (or “torrents”) where each swarm corresponds
to a specific data object (file). The process of finding the peers in a given swarm to connect
to is typically facilitated through a centralised “tracker”. Recently, a trackerless BitTorrent
client has been introduced that uses distributed hashing for query resolution.

For file sharing, a peer typically uploads pieces (“chunks”) of the file to other peers in
the swarm while downloading his/her missing chunks from them. This chunk swapping
constitutes a transaction-by-transaction incentive for peers to cooperate (i.e., trading rather
than simply download) to disseminate data objects. Large files may be segmented into
several hundred chunks, all of which the peers of the corresponding swarm must collect and
in the process disseminate their own chunks before they can reconstitute the desired file and
possibly leave the file’s swarm.

In this chapter, we motivate a deterministic epidemiological model of file dissemination for
peer-to-peer file-sharing networks that employ BitTorrent-like incentives, a generalisation of
that given in [9]. Our model is different from those explored in [11, 16, 12] for BitTorrent,
and we compute different quantities of interest. Though our model is significantly simpler
than that of prior work, it is derived directly from an intuitive transaction-by-transaction
Markov process modelling file-dissemination of the p2p network and its numerical solutions
clearly demonstrate the effectiveness of the aforementioned incentives.
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4.2 The stochastic model

We fix a set F (a file) which is partitioned into n (on the order of hundreds) pieces called
chunks. Consider a large networked “swarm” of nodes called peers. Each peer possesses
a certain (possibly empty) subset A of F . As time goes by, this peer interacts with other
peers, the goal being to enlarge his set A until, eventually, the peer manages to collect
all n chunks of F . The interaction between peers can either be a download or a swap; in
both cases, chunks are being copied from peer to peer and are assumed never lost. Here we
make the extra assumption that peers are impatient, which means that they can leave the
network even withouth having obtained all the chunks of the file. In ..... a peer will stay in
the network as long as he does not possess all chunks and after collecting everything, sooner
or later a peer departs or switches off. By splitting the desired file into many chunks we
give incentives to the peers to remain active in the swarm for long time during which other
peers will take advantage of their possessions.

4.2.1 Possible interactions

We here describe how two peers, labelled A,B, interact. The following types of interactions
are possible:

1. Download: Peer A downloads a chunk i from B. This is possible only if A is a strict
subset of B. If i ∈ B then, after the downloading A becomes A′ = A∪ {i} and but B
remains B since it gains nothing from A. Denote this interaction as:

(A← B) (A′, B)

The symbol on the left is supposed to show the type of interaction and the labels
before it, while the symbol on the right shows the labels after the interaction.

2. Swap: Peer A swaps with peer B. In other words, A gets a chunk j from B and
B gets a chunk i from A. It is required that j is not an element of A and i not an
element of B. We denote this interaction by

(A� B) (A′, B′)

where A′ = A ∪ {j}, B ′ = B ∪ {i}. We thus need A \B 6= ∅ and B \A 6= ∅.

3. Full swap: This is a special case of a swap that makes the two peers become identical
after the interaction. For this to happen we need |A \ B| = |B \ A| = 1. After the
interaction both peers attain the same labels: A′ = B′ = A+ (B \ A) = B + (A \B).
Thus, a full swap is denoted by:

(A� B) (A′, A′)
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4.2.2 Notation

The set of all combinations of n chunks, which partition F , is denoted by P(F ), where
|P(F )| = 2n and the empty set is included. We write A ⊂ B (respectively, A ( B) when A
is a subset (respectively, strict subset) of B. We (unconventionally) write

A @ A′ when A ⊂ A′ and |A′ −A| = 1.

If A∩B = ∅, we use A+B instead of A∪B; if B = {b} is a singleton, we often write A+ b
instead of A+ {b}. If A ⊂ B we use B −A instead of B \ A. We say that

A relates to B (and write A ∼ B) when A ⊂ B or B ⊂ A;

if this is not the case, we write A 6∼ B. Note that A 6∼ B if and only if two peers labelled
A, B can swap chunks. The space of functions (vectors) from P(F ) into Z+ is denoted by

Z
P(F )
+ . The stochastic model will take values in this space. The deterministic model will

evolve in R
P(F )
+ . We let eA ∈ Z

P(F )
+ be the vector with coordinates

eBA := 1(A = B), B ∈ P(F ).

For x ∈ Z
P(F )
+ or R

P(F )
+ we let |x| :=

∑
A∈P(F ) |x

A|. If A ⊂ P(F ) then the A-face RA
+ of

R
P(F )
+ is defined by RA

+ := {x ∈ R
P(F )
+ :

∑
A∈A x

A = 0,
∏

B 6∈A x
B > 0}.

4.2.3 Defining the rates of individual interactions

We follow the logic of stochastic modelling of chemical reactions or epidemics and assume
that the chance of a particular interaction occurring in a short interval of time is proportional
to the number of ways of selecting the peers needed for this interaction [13]. Accordingly,
the interaction rates must be given by the formulae described below.

Consider first finding the rate of a download A ← B, where A ( B, when the state of the

system is x ∈ Z
P(F )
+ . There are xA peers labelled A and xB labelled B. We can choose

them in xAxB ways. Thus the rate of a download A← B that results into A getting some
chunk from B should be proportional to xAxB . However, we are interested in the rate of
the specific interaction (A← B) (A′, B), that turns A into a specific set A′ differing from
A by one single chunk (A @ A′); there are |B−A| chunks that A can download from B; the
chance that picking one of them is 1/|B −A|. Thus we have:

(DR)





the rate of the download (A← B) (A′, B) equals βxA xB

|B −A|
,

as long as A @ A′ ⊂ B,

where β > 0.

Consider next a swap A� B and assume the state is x. Picking two peers labelled A and
B (provided that A 6∼ B) from the population is done in xAxB ways. Thus the rate of a
swap A � B is proportional to xAxB. So if we fix two chunks i ∈ A \ B, j ∈ B \ A and
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specify that A′ = A + j, B′ = B + i, then the chance of picking i from A \ B and j from
B \A is 1/|A \B||B \ A|. Thus,

(SR)





the rate of the swap (A� B) (A′, B′) equals γ
xAxB

|A \B||B \ A|
,

a long as A @ A′, B @ B′, A′ −A ⊂ B, B′ −B ⊂ A,

where γ > 0.

4.2.4 Deriving the Markov chain rates

Having defined the rates of each individual interaction we can easily define rates q(x, y) of

a Markov chain in continuous time and state space Z
P(F )
+ as follows.

Define functions λA,A′ , µA,B : RP(F ) → R by:

λA,A′(x) :=

[
βxA

∑

C:C⊃A′

xC

|C −A|

]
1(A @ A′) (4.1a)

µA,B(x) := γ
xAxB

|A \ B||B \ A|
1(A 6∼ B). (4.1b)

Consider also constants δA ≥ 0 and αA ≥ 0 for A ∈ P(F ), i.e., α ∈ R
P(F )
+ . The transition

rates of the Markov chain are given by:

q(x, y) :=





λA,A′(x), if y = x− eA + eA′

µA,B(x), if

{
y = x− eA − eB + eA′ + eB′

A @ A′, B @ B′, A′ −A ⊂ B,B′ −B ⊂ A,

αA if y = x+ eA

δAxA if y = x− eA

0, for any other value of y 6= x,

(4.2)

where x ranges in Z
P(F )
+ .

A little justification of the first two cases is needed: that q(x, x − eA − eB + eA′ + eB′) =
µA,B(x) is straightforward. It corresponds to a swap, which is only possible when A @
A′, B @ B′, A′ − A ⊂ B,B′ − B ⊂ A. The swap rate was defined by (SR). To see that
q(x, x − eA + eA′) = λA,A′(x) we observe that a peer labelled A can change its label to
A′
A A by downloading a chunk from some set C that contains A′, so we sum the rates

(DR) over all these possible individual interactions to obtain the first line in (4.2). We can
think of having Poisson process of arrivals of new peers at rate |α|, and that each arriving
peer is labelled A with probability αA/|α|. Peers can depart, even withouth having acquired
the whole file, and it takes an exponentially distributed amount of time (with mean 1/δA) for
a peer labelled A to depart. Thus, q(x, x− eA) = δxA. We shall let Q denote the generator
of the chain, i.e. Qf(x) =

∑
y(f(y) − f(x))q(x, y), when f is an appropriate functional of

the state space.
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Definition 1 (BITTORRENT[x0, n, α, β, γ, δ]). Given x0 ∈ Z
P(F )
+ (initial configuration), n =

|F | ∈ N (number of chunks), α ∈ R
P(F )
+ (arrival rates), β > 0 (download rate), γ ≥ 0

(swap rate), δ ≥ 0 (departure rate) we let BITTORRENT[x0, n, α, β, γ, δ] be a Markov chain
(Xt, t ≥ 0) with transition rates (4.2) and X0 = x0. We say that the chain (network) is
open if αA > 0 for at least one A and δ > 0; it is closed if αA = 0 for all A; it is conservative
if it is closed and δ = 0; it is dissipative if it is closed and δ > 0.

In a conservative network, we have q(x, y) = 0 if |y| 6= |x| and so |Xt| = |X0| for all t ≥ 0.
Here, the actual state space is the simplex

{x ∈ Z
P(F )
+ : |x| = N},

where N = |X0|. It is easy to see that the state eF is reachable from any other state, but all
rates out of eF are zero. Hence a conservative network has eF as a single absorbing state.

In a dissipative network, we have |Xt| ≤ |X0| for all t ≥ 0. Here the state space is

{x ∈ Z
P(F )
+ : |x| ≤ N},

where N = |X0|. It can be seen that a dissipative network has many absorbing points.

In an open network, there are no absorbing points. On the other hand, one may wonder if
certain components can escape to infinity. This is not the case:

Lemma 4.2.1. If αF > 0 then the open BITTORRENT[x, n, β, γ, α, δ] is positive recurrent
Markov chain.

Proof. If αF > 0, δ > 0 the Markov chain is irreducible. The remainder of the proof is
based on the construction of a simple Lyapunov function:

V (x) := |x|,

where |x| is the sum of all the components. For this Lyapunov function there exists a
bounded set of states K =

{
xA, A ⊂ F s.t.

∑
A δ

AxA <
∑

A α
A
}

such that

sup
x6∈K

(QV )(x) < 0,

because
sup
x6∈K

(QV )(x) =
∑

A

αA −
∑

A

δAxA < 0, for x /∈ K,

since the sum of the components changes only if we have an arrival or a departure.

4.2.5 Example: n = 1

Let us take the special case where the file consists of a single chunk (n = 1). The state here
is x = (x∅, x1 := xF ). The rates are:

q
(
(x∅, x1), (x∅ + 1, x1)

)
= α∅

q
(
(x∅, x1), (x∅, x1 + 1)

)
= α1

q
(
(x∅, x1), (x∅ − 1, x1 + 1)

)
= βx∅x1

q
(
(x∅, x1), (x∅, x1 − 1)

)
= δx1

q
(
(x∅, x1), (x∅ − 1, x1)

)
= δ∅x∅. (4.3)

26



If α∅ = α1 = δ∅ = 0, this is the stochastic version of the classical (closed) Kermack-
McKendrick (or susceptible-infective-removed (SIR)) model for a simple epidemic process
[14]. Its absorbing points are states of the form (x∅, 0). In epidemiological terminology, x1 is
the number of infected individuals, whereas x∅ is the number of susceptible ones. Contrary
to the epidemiological interpretation, infection is desirable, for infection is tantamount to
downloading the file.

4.3 Macroscopic description: fluid limit

Analysing the Markov chain in its original form is complicated. We thus resort to a first-
order approximation by an ordinary differential equation (ODE).

Let v(x) be the vector field on R
P(F )
+ with components vA(x) defined by

vA(x) = αA − xA
(
βϕA

d (x) + γϕA
s (x)

)

+ β
∑

B:A⊂B

ψA
d (x)xB

1 + |B \A|
+ γ

∑

B:A6⊂B

ψA,B
s (x)xB

1 + |B \ A|
− δAxA, (4.4)

where

ϕA
d (x) :=

∑

B⊃A

xB , ϕA
s (x) :=

∑

B 6∼A

xB

ψA
d (x) :=

∑

a∈A

xA−a, ψA,B
s (x) :=

∑

a∈A∩B

xA−a (4.5)

Consider the differential equation

ẋ = v(x) with initial condition x0. (4.6)

Consider the sequence of stochastic models BITTORRENT[XN,0, n,Nα,
β
N ,

γ
N , δ] for N ∈ N

and let XN ,t be the corresponding jump Markov chain.

Theorem 4.3.1. There is a unique smooth (analytic) solution to (4.6), denoted by xt for

t ≥ 0. Also, if there is an x0 ∈ R
P(F )
+ such that XN ,0/N → x0 as N → ∞, then for any

T, ε > 0,
lim

N→∞
P
(

sup
0≤t≤T

|N−1XN,t − xt| > ε
)

= 0.

Proof. Let N be the set of vectors −eF , eA, −eA + eA′ , −eA − eB + eA′ + eB′ , where
A,B ∈ P(F ) and A @ A′, B @ B′. From (4.2), we have that q(x, y) = 0 if y − x 6∈ N .
Introduce, for each ζ ∈ N , a unit rate Poisson process Φζ on the real line, and assume
that these Poisson processes are independent. Consider the Markov chain (Xt) for the
BITTORRENT[X0, n, α, β, γ, δ]. Its rates are of the form

q(x, x+ ζ) = Qζ(x), ζ ∈ N , (4.7)
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where Qζ(x) is a polynomial in 2n variables of degree 2, and which can be read directly from
(4.2); its coefficients depend on the parameters α, β, γ, δ. We can represent [13, ?] (Xt) as:

Xt = X0 +
∑

ζ∈N

ζΦζ

( ∫ t

0
Qζ(Xs)ds

)
.

Consider now the Markov chain 1
NXN ,t corresponding to to BITTORRENT[XN,0, n, (Nα

A), β/N, γ/N, δ].
The transition rates for 1

NXN ,t are

q(x/N, (x+ ζ)/N) = NQζ(x/N), x ∈ Z
P(F )
+ , ζ ∈ N ,

and 0, otherwise. Here, Qζ(x) is the polynomial defined through (4.7) and (4.2) and we now
assume that its variables range over the reals. Therefore, 1

NXN,t can be represented as

1

N
XN ,t =

1

N
XN ,0 +

∑

ζ∈N

ζ
1

N
Φζ

(
N

∫ t

0
Qζ(

1

N
XN ,s)ds

)
.

Define xt by the (deterministic) integral equation

xt = x0 +
∑

ζ∈N

ζ

∫ t

0
Qζ(xs)ds (4.8)

and assume that it is unique for all t ≥ 0. Fix a time horizon T > 0 and let

B := max
t≤T
|xt|,

Mζ := max
|x|≤B

|Qζ(x)|

Lζ := sup
|x|,|y|≤B

x6=y

|Qζ(x)−Qζ(y)|

|x− y|

τN := inf{t > 0 : |XN ,t| > NB}.

We then have:

∆N,t :=
XN ,t

N
−xt =

XN ,0

N
−x0+

∑

ζ∈N

ζ

[
1

N
Φζ

(
N

∫ t

0
Qζ(XN ,s/N)ds

)
−

∫ t

0
Qζ(XN ,s/N)ds

]

+
∑

ζ∈N

ζ

∫ t

0

(
Qζ(XN ,s/N)−Qζ(xs)

)
ds

Suppose that t ≤ T ∧ τN . Then, for all s ≤ t,

|Qζ(XN ,s/N)−Qζ(xs)| ≤ Lζ |∆N,s|.

So, if we let

EN,t :=
XN ,0

N
− x0 +

∑

ζ∈N

ζ
1

N

[
Φζ

(
N

∫ t

0
Qζ(XN ,s/N)ds

)
−N

∫ t

0
Qζ(XN ,s/N)ds

]
,
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we have, by the Gronwall-Bellman lemma, that

|∆N ,t| ≤ |EN ,t| exp
(
t
∑

ζ∈N

|ζ|Lζ

)
, if t ≤ T ∧ τN .

Let
Φ∗

ζ(t) := sup
s≤t
|Φζ(s)− s|.

We recall that, as N →∞,
1

N
Φ∗

ζ(Nt)→ 0 a.s. (4.9)

If s ≤ t ≤ τN , we have XN,s/N ≤ B (definition of τN) and so Qζ(XN ,s/N) ≤ Mζ , implying
that

sup
t≤T∧τN

|EN ,t| ≤
∣∣XN ,0

N
− x0

∣∣+
∑

ζ∈N

|ζ|
1

N
Φ∗

ζ(NMζT )

which converges to zero, a.s., due to (4.9). Since

sup
t≤T∧τN

|∆N ,t| ≤ sup
t≤T∧τN

|EN ,t| exp
(
T
∑

ζ∈N

|ζ|Lζ

)
,

we have
sup

t≤T∧τN

|∆N ,t| → 0, a.s.

Now observe that

P (τN ≤ T ) ≤ P ( sup
t≤T∧τN

|XN ,t| > NB)

≤ P ( sup
t≤T∧τN

|∆N,t|+ sup
t≤T∧τN

|xt| > B)→ 0.

So we have supt≤T |∆N ,t| → 0 a.s.

To show that xt, defined via (4.8), satisfies the ODE ẋ = v(x) with v given by (4.4) is a
matter of straightforward (but tedious) algebra, see Section 4.5.

Uniqueness and analyticity of the solution of the ODE is immediate from the form of the
vector field (its components are polynomials of degree 2 and hence locally Lipschitzian).

To show that the trajectories do not explode, we consider the function

V (x) :=
∑

A

xA.

It is a matter of algebra to check that

〈∇V (x), v(x)〉 =
∑

A

vA(x) =
∑

A

αA −
∑

A

δAxA

which (since δA > 0, for some A ⊂ F ) is negative and bounded away from zero for x outside

a bounded set of R
P(F )
+ containing the origin. We then apply the Lyapunov criterion for

ODEs to conclude that xt is defined for all t ≥ 0 and this justifies the fact that we could
choose an arbitrary time horizon T earlier in the proof.
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Comment: The quantities defined in (4.5), have physical meanings as follows:

ϕA
d (x) :=

∑

B⊃A

xB = no. of peers from which an A-peer can download,

ϕA
s (x) :=

∑

B 6∼A

xB = no. of peers an A-peer can swap with,

ψA
d (x) :=

∑

a∈A

xA−a = no. of peers which can assume label A after a download,

ψA,B
s (x) :=

∑

a∈A∩B

xA−a = no. of peers which can assume label A after a B-peer swap.

It is helpful to keep these in mind because they aid in writing down the various parts of
v(x), again, see Section 4.5.

4.4 Performance analysis in presence of BitTorrent incentives

4.4.1 An example

We address the following question: When is it advantageous to split a file into chunks?
In other words, assuming we fix certain system parameters (e.g., arrival rates), will peers
acquire the file faster if the file is split into chunks? We attempt here to answer the question
in a simple case only by using the deterministic approximation. Let λ be the total peer
arrival rate. Let β be the download rate. Assume that only ∅ peers arrive exogenously. In
the absence of BitTorrent incentives, we have the single-chunk case

ẋ∅ = λ− βx∅x1

ẋ1 = βx∅x1 − δx1.

The globally attracting stable equilibrium is given by

x∗ = (δ/β, λ/δ).

Consider splitting into n = 2 chunks. Let x̃ be the state of the system. Suppose that the
new parameters are λ̃ = λ, δ̃ = δ, β̃, γ̃. Then

˙̃x
∅

= λ− β̃x̃∅(x̃1 + x̃2 + x̃12)

˙̃x
1

= −x̃1(β̃x̃12 + γ̃x̃2) + β̃x̃∅(x̃1 + 1
2 x̃

12)

˙̃x
2

= −x̃2(β̃x̃12 + γ̃x̃1) + β̃x̃∅(x̃2 + 1
2 x̃

12)

˙̃x
12

= β̃(x̃1 + x̃2)x̃12 + 2γ̃x̃1x̃2 − δx̃12.

The new equilibrium is easily found to be

x̃∗ =

(
δ

β̃

( δ
λ
u+ 1

)−1
,
u

2
,
u

2
,
λ

δ

)
,
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where u is the positive number which solves

q(u) = 0,

and

q(u) := u2 +
2β̃λ

γ̃δ
u−

2λ

γ̃
. (4.10)

To see this, set the vector field equal to zero and solve for x̃A, A ∈ {∅, 1, 2, 12 := F}. The
simplest way to obtain the solution is by first adding the equations; this gives

λ− δx̃12 = 0,

whence x̃12 = λ/δ. Then add the middle two equations after setting u = x̃1 + x̃2:

−β̃ux̃12 − 2γ̃x̃1x̃2 + β̃x∅(u+ x̃12) = 0.

Replace x̃12 by λ/δ and observe that, due to symmetry, x̃1 = x̃2 = u/2. This gives the
quadratic equation q(u) = 0 with q defined by (4.10). Finally, the first equation becomes

λ− β̃x̃∅(u+ λ/δ) = 0,

which is solved for x̃∅ giving:

x̃∗∅ =
λ

β̃

(
u+

λ

δ
)−1 =

δ

β̃

( δ
λ
u+ 1

)−1
<
δ

β̃
.

Thus:

Corollary 4.4.1. If β̃ ≥ β then
x̃∗∅ < x∗∅.

So, by introducing splitting into 2 chunks, we have fewer peers who have no parts of the file
at all. Using Little’s theorem (see below), this can be translated into smaller waiting time
from the time a peer arrives until he gets his first chunk.

Suppose now we are interested in determining how long it will take for a newly arrived peer
to acquire the full file. On the average, a peer spends time equal to λ−1|x∗| before it exits
the system. During last part of his sojourn interval (which is a random variable with mean
1/δ), the peer possess the full file. It thus takes on the average λ−1|x∗| − δ−1 for a peer to
acquire the full file. Since we assume that λ̃ = λ, δ̃ = δ, it suffices to show that

|x∗| > |x̃∗|.

But

|x∗| − |x̃∗| =

[
δ

β
+
λ

δ

]
−

[
δ

β̃

( δ
λ
u+ 1

)−1
+ u+

λ

δ

]

=
δ

β
−
δ

β̃

( δ
λ
u+ 1

)−1
− u−

λ

δ

=
( δ
λ
u+ 1

) [( δ
β
−
δ

β̃

)
+
( δ2
βλ
− 1
)
u−

δ

λ
u2

]
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recalling u > 0 solves q(u) = 0. So, |x∗| − |x̃∗| > 0 if and only if

0 > q̃(u) := u2 −
( δ
β
−
λ

δ

)
u−

(λ
β
−
λ

β̃

)
. (4.11)

Define ũ as the unique positive number which satisfies

q̃(ũ) = 0.

Corollary 4.4.2. If β̃ ≥ β, a necessary and sufficient condition for |x∗| > |x̃∗| is u < ũ.

4.4.2 Some theorems

To justify the use of deterministic approximation for estimating performance measures, and,
specifically, the use of mean values, we need to show that as N →∞, we can approximate
stationary averages in the original stochastic network by equilibria of the resulting ODE.

From now on we will assume that δA > 0, for all A ⊂ F , which means that peers can depart
at any instant of time, without having downloaded the whole file. So, in this case the sum
of the components

∑
AX

A can be bounded by an M/M/∞ queue with arrival rate equal
to the sum of the arrival rates for each A, i.e. α =

∑
A α

A, and departure rate equal to the
minimum of all the δA, A ⊂ F , which we will denote by δ.

It is easy to show that the convergence to the ODE limit can be traslated into convergence
of the means, using a uniform integrability argument (the process can be bounded by an
M/M/∞ queue as stated above). Namely,

1

N
EXN ,t −−−−→

N→∞
xt −−−→

t→∞
x∗,

where the second limit concerns the behaviour of the ODE alone, which we conjecture that
exists and that is asymptotically stable, because of the form of the differential equation. On
the other hand, if we fix N and look at the asymptotic behaviour of the process 1

NXN ,t as
t→∞, we have

1

N
EXN ,t −−−→

t→∞

1

N
EX̃N ,

where the law of X̃N is the stationary distribution of the chain ( 1
NXN ,t)t≥0, which exists

since the chain is positive recurrent as proved in Lemma 4.2.1. Now we are going to prove
that we can also interchange the two limits above, namely that 1

NEX̃N → x∗, as N → ∞.
We will prove that in the same way as in [15], but for the sake of completeness we will
analyze the technique here too.
We will follow three steps in the proof:

1. Let νN be a sequence of initial distributions that converges weakly to a probability
measure ν, then we will prove that L

(
1
NXN,., ν

N
)
→ L (x., ν), as N →∞.

2. If ν is any probability measure on R2n
, then L (xt, ν) → δx∗ as t → ∞, where δx∗ is

the Dirac measure on x∗.
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3. The sequence
(

1
N X̃N , N ≥ 1

)
is tight.

The proof of the interchange of the limits now goes as follows: Since the sequence
(

1
N X̃N , N ≥ 1

)

is tight, it has a convergent subsequence, say L
(

1
Nk
X̃Nk

, k ≥ 1
)

converging weakly to a mea-

sure ν. Then, because of 1, L
(

1
Nk
XNk,t,L

(
1

Nk
X̃Nk

))
→ L (xt, ν) as k → ∞. But, step 2

above gives that L (xt, ν)→ δx∗ as t→∞. Also, we have that L
(

1
Nk
XNk,t,L

(
1

Nk
X̃Nk

))
is

a stationary Markov process, so by taking the limit we get that L (xt, ν) is also stationary,
hence we deduce that ν = δx∗ . So, we have proved that any convergent subsequence of

L
(

1
N X̃N , N ≥ 1

)
converges to δx∗ , so the whole sequence converges to that measure.

Theorem 4.4.1. Let νN be a sequence of probability measures converging weakly to a mea-
sure ν. Then

L

((
1

N
XN,t

)

t

, νN

)
→ L ((xt)t , ν) , as N →∞.

Proof. Let f be a function from D([0, T ],R2n
), which is continuous and bounded. It suffices

to prove that

E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((xν

t )t≤T )

∣∣∣∣∣→ 0, as N →∞,

where 1
NX

XN,0

N,t means that the Markov chain is started from the initial stateXN,0 distributed

as νN and equivalently for the differential equation that the initial condition is distributed
according to measure ν. Now we have

E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((xν

t )t≤T )

∣∣∣∣∣

= E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((x

XN,0

t )t≤T ) + f((x
XN,0

t )t≤T )− f((xν
t )t≤T )

∣∣∣∣∣

≤ E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((x

XN,0

t )t≤T )

∣∣∣∣∣+E
∣∣∣f((x

XN,0

t )t≤T )− f((xν
t )t≤T )

∣∣∣ (4.12)

Since the sequence of measures νN converges weakly, it follows that it is tight, hence there
exists a compact set A such that νN (Ac) < ε for all N and also ν(Ac) < ε. The first term
of (4.12) can be written as

E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((x

XN,0

t )t≤T )

∣∣∣∣∣

= E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((x

XN,0

t )t≤T )

∣∣∣∣∣1(XN,0 ∈ A)

+E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((x

XN,0

t )t≤T )

∣∣∣∣∣1(XN,0 /∈ A) (4.13)
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Now, the second summand of (4.13) is bounded from above by MνN (Ac), where M/2 is a
bound for the function f , which can be made as small as we like by choosing A suitably.
The first summand of (4.13) can be written as follows:

E

∣∣∣∣∣f
((

1

N
X

XN,0

N,t

)

t≤T

)
− f((x

XN,0

t )t≤T )

∣∣∣∣∣1(XN,0 ∈ A)

=

∫

A
E

∣∣∣∣∣f
((

1

N
Xx

N,t

)

t≤T

)
− f((xx

t )t≤T )

∣∣∣∣∣ ν
N (dx), (4.14)

where the quantity under the integral sign can be made as small as we like for N large
enough because of Theorem 4.3.1 and then the integral gives δνN (A), but since A is a
compact set, it follows that lim νN (A) ≤ ν(A).

So it remains to be proved that the second term of (4.12), E
∣∣∣f((x

XN,0

t )t≤T )− f((xν
t )t≤T )

∣∣∣,
can also be made sufficiently small for N large enough. To prove that, we will firstly prove
that the sequence (xνN

t )t≤T is tight and then that the only possible limit is (xν
t )t≤T . The

tightness part follows easily from the continuity of the solution to the differential equation,
irrespective of the initial condition.

For the second step, let a1, . . . , ak ∈ R2n
and 0 ≤ t1, . . . , tk ≤ T . Then we will prove that

E

[
exp

(
i

k∑

l=1

〈al, x
νN

tl
〉

)]
→ E

[
exp

(
i

k∑

l=1

〈al, x
ν
tl
〉

)]
, as N →∞. (4.15)

We are using again the same set A as above and we obtain:

E

[
exp

(
i

k∑

l=1

〈al, x
νN

tl
〉

)]

= E

[
exp

(
i

k∑

l=1

〈al, x
νN

tl
〉

)
1(XN,0 ∈ A)

]
+E

[
exp

(
i

k∑

l=1

〈al, x
νN

tl
〉

)
1(XN,0 /∈ A)

]
.

The second term again is bounded by νN (Ac) which is small and the first term converges to

E

[
exp

(
i

k∑

l=1

〈al, x
ν
tl
〉

)
1(x0 ∈ A)

]
,

because of the weak convergence.

So, we have proved that for any finite k and for all tl

L(xνN

t1 , . . . , x
νN

tk
)→ L(xν

t1 , . . . , x
ν
tk

),

hence
E
∣∣∣f((x

XN,0

t )t≤T )− f((xν
t )t≤T )

∣∣∣→ 0, as N →∞.
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Theorem 4.4.2. If ν is any probability measure on R2n
, then L (xt, ν) → δx∗ as t → ∞,

where δx∗ is the Dirac measure on x∗.

Proof. Let f be a continuous and bounded function. Then we have

Eν [f(xt)] =

∫

R2n
Ex[f(xt)]ν(dx).

But Ex[f(xt)]→ f(x∗), since we have conjectured that the point x∗ is asymptotically stable,
so by dominated convergence, we get that

Eν [f(xt)]→ f(x∗).

Theorem 4.4.3. The sequence
(

1
N X̃N , N ≥ 1

)
is tight.

Proof. We have

P

(∣∣∣∣
∣∣∣∣
1

N
X̃N

∣∣∣∣
∣∣∣∣ > K

)
= lim

t→∞
P

(∣∣∣∣
∣∣∣∣
1

N
XN,t

∣∣∣∣
∣∣∣∣ > K

)
,

where ||.|| is the sum of the components. As we have already observed the sum of the
components can be bounded by an M/M/∞ queue with arrival rate α and departure rate
δ, and now the proof of this theorem follows in the same way as Theorem 6.3 of [15].

Thus, we have proved the three steps, hence obtaining that the law of the stationary process
converges weakly to the Dirac measure at x∗. Since the stationary process converges in
distribution to a constant, we deduce that it converges to that constant in probability
too. Now we can use a uniform integrability argument to show that also the expectation
converges.

Now we are going to explain the use of |x∗| as a measure of the sojourn time in the system
of a peer, by first using the approximation outlined above and then appealing to Little’s
law. This is as follows.

Consider an open BITTORRENT[X0, n, α, β, γ, δ], i.e. |α| > 0, δ > 0. We know that the
Markov chain (Xt) is positive recurrent and has thus a unique stationary distribution. It
makes sense to assess the performance of the network by looking at steady-state performance
measures, such as the mean time it takes for an ∅-peer to become an F -peer (a seed).
Consider then the process (X̃t, t ∈ R) defined to be a stationary Markov process with time
index R and transition rates as those of (Xt). The law of the process (X̃t, t ∈ R) is unique.
Let TA

k , k ∈ Z be the times at which A-peers arrive (and, say, T A
0 ≤ 0 < TA

1 , by convention).
These are the points of a stationary Poisson process in R with rate αA. Let WA

k be the
sojourn time (the time it takes to acquire the whole file) in the system of a peer arriving at
time TA

k . So the time WA
k is the sum of the times it takes for the peer to become a seed

plus the time that the peer hangs out in the system after becoming a seed (the latter is an
exponential time with mean 1/δ). Clearly then, for all t ∈ R,

∑

B⊃A

X̃B
t =

∑

k∈Z

1(TA
k ≤ t < TA

k +WA
k ).
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Using Campbell’s formula, we obtain

∑

B⊃A

EX̃B
0 = αAEAWA

0 , (4.16)

where EA is expectation with respect to PA–the Palm probability of P with respect to the
point process (TA

k , k ∈ Z).

In particular, with A = ∅, and λ = α∅, we have that

E∅W∅

0 =
1

λ
E|X̃0|,

which can be read as: the mean sojourn time of a ∅-peer is, in steady state, equal to the
mean number of peers in the system divided by the rate of arrivals of ∅-peers. If N is a
parameter of the process as in Theorem 4.3.1 then, λ being proportional to N , we have that
the right hand side converges to something that is proportional to |x∗|, as required.

4.5 Drift calculation

We consider the set of vectors

N = {−eF } ∪ {eA : A ⊂ F} ∪ {−eA + eA′ : A ⊂ A′ ⊂ F}

∪ {−eA − eB + eA′ + eB′ : A ⊂ A′ ⊂ F,B ⊂ B′ ⊂ F,A′ −A ⊂ B,B′ −B ⊂ A}.

For each ζ ∈ N we define a polynomial Qζ(x), by comparing (4.7) and (4.2):

QeA
(x) := αA

Q−eF
(x) := δxF

Q−eA+eA′
(x) := λA,A′(x)

Q−eA−eB+eA′+eB′
(x) := µA,B(x)δA,A′,B,B′ , (4.17)

where λA,A′(x), µA,B(x) are given by (4.1a), (4.1b), respectively, and

δA,A′,B,B′ := 1(A @ A′, A′ −A ⊂ B,B @ B ′, B′ −B ⊂ A).

The variable x ranges in Z
P(F )
+ or in R

P(F )
+ . The algebra is the same in both cases. Define

the drift vector field by
∑

y(y − x)q(x, y). Comparing (4.17) and (4.2) we have

∑

y

(y − x)q(x, y) =
∑

ζ∈N

ζQζ(x).

The latter sum appears in (4.8), in the course of the proof of Theorem 4.3.1. We shall verify
that

u(x) :=
∑

ζ∈N

ζQζ(x) = v(x),

where v(x) is defined by (4.4).
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Consider the terms in the summation u(x) =
∑

ζ∈N ζQζ(x) involving ζ = −eA − eB +
eA′ + eB′ . Notice that swapping A with B or A′ with B′ will not change the value of
x − eA, x − eB + eA′ + eB , so we need to make sure to take into account this change only
once in the summation. If we simultaneously swap A with B and A′ with B′ then neither
x − eA, x − eB + eA′ + eB nor the value of Q−eA−eB+eA′+eB′

(x) = µA,B(x)δA,A′,B,B′ will
change because, clearly,

µA,B(x)δA,A′,B,B′ = µB,A(x)δB,B′ ,A,A′,

as readily follows from (4.1a) and (4.1b). We now see that to swap A with B without
swapping A′ with B′ is impossible (unless A′ = B′). Indeed, it is an easy exercise that

δA,B,A′,B′ = δB,A,A′,B′ ⇒ A′ = B′.

Taking into account this, we write

u(x) = αAeA − δx
F eF +

∑

A,A′

(−eA + eA′)λA,A′(x)

+
1

2

∑

A,B,A′,B′

(−eA − eB + eA′ + eB′)µA,B(x)δA,B,A′,B′ , (4.18)

where the 1/2 appears because each term must be counted exactly once. The variables
A,A′, B,B′ in both summations are free to move over Pn(F ) (but notice that restrictions
have effectively been pushed in the definitions of λA,A′ , µA,B, and δA,B,A′,B′).

Since

∑

A,B,A′,B′

eAµA,B(x)δA,B,A′,B′ =
∑

A,B,A′,B′

eBµA,B(x)δA,B,A′,B′ ,

∑

A,B,A′,B′

eA′µA,B(x)δA,B,A′,B′ =
∑

A,B,A′,B′

eB′µA,B(x)δA,B,A′,B′ ,

we have

v(x) = αAeA − δx
F eF −

∑

A,A′

eAλA,A′(x) +
∑

A,A′

eA′λA,A′(x)

−
∑

A,B,A′,B′

eAµA,B(x)δA,B,A′,B′ +
∑

A,B,A′,B′

eA′µA,B(x)δA,B,A′,B′ .

Call the four sums appearing in this display as ui(x), uii(x), uiii(x), uiv(x), in this order.
We use the definitions (4.1a), (4.1b) of λA,A′ , µA,B and find the components of the vectors
ui, . . . , uiv by hitting each one with a unit vector eG, i.e. by taking the inner products
vG
i

= 〈eG, ui〉, . . . , v
G
iv

= 〈eG, uiv〉. We have:

uG
i
(x) = −

∑

A′

λG,A′(x) = −
∑

A′

βxG
∑

B:B⊃A′

xB

|B −G|
1(G @ A′)

= −βxG
∑

B

xB

|B −G|

∑

A′

1(G @ A′ ⊂ B) = −βxG
∑

B⊃G

xB, (4.19)
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where, in deriving the last equality we just observed that the number of sets A ′ that contain
one more element than G and are contained in B is equal to |B −G|, as long as G ⊂ B:

∑

A′

1(G @ A′ ⊂ B) = |B −G| 1(G ⊂ B).

Next,

uG
ii
(x) =

∑

A

λA,G(x) =
∑

A

βxA
∑

B⊃G

xB

|B −A|
1(A @ G)

= β
∑

B⊃G

xB
∑

A

xA

|B −A|
1(A @ G)

Notice that, in the last summation, G contains exactly one more element than A and is
strictly contained in B, so |B −A| = |B −G|+ 1. Hence

uG
ii
(x) = β

∑

B:B⊃G

xB

|B −G|+ 1

∑

A

xA
1(A @ G) = β

∑

B:B⊃G

xB

|B −G|+ 1

∑

g∈G

xG−g. (4.20)

For uiii(x), we have:

uG
iii

(x) = −
∑

B,A′,B′

µG,B(x)δG,A′,B,B′

= −γ
∑

B

xGxB

|G \ B||B \G|
·
∑

A′

1(G @ A′, A′ −G ⊂ B) ·
∑

B′

1(B @ B′, B′ −B ⊂ G)

= −γ
∑

B

xGxB

|G \B||B \G|
· |B \G| 1(B \G 6= ∅) · |G \B| 1(G \B 6= ∅)

= −γxG
∑

B 6∼G

xB . (4.21)

As for the last term, we have:

uG
iv

(x) =
∑

A,B,B′

µA,B(x)δA,G,B,B′

= γ
∑

B

∑

A

xAxB

|A \ B||B \ A|
1(A @ G,G −A ⊂ B)

∑

B′

1(B @ B′, B′ −B ⊂ A)

= γ
∑

B

∑

A

xAxB

|B \ A|
1(A @ G,G −A ⊂ B) 1(A \B 6= ∅)

= γ
∑

B

xB

|B \G|+ 1

∑

A

xA
1(A @ G,G −A ⊂ B) 1(G 6⊂ B)

= γ
∑

B

xB

|B \G|+ 1

∑

g∈G∩B

xG−g
1(G 6⊂ B) (4.22)

Adding (4.19) and (4.21) we obtain the first part of (4.4), while (4.21) and (4.22) give the
second part.
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4.6 Results of a simulation study

Here we present some numerical simulations that were generated by Youngmi Jin. We take
n = 2, β = 0.04 and N = 1000 users. S(t) represents the number of ∅-users, I1(t) the
number of users possessing chunk 1, I2(t) those possessing chunk 2 and IF (t) the users
owning the whole file. We also assume no arrivals and also that only peers with the whole
file depart at rate δ. We start IF (0) = 1 and S(0) = N − 1.

In Figure 1, we assume no swapping and only downloading takes place. By varying the
departure rate we observe how the curve IF behaves. In Figure 2, both swapping and
downloading take place. Comparing Figures 1 and 2 we see that peers in the bidirectional
case become seeds slightly sooner.
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Fig 1. Evolution of peers in unidirectional transaction case
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Fig 2. Evolution of peers in bidirectional transaction case
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In Figure 3, we compare the evolutions of I1 or I2 when we vary the departure rate δ. We
see, as expected, that I1 (or I2) with δ = 0.01 decreases slower than with δ = 0.00001. Since
there are no arrivals, this implies that a user becomes a seed quicker.

In Figure 4, S0 denotes the number of susceptible in the classical Kermack-McKendrick
(SIR) model. Here we see that S(t) hits 0 faster when we segment the file in 2 chunks rather
than having the whole file unsegmented. We also see that changing the swap rate does not
change things too much, which is something we observed in Figures 1 and 2.
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Fig 3. Evolution of peers in bidirectional transaction case
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