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Abstract

We consider random walk on dynamical percolation on the discrete torus Zd
n. In previous

work, mixing times of this process for p < pc(Zd) were obtained in the annealed setting where one
averages over the dynamical percolation environment. Here we study exit times in the quenched
setting, where we condition on a typical dynamical percolation environment. We obtain an
upper bound for all p which for p < pc matches the known lower bound.
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1 Introduction

In this paper, we study quenched mixing results for random walk on dynamical percolation on
the torus Zdn with parameters p and µ ≤ 1/2. Let each edge evolve independently where an edge
in state 0 (absent, closed) switches to state 1 (present, open) at rate pµ and an edge in state 1

switches to state 0 at rate (1− p)µ. Let (ηt)t≥0 denote the resulting Markov process on {0, 1}E(Zdn)

whose stationary distribution is product measure with density p, denoted by πp; this model is called
dynamical percolation. We next perform a random walk on the evolving graph (ηt)t≥0 by having
the random walker at rate 1 choose a neighbour (in the original graph) uniformly at random and
move there if (and only if) the connecting edge is open at that time. Letting (Xt)t≥0 denote the
position of the walker at time t, we have, when initial configurations are given, that

(Mt)t≥0 := ((ηt, Xt))t≥0

is a Markov process while (Xt)t≥0 of course is not.

In [?], a number of annealed results were obtained for this model where one has d and p fixed
while µ and n are considered the important parameters with respect to which we want to study
the model. We summarise here the relevant results obtained in [?] concerning mixing time.

Even though mixing times are traditionally defined only for Markov chains, one can easily adapt
the definition to cases like X above. For ε ∈ (0, 1) and η0 a configuration of edges we write

tmix(ε, η0) = min
{
t ≥ 0 : max

x
‖Px,η0(Xt = ·)− π‖TV ≤ ε

}
.
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We write Pπp(), when the environment process starts from stationarity. We then write

tmix(ε, πp) = min
{
t ≥ 0 : max

x

∥∥Px,πp(Xt = ·)− π
∥∥

TV
≤ ε
}
.

The following describes the subcritical picture very well.

Theorem 1.1 ([?]). For any d ≥ 1, ε > 0 and p ∈ (0, pc(Zd)), there exists C = C(d, ε, p) ∈ (0,∞)
and n0 = n0(d, ε, p) ∈ N such that, for all n ≥ n0 and for all µ ≤ 1/2, we have

n2

Cµ
≤ tmix(ε, πp) ≤ sup

η0
tmix(ε, η0) ≤ Cn2

µ
.

The following yields lower bounds throughout the whole parameter space of p.

Theorem 1.2 ([?]). (i) Given d ≥ 1 and ε > 0, there exist C1 = C1(d, ε) > 0 and n0 = n0(d, ε)
such that, for all p, for all n ≥ n0 and for all µ ≤ 1/2, we have

tmix(ε, πp) ≥ C1n
2.

(ii) Given d ≥ 1, p and ε < 1 − θd(p), there exists C2 = C2(d, p, ε) > 0 and n0 = n0(d, p, ε) such
that, for all n ≥ n0 and for all µ ≤ 1/2, we have

tmix(ε, πp) ≥
C2

µ
. (1.1)

In particular, for ε < 1− θd(p), we get a lower bound for tmix(ε, πp) of order n2 + 1
µ .

Remarks (i). In the usual theory of Markov chains, a lower bound on the ε-mixing time for a fixed ε
would yield a bound of a similar order on the mixing time when ε = 1/4; this is however not the
case here which is not a contradiction since (Xt)t≥0 is not a Markov chain.
(ii). We believe (as stated in [?]) that in the supercritical regime, the mixing time is much faster
than in the subcritical regime and has order at most 1

µ + n2. Despite this, the methods in [?] did

not even yield the much larger (subcritical) upper bound of n2

µ in the supercritical regime. One of
the corollaries of one of our main results is to obtain a related upper bound uniform in p (away
from 0 and 1).

The above results concerned annealed mixing times, meaning that the marginal distribution of
(Xt)t≥0 is studied. Here we study mixing and exit times of the conditional distribution of (Xt)t≥0

given (typical) (ηt)t≥0; in other words, we study the quenched mixing and exit time behaviour
of (Xt)t≥0.

For certain results, an annealed version immediately yields a quenched version. This is true (due
to Fubini’s Theorem) for almost sure results such as recurrence and transience. Note, on the
other hand, that annealed upper bounds on mixing times do not automatically pass to quenched
upper bounds on mixing times. One way to see this is to observe that if a convex combination of
probability measures is close in total variation to some probability measure ν, it still of course may
be the case that all the probability measures appearing in the convex combination are far in total
variation from ν. An example of this, in the context of a Markov chain in a randomly evolving
environment, is the following. Let (Mn)n≥1 be an i.i.d. sequence of 2×2 matrices where each matrix
is either (

1 0
0 1

)
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or (
0 1
1 0

)
each with probability 1/2. Let (Xk)k≥0 be the process on {0, 1} which at time n jumps according to
the matrix Mn+1. It is clear that the annealed mixing time is 1 since, independent of the starting
distribution for X0, the distribution of X1 is uniform. However the quenched mixing time is always
infinite, since if we condition on any “environment” (Mn)n≥1, the resulting time inhomogeneous
Markov chain is such that for every k, Xk is deterministic. On the other hand, a quenched mixing
upper bound easily yields an annealed mixing upper bound.

First of all we write Px,η(·) for the probability measure of the walk, when the environment process
is conditioned to be η = (ηt)t≥0 and the walk starts from x. We write P for the distribution of
the environment which is dynamical percolation on the torus, a measure on càdlàg paths [0,∞) 7→
{0, 1}E(Zdn). We write Pη0 to denote the measure P when the starting environment is η0. Abusing
notation we write Px,η0(·) to mean the law of the full system when the walk starts from x and the
initial configuration of the environment is η0. To distinguish it from the quenched law, we always
write η0 in the subscript as opposed to η.

Now we discuss hitting time bounds in both the quenched and annealed settings. Let A ⊆ Zdn. We
denote by τA the first hitting time of A by X, i.e.

τA = inf{t ≥ 0 : Xt ∈ A}.

Theorem 1.3. For all d ≥ 1 and δ > 0, there exists C = C(d, δ) <∞ so that for all p ∈ [δ, 1], for
all n, for all µ ≤ 1/2 and for all ε, random walk in dynamical percolation on Zdn with parameters p
and µ satisfies for all A ⊆ Zdn with |A| ≥ nd/2

max
η0
Pη0
(
η = (ηt)t≥0 : max

x
Ex,η[τA] ≥ Cn2 log(n/ε)

µ

)
≤ ε and

max
x,η0

Ex,η0 [τA] ≤ Cn2

µ
.

For ε ∈ (0, 1), x ∈ Zdn and a fixed environment η = (ηt)t≥0 we write

tmix(ε, x, η) = min
{
t ≥ 0 : ‖Px,η(Xt = ·)− π‖TV ≤ ε

}
.

We also write
tmix(ε, η) = max

x
tmix(ε, x, η)

for the quenched ε-mixing time. We remark that tmix(ε, η) could also be infinite. Using the obvious
definitions, the standard inequality tmix(ε) ≤ log2(1/ε)tmix(1/4) does not necessarily hold for time-
inhomogeneous Markov chains and therefore also not for quenched mixing times. Therefore, in such
situations, to describe the rate of convergence to stationarity, it is more natural to give bounds
on tmix(ε, η) for all ε rather than just considering ε = 1/4.

Theorem 1.4. For all d ≥ 1 and δ > 0, there exists C = C(d, δ) <∞ so that for all p ∈ [δ, 1], for
all n, for all µ ≤ 1/2 and for all ε, random walk in dynamical percolation on Zdn with parameters p
and µ satisfies for all x ∈ Zdn

max
η0
Pη0
(
η = (ηt)t≥0 : tmix(ε, x, η) ≥ Cn2 log(1/ε)

µ4

)
≤ ε. (1.2)
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We next discuss quenched lower bounds on the mixing time. It is now important whether p belongs
to the sub or supercritical regime for percolation. In [?], it was proved that n2

µ is the correct order
of the (annealed) mixing time in the subcritical regime and it was conjectured there that the mixing
time in the supercritical regime is much faster.

Proposition 1.5. For all d ≥ 1, p ∈ (0, pc(Zd)), ε > 0 and M , there exists β = β(d, p, ε,M) > 0
and n0 = n0(d, p, ε,M) so that if (ηt)t≥0 is dynamical percolation started in stationarity, then for
all n ≥ n0 we have

P
(
η = (ηt)t≥0 : tmix(1− ε, η) ≤ βn2

µ

)
≤ 1

M
. (1.3)

Proof. Fix d ≥ 1, p ∈ (0, pc(Zd)), ε and M . Let σ := min{ε2, 1
M2 }. By Theorem 1.1 there exists

β = β(d, p, σ) so that for all large n and for all µ ≤ 1/2,∥∥∥∥P0,πp

(
Xβn2

µ

= ·
)
− π

∥∥∥∥
TV

≥ 1− σ.

Since

P0,πp

(
Xβn2

µ

= ·
)

=

∫
P0,η

(
Xβn2

µ

= ·
)
Pη0((ηt)t≥0) dπp(η0),

convexity of the total variation norm in the sense that∥∥∥∥∫ µαdρ(α)− π
∥∥∥∥

TV

≤
∫
‖µα − π‖TV dρ(α)

yields that ∫ ∥∥∥∥P0,η

(
Xβn2

µ

= ·
)
− π

∥∥∥∥
TV

Pη0((ηt)t≥0)) dπp(η0) ≥ 1− σ, (1.4)

where η = (ηt)t≥0. This now implies that

P
(
η = (ηt)t≥0 :

∥∥∥∥P0,η

(
Xβn2

µ

= ·
)
− π

∥∥∥∥
TV

≤ 1− σ
1
2

)
≤ σ

1
2

Since σ := min{ε2, 1
M2 }, this gives the result.

The following is a quenched lower bound in the context of Theorem 1.2. The first statement is
proved as the previous result. The second one follows from the fact that with high probability the
environment will be such that there will exist a vertex isolated throughout the interval [0, β/µ].

Proposition 1.6. Given d ≥ 1, ε ∈ (0, 1), p < 1 and M , there exist β > 0 and n0 > 0 such that,
for all n ≥ n0 and for all µ ≤ 1/2, if (ηt)t≥0 is dynamical percolation started in stationarity, then

P
(
η = (ηt)t≥0 : tmix(ε, η) ≤ βn2

)
≤ 1

M
and

P
(
η = (ηt)t≥0 : tmix(ε, η) ≤ β

µ

)
≤ 1

M
.

Mixing times in the supercritical case will be studied in [?]. Some of the results in this paper will
be used there.
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2 General setup

Given a general finite state Markov chain p(·, ·) with state space Ω and a stationary distribution π,
we let

Qp(A,B) = Qp,π(A,B) :=
∑

x∈A,y∈B
π(x)p(x, y) (2.1)

for A,B ⊆ Ω. Also, for S ⊆ Ω, we let

ϕp(S) = ϕp,π(S) :=
Qp(S, S

c)

ν(S)
.

Observe that
ϕp(S) = P(X1 6∈ S | X0 ∈ S)

where (Xk)k∈Z is the stationary Markov chain associated to p(x, y) and π. We call ϕp(S) the
expansion of S (relative to the Markov chain p(x, y) and stationary distribution π). Note that p(x, y)
may have more than one stationary distribution and so we need to make π explicit.

Finally we recall standard notation. Let µ and ν be two probability measures on the same space Ω.
We write

χ2(µ, ν) =
∑
x∈Ω

ν(y)

(
µ(y)

ν(y)
− 1

)2

=
∑
y

µ(y)2

ν(y)
− 1.

By Cauchy-Schwartz we have
2 ‖µ− ν‖TV ≤ χ(µ, ν).

We will now consider the following general set up of a finite state Markov chain in a Markovian
evolving environment.

Let E be a state space for a discrete time homogeneous Markov chain η with transition matrix R.
Moreover, for every ζ ∈ E let (pζ(x, y))x,y∈S be a transition matrix on another state space S.
Assume π is a probability distribution on S which is stationary for pζ for all ζ ∈ E and has full
support.

We now define an annealed discrete time Markov chain (η,X) on E × S evolving as follows: when
in state (ζ, x), it jumps to the state (ζ ′, x′) by first choosing ζ ′ at random according to R(ζ, ·) and
then choosing x′ at random according to pζ′(x, ·). In symbols if Q denotes the annealed transition
matrix we have

Q((ζ, x), (ζ ′, x′)) = R(ζ, ζ ′)pζ′(x, x
′).

Given a realisation of the environment process, η = (ηi)i≥0, the coordinate X becomes a time
inhomogeneous Markov chain with transition matrix pηi at time i− 1.

Observe that since πpζ = π for all ζ ∈ E , it follows easily that maxx ‖Px,η(Xk = ·)− π‖TV is
decreasing in k for any fixed environment η. Next, as defined in the introduction we let

tmix(ε, η) := inf
{
k : max

x
‖Px,η(Xk = ·)− π‖TV ≤ ε

}
= max

x∈S
tmix(ε, η, x)

be the ε-mixing time in the environment η.

The following general theorem yields quenched upper bounds on the mixing time in our general set
up of a Markov chain in a Markovian evolving environment. We let π? := minx π(x) below. For
ζ ∈ E and S ⊆ S we let

ϕ(ζ, S) := Eζ
[
ϕpη1 (S)

]
.
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Notice that in the previous expression we average over the new environment η1, i.e. we run the
environment process for one step starting from ζ and use the transition matrix that it yields. For
r ∈ [π?,

1
2 ], let

ϕ(r) := inf{ϕ(ζ, S) : ζ ∈ E , π(S) ≤ r}

and ϕ(r) := ϕ(1
2) for r ≥ 1

2 . Clearly ϕ(r) is weakly decreasing in r. It is crucial for our applications
that in the above definitions, the minimization of S occurs outside of the expectation rather than
inside. If the minimum occurred on the inside, then ϕ(r) would be much smaller and the following
result would be much weaker.

Theorem 2.1. Consider a finite state Markov chain X in a Markovian evolving environment
satisfying pζ(x, x) ≥ γ for all ζ and all x with γ ∈ (0, 1/2]. For all ε > 0 and x ∈ S if

n ≥ 1 +
2(1− γ)2

γ2

∫ 4/ε

4π(x)

du

uϕ2(u)

then for all ζ ∈ E,

Pζ
(
η = (ηt)t≥0 : χ(Px,η(Xn = ·) , π) ≥ ε1/4

)
≤ ε1/4.

Remark 2.2. We note that the above theorem remains true in the following variant of the Markov
chain described above. Suppose that at every step, the chain X remains in place with probability
1/2 and with probability 1/2 it jumps according to the transition matrix given by the environment
at this time. When X stays in place (because of laziness), then the environment at the next step
also stays in place, otherwise it moves according to its transition matrix. So the transition matrix
of the environment depends on the extra randomness coming from whether X made an actual jump
or not. For the changes needed in the proof see Remark 4.2.

3 Random walk on dynamical percolation

In this section we prove Theorem 1.4 using the general result Theorem 2.1 stated in the previous
section. Before starting the proof we introduce some notation and prove some preliminary results.

Let E := D[0,1]({0, 1}E(Zdn)) be the space of right continuous paths with left limits from [0, 1] into

{0, 1}E(Zdn). Let ηk := η[k−1,k] and Zk := Xk. Then it is easy to see that ((ηk, Zk))k≥0 is a Markov
chain in a Markovian evolving environment. It is clear that (ηk)k≥0 is a Markov chain with state
space E and that for all ζ ∈ E , the corresponding Markov chain pζ simply corresponds to doing
random walk on Zdn for time 1 during which time the bond configuration evolution is fixed to be ζ.

Lemma 3.1. For all δ > 0, there exists σ = σ(δ) > 0 so that for all d ≥ 1, for all n, for all
µ ≤ 1/2, for all p ∈ [δ, 1], for all A ⊆ E(Zdn) and for all η0,

Pη0(|a ∈ A : ηt(a) = 1 for all t ∈ [1/2, 1]| ≥ |A|σµ) ≥ σµ.

Proof. The left hand size is minimised when η0 ≡ 0. In this case, the left hand side equals
P
(
Bin(|A|, (1− e−µ/2)pe−µ(1−p)/2) ≥ |A|σµ

)
where Bin(m, q) denotes a Binomial random variable

with parameters m and q. Since µ ≤ 1/2 and p ≥ δ, it is clear that there exists a σ satisfying the
requirements.

We now let ∂E(S) denote the edge boundary of S which is the set of edges from S to Sc. We simply
write ϕη[0,1] to denote ϕpη[0,1] ,π, i.e. we run the environment process for time 1 starting from η0 and

use pη[0,1] for the transition probability of the random walk.
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Lemma 3.2. For all d, there exists cd > 0 so that for all n, for all µ ≤ 1/2, for all p, for all β,
for all nonempty S ⊆ Zdn with π(S) ≤ 1/2, for all η[0,1] satisfying

|e ∈ ∂E(S) : ηt(e) = 1 for all t ∈ [1/2, 1]| ≥ |∂E(S)|β,

we have

ϕη[0,1](S) ≥ cdβ

n(π(S))1/d
.

Proof. Let Sgood := {s ∈ S : ∃ e from s to Sc which is open during [1/2, 1]} and let Sbad :=
S\Sgood. (Note that Sgood is a subset of the internal vertex boundary of S.) Note that

|Sgood| ≥
1

2d
× |e ∈ ∂E(S) : ηt(e) = 1 for all t ∈ [1/2, 1]|

and hence |Sgood| ≥ |∂E(S)|β
2d . Since π(S) ≤ 1/2, by the standard isoperimetric inequality on Zdn,

we have that |∂E(S)| ≥ c′d|S|(d−1)/d for some universal constant c′d only depending on d. It follows
that

|Sgood| ≥
c′d
2d
|S|(d−1)/dβ. (3.1)

Consider now
ϕη[0,1](S) = Pη[0,1](X1 6∈ S | X0 ∈ S) .

The subscript η[0,1] means that the environment is fixed to be this realisation. The conditioning
X0 ∈ S gives probability 1/|S| to each point in S. Since the uniform distribution is stationary for
all realisations of the environment by the definition of the random walk, we infer that

max
y∈Zdn

Pη[0,1]
(
X 1

2
= y

∣∣∣ X0 ∈ S
)
≤ 1

|S|
. (3.2)

Now

Pη[0,1](X1 6∈ S | X0 ∈ S) ≥Pη[0,1]
(
X 1

2
∈ Sgood ∪ Sc

∣∣∣ X0 ∈ S
)

× Pη[0,1]
(
X1 6∈ S

∣∣∣ X0 ∈ S,X 1
2
∈ Sgood ∪ Sc

)
.

(3.3)

By (3.2), the first factor on the right hand side is at least 1 − |Sbad|
|S| . This equals

|Sgood|
|S| , which,

by (3.1), is at least
c′d
2d |S|

−1/dβ =
c′d
2d(π(S))−1/dn−1β. For the second term, if X 1

2
∈ Sgood, we fix

an arbitrary edge e from X 1
2

to Sc which is open during [1/2, 1]. The probability that the random

walk attempts only one jump during [1
2 , 1] and the attempted jump is along this edge is at least

a constant γ = γ(d) > 0 only depending upon d. On the other hand, if X 1
2
∈ Sc, there is a fixed

probability the walk does not move, which we can also take to be γ(d).

This gives that the left hand side of (3.3) is at least
γ(d)c′d

2d (π(S))−1/dn−1β. Letting c(d) :=
γ(d)c′d

2d
yields the claim.

Proof of Theorem 1.4. We will apply Theorem 2.1 with E being the space of right continuous
paths with left limits on [0, 1] and Zk = Xk as defined earlier. Observe that

tmix(ε, η) ≤ tmix(ε, (ηk)k≥0)).
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We now show that for all d ≥ 1 and δ > 0, there exists C1 = C1(d, δ) > 0 so that for all p ∈ [δ, 1],

for all µ ≤ 1/2, for all n and for all η0 ∈ {0, 1}E(Zdn),

Pη0
(
ϕη1(S) ≥ C1µ

n(π(S))1/d

)
≥ C1µ. (3.4)

Fix d and δ. Choose σ(δ) from Lemma 3.1 and cd from Lemma 3.2. Fix S with π(S) ≤ 1/2.
Combining Lemmas 3.1 and 3.2 with A in Lemma 3.1 taken to be ∂E(S) and β in 3.2 taken to
be σµ, the two lemmas imply that

Pη0
(
ϕη

[0, 1µ ]
(S) ≥ cdσµ

n(π(S))1/d

)
≥ σµ,

establishing (3.4). From (3.4) we now get that for all sets S with π(S) ≤ 1/2

ϕ(η0, S) ≥ C2
1µ

2

n(π(S))1/d
,

and hence ∫ 4/ε

4π(x)

du

uϕ2(u)
=

∫ 1/2

4/nd

du

uϕ2(u)
+

1

ϕ2(1/2)

∫ 4/ε

1/2

du

u
≤ C2

(
n

µ2

)2

log

(
1

ε

)
,

where C2 is a positive constant. Since for any environment η and any x ∈ Zdn we have

Pη(X1 = x | X0 = x) ≥ 1

e
,

applying Theorem 2.1 completes the proof.

We turn to prove Theorem 1.3. We now let Ẽ := D[0,1/µ]({0, 1}E(Zdn)) be the space of right continuous

paths with left limits from [0, 1/µ] into {0, 1}E(Zdn). Let ηk := η[ k−1
µ
, k
µ

] and Zk := X k
µ

. Then again

((ηk, Zk))k≥0 is a Markov chain in a Markovian evolving environment. It is clear that (ηk)k≥0 is a

Markov chain with state space Ẽ and that for all ζ ∈ Ẽ , the corresponding Markov chain pζ simply
corresponds to doing random walk on Zdn for time 1/µ during which time the bond configuration
evolution is fixed to be ζ.

The following lemma follows in exactly the same way as Lemma 3.1.

Lemma 3.3. For all δ > 0, there exists σ = σ(δ) > 0 so that for all d ≥ 1, for all n, for all
µ ≤ 1/2, for all p ∈ [δ, 1], for all A ⊆ E(Zdn) and for all η0,

Pη0
(∣∣∣∣a ∈ A : ηt(a) = 1 for all t ∈

[
1

µ
− 1,

1

µ

]∣∣∣∣ ≥ |A|σ) ≥ σ.
Proof. As before, the left hand size is minimised when η0 ≡ 0. In this case, the left hand side equals
P
(
Bin(|A|, (1− eµ−1)pe−µ(1−p)) ≥ |A|σ

)
where Bin(m, q) denotes a Binomial random variable with

parameters m and q. Since µ ≤ 1/2 and p ≥ δ, it is clear that there exists a σ satisfying the
requirements.
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Proof of Theorem 1.3. In order to prove the theorem we first consider a lazy version of the
Markov chain ((ηk, Zk))k≥0 as follows. At every step the walk remains in place with probability
1/2 and with probability 1/2 it jumps according to the transition matrix given by the environment
at this time. When X stays in place, then the environment at the next step also stays in place,
otherwise it moves according to its transition matrix. This is the setup of Remark 2.2.

For this new chain the statement of Lemma 3.2 remains the same with an extra factor of 1/2 in
the lower bound for ϕη[0,1/µ] . Also Lemma 3.3 still holds with an extra factor of 1/2 again in the
lower bound of the probability.

Remark 2.2 now shows that the statement of Theorem 2.1 remains true, and hence we obtain

max
η0
Pη0
(
η = (ηt)t≥0 : tmix(ε, x, η) ≥ Cn2 log(1/ε)

µ

)
≤ ε, (3.5)

where the mixing time refers to the lazy version of the discretised random walk. By letting ε = ε/nd

and taking a union bound over all x ∈ Zdn we obtain

max
η0
Pη0
(
η = (ηt)t≥0 : tmix(ε, η) ≥ Cn2 log(n/ε)

µ

)
≤ ε.

Using this, we can obtain an upper bound of the same order for the hitting time of any set A ⊆ Zdn
with |A| ≥ nd/2 by looking at disjoint intervals of length Cn2 log(n/ε)/µ. Since a lazy chain is
delayed by a factor of 2, this finally shows that (for a different constant C)

max
η0
Pη0
(
η = (ηt)t≥0 : max

x
Ex,η[τA] ≥ Cn2 log(n/ε)

µ

)
≤ ε.

Using (3.5) for ε = 1/4 and performing independent experiments immediately gives that

max
x,η0

Ex,η0 [τA] ≤ Cn2

µ

and this concludes the proof.

4 Evolving Sets

In this section, we derive the theory of evolving sets in a Markovian random environment in order
to prove Theorem 2.1.

We first recall the definition of evolving sets in the context of a finite state Markov chain; see [?].
Given a Markov chain p(x, y) with state space Ω and a stationary distribution π, the corresponding
evolving-set process {Sn}n≥0 is a Markov chain on subsets of Ω whose transitions are described as
follows. Let Q be defined as in (2.1) (with ν being π) and let U be a uniform random variable on
[0, 1]. If S ⊆ Ω is the present state, we let the next state S̃ be defined by

S̃ :=

{
y ∈ Ω :

Q(S, y)

π(y)
≥ U

}
.

Note that Ω and ∅ are absorbing states and it is immediate to check that

P(y ∈ Sk+1 | Sk) =
Q(Sk, y)

π(y)
. (4.1)
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Moreover, one can describe the evolving set process as that process on subsets which satisfies the
“one-dimensional marginal” condition (4.1) and where these different events, as we vary y, are
maximally coupled.

For later use we also define now

ψp(S) := 1− E

√π(S̃)

π(S)

 ,
where S̃ is the first step of the evolving set process started from S and when the transition proba-
bility for the Markov chain is p and the stationary distribution π.

We next define completely analogously the evolving set process in the context of a time inhomo-
geneous Markov chain. Consider a time inhomogeneous Markov chain with state space S whose
transition matrix for moving from time k to time k + 1 is given by pk+1(x, y) where we assume
that the probability measure π is a stationary distribution for each pk. In this case, we say that π
is a stationary distribution for the inhomogeneous Markov chain. Let Qk be defined as in (2.1)
but with respect to pk and π. We then obtain a time inhomogeneous Markov chain S0, S1, . . . on
subsets of S generated by

Sk+1 :=

{
y ∈ S :

Qk+1(Sk, y)

π(y)
≥ Uk+1

}
where (Ui)i are i.i.d. random variables uniform on [0, 1]. We call this the evolving set process with
respect to p1, p2, . . . and π.

We now need to consider the Doob transform of the evolving set process. If Pζ is the transi-
tion probability for the evolving set process when the environment is ζ, then we define the Doob
transform via

P̂ζ(S, S
′) =

π(S′)

π(S)
Pζ(S, S

′).

We now let ψ(ζ, S) := Eζ
[
ψpη1 (S)

]
. For r ∈ [π?,

1
2 ], we let

ψ(r) := inf{ψ(ζ, S) : ζ ∈ E , π(S) ≤ r}

and ψ(r) := ψ(1
2) for r ≥ 1

2 .

In the following, we let

S# :=

{
S if π(S) ≤ 1

2
Sc otherwise

and

Zn :=

√
π(S#

n )

π(Sn)
.

Lemma 4.1. Let ε > 0 and x ∈ S. If

n ≥
∫ 4/ε

4π(x)

du

uψ(u)
,

then Ê{x},η0 [Zn] ≤
√
ε for all η0.
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Proof. We fix x, η0 and to simplify notation we do not include them in the notation. We now get
that almost surely

Ê
[
Zn+1

Zn

∣∣∣∣ Sn, η0, . . . , ηn

]
= E

[
π(Sn+1)

π(Sn)
· Zn+1

Zn

∣∣∣∣ Sn, η0, . . . , ηn

]
= E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 .
Suppose first that π(Sn) ≤ 1/2. Then

E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ E

[√
π(Sn+1)

π(Sn)

∣∣∣∣∣ Sn, η0, . . . , ηn

]
.

The Markov property of the environment now gives

E

[√
π(Sn+1)

π(Sn)

∣∣∣∣∣ Sn, η0, . . . , ηn

]
=
∑
η

R(ηn, η)(1− ψpη(Sn))

= 1− ψ(ηn, Sn) ≤ 1− ψ(π(Sn)).

(4.2)

Suppose next that π(Sn) > 1/2. Then

E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ E

√π(Scn+1)

π(Scn)

∣∣∣∣∣∣ Sn, η0, . . . , ηn


and using the Markov property of the environment as before (as well as the fact that (Scn)n is also
an evolving set process) we obtain

E

√π(Scn+1)

π(Scn)

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ 1− ψ(π(Scn)). (4.3)

Since the function ψ is non-increasing, it follows that if π(Sn) > 1/2, then ψ(π(Scn)) ≥ ψ(π(Sn)),
and hence from (4.2) and (4.3) we get that in all cases

E


√√√√π(S#

n+1)

π(S#
n )

∣∣∣∣∣∣ Sn, η0, . . . , ηn

 ≤ 1− ψ(π(Sn)) = 1− f0(Zn),

where following [?] we set f0(z) := ψ(1/z2) which is non-decreasing. (Note that π(Sn) = Z−2
n when

Zn ≥
√

2, i.e. when π(Sn) ≥ 1/2 and ψ(x) = ψ(1/2) for x ≥ 1/2.) Therefore, we conclude

Ê[Zn+1 | Zn] ≤ Zn(1− f0(Zn))

and hence using [?, Lemma 11 (iii)] we get that Ê[Zn] ≤
√
ε for all

n ≥
∫ 4/ε

4π(x)

du

uψ(u)

and this finishes the proof.
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Remark 4.2. We now explain the changes in the proof of the lemma above needed to justify
Remark 2.2. The matrix R is replaced by R(ζ, `, η), where ` ∈ {0, 1} depending on whether the
walk made an actual step or not, i.e. R(ζ, 0, η) = 1(ζ = η) and R(ζ, 1, η) = R(ζ, η). In the
definition of ψ, the matrix pη is replaced by (pη+I)/2. The proof of the lemma above then remains
unchanged with this new notation.

Lemma 4.3. If (Sk)k≥0 is the evolving set process relative to an inhomogeneous Markov chain (Xk)
and stationary distribution π, then

Px(Xk = y) =
π(y)

π(x)
P{x}(y ∈ Sk) .

Proof. In the case of a homogeneous Markov chain, this is Lemma 17.12 in [?]. The proof for the
inhomogeneous case goes through verbatim.

Lemma 4.4. If {Sk}k≥0 is the evolving set process relative to an inhomogeneous Markov chain
with stationary distribution π, then starting from any initial state, {π(Sk)}k≥0 is a martingale.

Proof. In the case of a homogeneous Markov chain, this is Lemma 17.13 in [?]. The proof for the
inhomogeneous case goes through verbatim.

Lemma 4.5. For all fixed environments η = (ηi)i≥0 and all x ∈ S we have

χ (Px,η(Yn = ·) , π) ≤ Êx,η[Zn] .

Proof. In the homogeneous case this is [?, equation (24)]. The proof for the inhomogeneous case
goes through verbatum using Lemmas 4.3 and 4.4.

Proof of Theorem 2.1. By Markov’s inequality we obtain

Pζ
(
η : χ(Px,η(Yn = ·) , π) ≥ ε1/4

)
≤ ε−1/4Eζ [χ(Px,η(Yn = ·) , π)] ,

where the last expectation is taken over the environment η started from ζ. From Lemma 4.5 we can
upper bound the right hand side by ε−1/4Ê{x},ζ [Zn]. From Lemma 4.1 we get that Ê{x},ζ [Zn] ≤

√
ε

for all

n ≥ 1 +

∫ 4/ε

4π(x)

du

uψ(u)
.

Lemma 10 in [?] implies that for all p and S,

ψp(S) ≥ γ2

2(1− γ)2
ϕ2
p(S).

Therefore, taking expectations and using Jensen’s inequality we get for all ζ and S

ψ(ζ, S) ≥ γ2

2(1− γ)2
ϕ2(ζ, S),

and hence for all r

ψ(r) ≥ γ2

2(1− γ)2
ϕ2(r).

Thus this gives that for all

n ≥ 1 +
2(1− γ)2

γ2

∫ 4/ε

4π(x)

du

uϕ2(u)

we have Ê{x},ζ [Zn] ≤
√
ε and hence this completes the proof.
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