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1 Basic aspects of continuous time Markov chains

1.1 Markov property

(Most parts here are based on [1] and [2].)

A sequence of random variables is called a stochastic process or simply process. We will always
deal with a countable state space S and all our processes will take values in S.

A process is said to have the Markov property when the future and the past are independent given
the present.

We recall now the definition of a discrete-time Markov chain.

Definition 1.1. The process X = (Xn)n∈N is called a discrete-time Markov chain with state
space S if for all x0, . . . , xn ∈ S we have

P(Xn = xn | X0 = x0, . . . , Xn−1 = xn−1) = P(Xn = xn | Xn−1 = xn−1)

whenever both sides are well defined.

If P(Xn+1 = y | Xn = x) is independent of n, then the chain is called time homogeneous. We then
write P = (pxy)x,y∈S for the transition matrix, i.e.

pxy = P(Xn+1 = y | Xn = x) .

It is called a stochastic matrix, because it satisfies
∑

y pxy = 1 and pxy ≥ 0 for all x, y.

The basic data associated to every Markov chain is the transition matrix and the starting distri-
bution, µ0, i.e.

P(X0 = x0) = µ(x0) for all x0 ∈ S.
Definition 1.2. The process X = (Xt)t≥0 is called a continuous-time Markov chain if for all
x1, . . . , xn ∈ S and all times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn we have

P
(
Xtn = xn

∣∣ Xtn−1 = xn−1, . . . , Xt1 = x1
)

= P
(
Xtn = xn

∣∣ Xtn−1 = xn−1
)

whenever both sides are well defined.

If the right hand-side above only depends on the difference tn − tn−1, then the chain is called time
homogeneous.

We write P (t) = (pxy(t))x,y∈S , where

pxy(t) = P(Xt = y | X0 = x) .

The family (P (t))t≥0 is called the transition semigroup of the continuous-time Markov chain. It is
the continuous time analogue of the iterates of the transition matrix in discrete time. In the same
way as in discrete time we can prove the Chapman-Kolmogorov equations for all x, y

pxy(t+ s) =
∑
z

pxz(t)pzy(s).

Hence the transition semigroup associated to a continuous time Markov chain satisfies

• P (t) is a stochastic matrix for all t.

• P (t+ s) = P (t)P (s) for all s, t.

• P (0) = I.
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1.2 Regular jump chain

When we consider continuous time processes, there are subtleties that do not appear in discrete
time. For instance if we have a disjoint countable collection of sets (An), then

P(∪nAn) =
∑
n

P(An) .

However, for an uncountable union ∪t≥0At we cannot necessarily define its probability, since it
might not belong to the σ-algebra. For this reason, from now on, whenever we consider continuous
time processes, we will always take them to be right-continuous, which means that for all ω ∈ Ω,
for all t ≥ 0, there exists ε > 0 (depending on t and ω) such that

Xt(ω) = Xt+s(ω) for all s ∈ [0, ε].

Then it follows that any probability measure concerning the process can be determined from the
finite dimensional marginals P(Xt1 = x1, . . . , Xtn = xn).

A right continuous process can have at most a countable number of discontinuities.

For every ω ∈ Ω the path t 7→ Xt(ω) of a right continuous process stays constant for a while. Three
possible scenarios could arise.

The process can make infinitely many jumps but only finitely many in every interval as shown in
the figure below.

J1 J2 J3 J4

S1 S2 S3 S4

Xt(ω)

t

The process can get absorbed at some state as in the figure below.
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J1 J2 J3

S1 S2 S3 S4 = ∞

Xt(ω)

t

The process can make infinitely many jumps in a finite interval as shown below.

J1 J2 J3

S1 S2 S3

Xt(ω)

tζ

S4

We define the jump times J0, J1, . . . of the continuous time Markov chain (Xt) via

J0 = 0, Jn+1 = inf{t ≥ Jn : Xt 6= XJn} ∀n ≥ 0,

where inf ∅ =∞. We also define the holding times S1, S2, . . . via

Sn =

{
Jn − Jn−1 if Jn−1 <∞
∞ otherwise

.

By right continuity we get Sn > 0 for all n. If Jn+1 =∞ for some n, then we set X∞ = XJn as the
final value, otherwise X∞ is not defined. We define the explosion time ζ to be

ζ = sup
n
Jn =

∞∑
n=1

Sn.

We also define the jump chain of (Xt) by setting Yn = XJn for all n. We are not going to consider
what happens to a chain after explosion. We thus set Xt = ∞ for t ≥ ζ. We call such a chain
minimal.
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1.3 Holding times

Let X be a continuous time Markov chain on a countable state space S. The first question we ask
is how long it stays at a state x. We call Sx the holding time at x. Then since we take X to be
right-continuous, it follows that Sx > 0. Let s, t ≥ 0. We now have

P(Sx > t+ s | Sx > s) = P(Xu = x, ∀u ∈ [0, t+ s] | Xu = x, ∀u ∈ [0, s])

= P(Xu = x, ∀u ∈ [s, t+ s] | Xu = x, ∀u ∈ [0, s])

= P(Xu = x, ∀u ∈ [0, t] | X0 = x) = P(Sx > t) .

Note that the third equality follows from time homogeneity. We thus see that Sx has the memoryless
property. From the following theorem we get that Sx has the exponential distribution and we call
its parameter qx.

Theorem 1.3 (Memoryless property). Let S be a positive random variable. Then S has the
memoryless property, i.e.

P(S > t+ s | S > s) = P(S > t) ∀ s, t ≥ 0

if and only if S has the exponential distribution.

Proof. It is obvious that if S has the exponential distribution, then it satisfies the memoryless
property. We prove the converse. Set F (t) = P(S > t). Then by the assumption we get

F (t+ s) = F (t)F (s) ∀s, t ≥ 0.

Since S > 0, there exists n large enough so that F (1/n) = P(S > 1/n) > 0. We thus obtain

F (1) = F

(
1

n
+ . . .+

1

n

)
= F

(
1

n

)n
> 0,

and hence we can set F (1) = e−λ for some λ ≥ 0. It now follows that for all k ∈ N we have

F (k) = e−λk.

Similarly for all rational numbers we get

F (p/q) = F (1/q)p = F (1)p/q = e−λp/q.

It remains to show that the same is true for all t ∈ R+. But for each such t and ε > 0 we can find
rational numbers r, s so that r ≤ t ≤ s and |r − s| ≤ ε. Since F is decreasing, we deduce

e−λs ≤ F (t) ≤ e−λr.

Taking ε→ 0 finishes the proof.

1.4 Poisson process

We are now going to look at the simplest example of a continuous-time Markov chain, the Poisson
process.

Suppose that S1, S2, . . . are i.i.d. random variables with S1 ∼ Exp(λ). Define the jump times
J1 = S1 and for all n define Jn = S1 + . . .+ Sn and set Xt = i if Ji ≤ t < Ji+1. Then X is called a
Poisson process of parameter λ.
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Theorem 1.4 (Markov property). Let (Xt)t≥0 be a Poisson process of rate λ. Then for all s ≥ 0
the process (Xs+t −Xs)t≥0 is also a Poisson process of rate λ and is independent of (Xr)r≤s.

Proof. We set Yt = Xt+s −Xs for all t ≥ 0. Then

Yt =

∞∑
i=1

1(s < Ji ≤ t+ s). (1.1)

From this it follows that it suffices to show that Yt is independent of the event {Xs = k} for all k.
From the definition of X we have {Xs = k} = {Jk ≤ s} ∩ {Sk+1 > s − Jk}. Therefore in the sum
in (1.1) we only keep the terms from k + 1 onwards. Since Ji = Ji−1 + Si for all i, by conditioning
on Sk+1 > s − Jk, using the memoryless property of the exponential distribution, we see that the
holding times for Y are again Exponential random variables with parameter λ and independent
of {Xs}.

Similarly to the proof above, one can show the strong Markov property for the Poisson process.

Recall from the discrete setting that a random variable T with values in [0,∞] is called a stopping
time if the event {T ≤ t} depends on (Xs)s≤t for all t.

Theorem 1.5 (Strong Markov property). Let (Xt)t≥0 be a Poisson process with rate λ and let T
be a stopping time. Then conditional on T < ∞, the process (XT+t − XT )t≥0 is also a Poisson
process of rate λ and is independent of (Xs)s≤T .

The following theorem gives two equivalent characterizations of the Poisson process.

Theorem 1.6. Let (Xt) be an increasing right-continuous process taking values in {0, 1, 2, . . .} with
X0 = 0. Let λ > 0. Then the following statements are equivalent:

(a) The holding times S1, S2, . . . are i.i.d. Exponentially distributed with parameter λ and the
jump chain is given by Yn = n, i.e. X is a Poisson process.

(b) [infinitesimal] X has independent increments and as h ↓ 0 uniformly in t we have

P(Xt+h −Xt = 1) = λh+ o(h)

P(Xt+h −Xt = 0) = 1− λh+ o(h).

(c) X has independent and stationary increments and for all t ≥ 0 we have Xt ∼Poisson(λt).

Proof. (a)⇒(b) If (a) holds, then by the Markov property the increments are independent and
stationary. Using stationarity we have uniformly in t as h→ 0

P(Xt+h −Xt = 0) = P(Xh = 0) = P(S1 > h) = e−λh = 1− λh+ o(h)

P(Xt+h −Xt ≥ 1) = P(Xh ≥ 1) = P(S1 ≤ h) = 1− e−λh = λh+ o(h)

P(Xt+h −Xt ≥ 2) ≤ P(S1 ≤ h, S2 ≤ h) = (1− e−λh)2 = o(h),

which means that (b) holds.

(b)⇒(c) We set pj(t) = P(Xt = j). Since the increments are independent and X is increasing, we
get

pj(t+ h) =

j∑
i=0

P(Xt = j − i)P(Xt+h −Xt = i) = pj(t)(1− λh+ o(h)) + pj−1(t)(λh+ o(h)) + o(h).
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From this it follows that pj(t) is continuous and rearranging we obtain

pj(t+ h)− pj(t)
h

= −λpj(t) + λpj−1(t) +O(h). (1.2)

Since this holds uniformly in t we can set s = t+ h and get

pj(s)− pj(s− h)

h
= −λpj(s− h) + λpj−1(s− h) +O(h). (1.3)

Therefore, from (1.2) and (1.3) we see that we can take the limit as h→ 0 and get

p′j(t) = −λpj(t) + λpj−1(t).

By differentiating eλtpk(t) with respect to t and substituting the above we get

(eλtpk(t))
′ = λeλtpk(t) + eλtp′k(t) = λeλtpk−1(t).

For j = 0, since in order to be at 0 at time t+ h we must be at 0 at time t, it follows similarly to
above that

p′0(t) = −λp0(t),
which gives that p0(t) = e−λt. We thus get p1(t) = e−λtλt and inductively we obtain

pn(t) = e−λt(λt)n/n!.

It follows that Xt has the Poisson distribution with parameter λt. If X satisfies (b), then (Xt+s −
Xs)t also satisfies (b), and hence X has stationary increments.

(c)⇒(a) The Poisson process satisfies (c). But (c) determines uniquely the finite dimensional
marginals for a right-continuous and increasing process. Therefore (c) implies (a).

Theorem 1.7 (Superposition). Let X and Y be two independent Poisson processes with parameters
λ and µ respectively. Then Zt = Xt + Yt is also a Poisson process with parameter λ+ µ.

Proof. We are going to use the infinitesimal definition of a Poisson process. Using the independence
of X and Y we get uniformly in t as h→ 0

P(Zt+h − Zt = 0) = P(Xt+h −Xt = 0, Yt+h − Yt = 0) = P(Xt+h −Xt = 0)P(Yt+h − Yt = 0)

= (1− λh+ o(h))(1− µh+ o(h)) = 1− (λ+ µ)h+ o(h).

We also have uniformly in t as h→ 0

P(Zt+h − Zt = 1) = P(Xt+h −Xt = 0, Yt+h − Yt = 1) + P(Xt+h −Xt = 1, Yt+h − Yt = 0)

= (1− λh+ o(h))(µh+ o(h)) + (1− µh+ o(h))(λh+ o(h)) = (λ+ µ)h+ o(h).

Clearly Z has independent increments, and hence it is a Poisson process of parameter λ+ µ.

Theorem 1.8 (Thinning). Let X be a Poisson process of parameter λ. Let (Zi)i be i.i.d. Bernoulli
random variables with success probability p. Let Y be a process with values in N, which jumps
at time t if and only if X jumps and ZXt = 1. In other words, we keep every point of X with
probability p independently over different points. Then Y is a Poisson process of parameter λp
and X − Y is an independent Poisson process of parameter λ(1− p).
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Proof. We will use the infinitesimal definition of a Poisson process to prove the result. The
independence of increments for Y is clear. Since P(Xt+h −Xt ≥ 2) = o(h) uniformly for all t as
h→ 0 we have

P(Yt+h − Yt = 1) = pP(Xt+h −Xt = 1) + o(h) = λph+ o(h)

P(Yt+h − Yt = 0) = P(Xt+h −Xt = 0) + P(Xt+h −Xt = 1) (1− p) + o(h)

= 1− λh+ o(h) + (λh+ o(h))(1− p) = 1− λph+ o(h).

This proves that Y is a Poisson process of rate λp. Since X−Y is a thinning of X with probability
1 − p, it follows from above that it is also a Poisson process of rate λ(1 − p). To prove the
independence, since both processes are right-continuous and increasing, it is enough to check the
finite dimensional marginals are independent, i.e. that for t1 ≤ t2 ≤ . . . ≤ tk and n1 ≤ . . . ≤ nk,
m1 ≤ . . . ≤ mk

P(Yt1 = n1, . . . , Ytk = nk, Xt1 − Yt1 = m1, . . . , Xtk − Ytk = mk)

= P(Yt1 = n1, . . . , Ytk = nk)P(Xt1 − Yt1 = m1, . . . , Xtk − Ytk = mk) .

We will only show it for a fixed t, but the general case follows similarly. Using the independence of
the Zi’s we now get

P(Yt = n,Xt − Yt = m) = P(Xt = m+ n, Yt = n) = e−λ
λλ+µ

(m+ n)!

(
m+ n

n

)
pn(1− p)m

=

(
e−λp

(λp)n

n!

)(
e−λ(1−p)

(λ(1− p))m
m!

)
= P(Yt = n)P(Xt − Yt = m)

which shows that Yt is independent of Xt − Yt for all times t.

Theorem 1.9. Let X be a Poisson process. Conditional on the event {Xt = n} the jump times
J1, . . . , Jn have joint density function

f(t1, . . . , tn) =
n!

tn
1(0 ≤ t1 ≤ . . . ≤ tn ≤ t).

Remark 1.10. First we notice that the joint density given in the theorem above is the same as the
one for an ordered sample from the uniform distribution on [0, t]. Also, let’s check that it is indeed
a density. Take for instance n = 2. Then the integral over the region 0 ≤ t1 ≤ t2 ≤ t is the area
of the triangle, which is given by t2/2. More generally, for all n, if we integrate the function 1/tn

over the cube [0, t]n, then it is equal to 1. By symmetry, when integrating over t1 ≤ t2 ≤ . . . ≤ tn
we have to divide the whole area by n!.

Proof of Theorem 1.9. Since the times S1.S2, . . . , Sn+1 are independent, their joint density is
given by

λn+1e−λ(s1+...+sn+1)1(s1, . . . , sn+1 ≥ 0).

The jump times J1 = S1, J2 = S1 + S2, . . . , Jn+1 = S1 + . . .+ Sn+1 have joint density given by

λn+1e−λtn+11(0 ≤ t1 ≤ . . . ≤ tn+1). (1.4)

This is easy to check by induction on n. For n = 2 we have

P(S1 ≤ x1, S1 + S2 ≤ x2) =

∫ x1

0
λe−λxP(S2 ≤ x2 − x) dx,

9



and hence by differentiating we obtain the formula above. The rest follows using the same idea.
Another way to show (1.4) is by using the formula for the density of a transformation of a random
vector (see notes of Probability 1A).

Now take A ⊆ Rn. Then

P((J1, . . . , Jn) ∈ A | Xt = n) =
P((J1, . . . , Jn) ∈ A,Xt = n)

P(Xt = n)
.

For the numerator using the density above we obtain

P((J1, . . . , Jn) ∈ A,Xt = n) = P((J1, . . . , Jn) ∈ A, Jn ≤ t < Jn+1)

=

∫
(t1,...,tn)∈A

∫ ∞
t

λn+1e−λtn+11(0 ≤ t1 ≤ . . . ≤ tn ≤ t ≤ tn+1) dt1 . . . dtn dtn+1

=

∫
(t1,...,tn)∈A

λne−λt1(0 ≤ t1 ≤ . . . ≤ tn ≤ t) dt1 . . . dtn

= λne−λt
∫
(t1,...,tn)∈A

1(0 ≤ t1 ≤ . . . ≤ tn ≤ t) dt1 . . . dtn.

Since Xt has the Poisson distribution of parameter λt, we get P(Xt = n) = (λt)ne−λt/n!. Dividing
the two expressions we obtain

P((J1, . . . , Jn) ∈ A | Xt = n) =
n!

tn

∫
(t1,...,tn)∈A

1(0 ≤ t1 ≤ . . . ≤ tn ≤ t) dt1 . . . dtn,

and hence the joint density of the jump times J1, . . . , Jn given Xt = n is equal to f .

1.5 Birth process

The birth process is a generalization of the Poisson process in which the parameter λ can depend
on the current state of the process. For the Poisson process the rate of going from i to i + 1 is λ.
For the birth process this rate is equal to qi. For each i let Si be an Exponential random variable
with parameter qi. Suppose that S1, S2, . . . are independent. Set Ji = S1 + . . . + Si and Xt = i
whenever Ji ≤ t < Ji+1. Then X is called a birth process.

Simple birth process

Suppose now that for all i we have qi = λi. We can think of this particular birth process as follows:
at time 0 there is only one individual, i.e. X0 = 1. Each individual has an exponential clock of
parameter λ. We will now need a standard result about Exponential random variables, whose proof
you are asked to give in the example sheet.

Proposition 1.11. Let (Tk)k≥1 be a sequence of independent random variables with Tk ∼ Exp(qk)
and 0 < q =

∑
k qk < ∞. Set T = infk Tk. Then this infimum is attained at a unique point K

with probability 1. Moreover, the random variables T and K are independent, with T ∼ Exp(q)
and P(K = k) = qk/q.

Using the result above it follows that if there are i individuals, then the first clock will ring after an
exponential time of parameter λi. Then we have i+ 1 individuals and by the memoryless property
of the exponential distribution, the process begins afresh. Let Xt denote the number of individuals
at time t when X0 = 1. We want to find E[Xt].

10



A probabilistic way to calculate it is the following: let T be the time that the first birth takes place.
Then we have

E[Xt] = E[Xt1(T ≤ t)] + E[Xt1(T > t)] = E[Xt1(T ≤ t)] + e−λt

=

∫ t

0
λe−λsE[Xt | T = s] ds+ e−λt.

If we set µ(t) = E[Xt], then by the memoryless property of the exponential distribution and the
fact that at time T there are 2 individuals, we get that E[Xt | T = s] = 2µ(t− s). So we deduce

µ(t) =

∫ t

0
2λe−λsµ(t− s) ds+ e−λt

and by a change of variable in the integral we get

eλtµ(t) = 2λ

∫ t

0
eλsµ(s) ds+ 1.

By differentiating we obtain

µ′(t) = λµ(t),

and hence µ(t) = eλt.

Most of the theory of Poisson processes goes through to birth processes without much difference.
The main difference between the two processes is the possibility of explosion in birth processes.
For a general birth process with rates (qi) we have that Si is an exponential random variable of
parameter qi and the jump times are J1 = S1 and Jn = S1 + . . . + Sn for all n. Explosion occurs
when ζ = supn Jn =

∑
n Sn <∞.

Proposition 1.12. Let X be a birth process with rates (qi) with X0 = 1.

(1) If
∑∞

i=1 1/qi <∞, then P(ζ <∞) = 1.

(2) If
∑∞

i=1 1/qi =∞, then P(ζ =∞) = 1.

Proof. (1) If
∑

n 1/qn <∞, then we get E[
∑

n Sn] =
∑

n 1/qn <∞, and hence P(
∑

n Sn <∞) = 1.

(2) If
∑

n 1/qn =∞, then
∏
n(1 + 1/qn) =∞. By monotone convergence and independence we get

E

[
exp

(
−
∞∑
n=1

Sn

)]
=

∞∏
n=1

E[exp (−Sn)] =

∞∏
n=1

(
1 +

1

qn

)−1
= 0.

Hence this gives that
∑

n Sn =∞ with probability 1.

Theorem 1.13 (Markov property). Let X be a birth process of rates (qi). Then conditional on
Xs = i, the process (Xs+t)t≥0 is a birth process of rates (qi) starting from i and independent of
(Xr : r ≤ s).

The proof of the Markov property follows similarly to the case of the Poisson process.

Theorem 1.14. Let X be an increasing, right-continuous process with values in {1, 2, . . .} ∪ {∞}.
Let 0 ≤ qj <∞ for all j ≥ 0. Then the following three conditions are equivalent:

11



(1) (jump chain/holding time definition) condition on X0 = i, the holding times S1, S2, . . . are
independent exponential random variables of parameters qi, qi+1, . . . respectively and the jump
chain is given by Yn = i+ n for all n;

(2) (infinitesimal definition) for all t, h ≥ 0, conditional on Xt = i the process (Xt+h)j is inde-
pendent of (Xs : s ≤ t) and as h ↓ 0 uniformly in t

P(Xt+h = i | Xt = i) = 1− qih+ o(h),

P(Xt+h = i+ 1 | Xt = i) = qih+ o(h);

(3) (transition probability definition) for all n = 0, 1, 2, . . ., all times 0 ≤ t0 ≤ . . . ≤ tn+1 and all
states i0, . . . , in+1

P
(
Xtn+1 = in+1

∣∣ X0 = i0, . . . , Xtn = in
)

= pinin+1(tn+1 − tn),

where (pi,j(t) : i, j = 0, 1, 2, . . .) is the unique solution of the forward equations P ′(t) = P (t)Q.

1.6 Construction of continuous time Markov chains

In this section we are going to give three probabilistic constructions of a continuous time Markov
chain. We start with the definition of a Q-matrix.

Definition 1.15. Let S be a countable set. Then a Q-matrix on S is a matrix Q = (qij : i, j ∈ S)
satisfying the following:

• 0 ≤ −qii <∞ for all i;

• qij ≥ 0 for all i 6= j;

• ∑j qij = 0 for all i.

We define qi := −qii for all i ∈ S. Given a Q-matrix Q we define a jump matrix as follows: for
x 6= y with qx 6= 0 we set

pxy =
qxy
−qxx

=
qxy
qx

and pxx = 0.

If qx = 0, then we set pxy = 1(x = y).

From this definition, since Q is a Q-matrix, it immediately follows that P is a stochastic matrix.

Example 1.16. Suppose that S = {1, 2, 3} and let

Q =

−2 1 1
1 −1 0
2 1 −3


Then the associated jump matrix P is given by

P =

0 1
2

1
2

1 0 0
2
3

1
3 0


Recall the definition of a minimal chain to be one that is set equal to∞ after explosion. From now
on we consider minimal chains.
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Definition 1.17. A Markov chainX with initial distribution λ and infinitesimal generatorQ, which
is a Q-matrix, is a stochastic process with jump chain Yn = XJn being a discrete time Markov
chain with Y0 ∼ λ and transition matrix P such that conditional on Y0, Y1, . . . , Yn the holding
times S1, S2, . . . , Sn+1 are independent Exponential random variables with rates q(Y0), . . . , q(Yn).
We write (Xt) = Markov(Q,λ).

We now give three constructions of a Markov chain with generator Q.

Construction 1

• Take Y a discrete time Markov chain with initial distribution λ and transition matrix P .

• Take (Ti)i≥1 i.i.d. Exp(1), independent of Y and set Sn = Tn
q(Yn−1)

and Jn =
∑n

i=1 Si.

• Set Xt = Yn if Jn ≤ t < Jn+1 and Xt =∞ otherwise.

Note that this construction satisfies the definition, because if T ∼ Exp(1), then T/µ ∼ Exp(µ).

Construction 2

Let (T yn )n≥1,y∈S be i.i.d. Exp(1) random variables. Define inductively Yn, Sn as follows: Y0 ∼ λ and
inductively if Yn = x, then we set for y 6= x

Syn+1 =
T yn+1

qxy
∼ Exp(qxy) and Sn+1 = inf

y 6=x
Syn+1.

If qx > 0, then by Proposition 1.11 Sn+1 = SZn+1 for some random Z in the state space and
Sn+1 ∼ Exp(qx). In this case we take Yn+1 = Z. If qx = 0, then we take Yn+1 = x.

Remark 1.18. This construction shows that the rate at which we leave a state x is equal to qx
and we transition to y from x at rate qxy.

Construction 3

We consider independent Poisson processes for each pair of points x, y with x 6= y with parame-
ter qxy. We define Yn, Jn inductively as follows: first we take Y0 ∼ λ and set J0 = 0. If Yn = x,
then we set

Jn+1 = inf{t > Jn : NYny
t 6= NYny

Jn
for some y 6= Yn}, Yn+1 =

{
y if Jn+1 <∞ and NYny

Jn+1
6= NYny

Jn

x if Jn+1 =∞
.

Recall the definition of the explosion time for a jump process. If (Jn) are the jump times, then the
explosion time ζ is defined to be ζ = supn Jn =

∑∞
n=1 Sn.

Theorem 1.19. Let X be Markov(Q,λ) on S. Then P(ζ =∞) = 1 if any of the following holds:

(i) S is finite;

(ii) supx qx <∞;

(iii) X0 = x and x is recurrent for the jump chain.
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Proof. Since (i) implies (ii), we will prove P(ζ =∞) = 1 under (ii). We set q = supx qx. The
holding times satisfy Sn ≥ Tn/q, where Tn ∼ Exp(1) and are i.i.d. By the strong law of large
numbers we now obtain

ζ =

∞∑
n=1

Sn ≥
1

q
·
∞∑
n=1

Tn =∞ with probability 1.

Suppose that (iii) holds and let (Ni)i≥1 be the times when the jump chain Y visits x. By the strong
law of large numbers again we get

ζ ≥
∞∑
i=1

SNi =
1

qx
·
∞∑
i=1

TNi =∞ with probability 1

and this finishes the proof.

Example 1.20. Consider a continuous time Markov chain on Z with rates as given in the Figure
below.

i0

2|i|2|i|

Thus the jump chain is a simple symmetric random walk on Z. Since it is recurrent, it follows that
there is no explosion.

Example 1.21. Consider a continuous time Markov chain on Z with rates as given in the figure
below.

i0

2|i|+12|i|

Thus the jump chain is a biased random walk on Z with P(ξ = +1) = 2/3 = 1 − P(ξ = −1). The
expected number of times this chain visits any given vertex is at most 3, and hence

E[ζ] = E

[ ∞∑
n=1

Si

]
≤
∞∑
n=1

1

2n−1
<∞,

which implies that ζ <∞ a.s., i.e. there is explosion.

Theorem 1.22 (Strong Markov property). Let X be Markov(Q,λ) and let T be a stopping time.
Then conditional on T < ζ and XT = x the process (XT+t)t≥0 is Markov(Q, δx) and independent
of (Xs)s≤T .

We will not give the proof here. The idea is similar to the discrete time setting, but it requires
some more measure theory. For a proof we refer the reader to [2, Section 6.5].
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1.7 Kolmogorov’s forward and backward equations

1.7.1 Countable state space

Theorem 1.23. Let X be a minimal right continuous process with values in a countable set S.
Let Q be a Q-matrix with jump matrix P . Then the following conditions are equivalent:

(a) X is a continuous time Markov chain with generator Q;

(b) for all n ≥ 0, 0 ≤ t0 ≤ . . . ≤ tn and all states x0, . . . , xn+1

P
(
Xtn+1 = xn+1

∣∣ Xtn = xn, . . . , Xt0 = x0
)

= pxnxn+1(tn+1 − tn),

where (pxy(t)) is the minimal non-negative solution to the backward equation

P ′(t) = QP (t) and P (0) = I.

Remark 1.24. Note that minimality in the above theorem refers to the fact that if P̃ is another
non-negative solution, then p̃xy(t) ≥ pxy(t). It is actually related to the fact that we restrict
attention to minimal chains, i.e. those that jump to a cemetery state after explosion.

Proof of Theorem 1.23. (a)⇒(b) Since X has the Markov property, it immediately follows that

P
(
Xtn+1 = xn+1

∣∣ Xtn = xn, . . . , Xt0 = x0
)

= P(Xtn+1 = xn+1 | Xtn = xn) .

We define P (t) by setting pxy(t) = Px(Xt = y) for all x, y ∈ S. We show that P (t) is the minimal
non-negative solution to the backward equation.

If (Jn) denote the jump times of the chain, we have

Px(Xt = y, J1 > t) = e−qxt1(x = y). (1.5)

By integrating over the values of J1 ≤ t and using the independence of the jump chain we get
for z 6= x

Px(Xt = y, J1 ≤ t,XJ1 = z) =

∫ t

0
qxe
−qxs qxz

qx
pt−s(z, y) ds =

∫ t

0
e−qxsqxzpt−s(z, y) ds.

Taking the sum over all z 6= x and using monotone convergence we obtain

pxy(t) = Px(Xt = y) = e−qxt1(x = y) +
∑
z 6=x

∫ t

0
e−qxsqxzpt−s(z, y) ds

= e−qxt1(x = y) +

∫ t

0

∑
z 6=x

e−qxsqxzpt−s(z, y) ds

or equivalently we have

eqxtpxy(t) = 1(x = y) +

∫ t

0

∑
z 6=x

eqxuqxzpu(z, y) du.
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From this it follows that pxy(t) is continuous in t. We now notice that
∑

z 6=x qxzpu(z, y) is a
uniformly convergent series of continuous functions, and hence the limit is continuous. Therefore,
we see that the right hand side is differentiable and we deduce

eqxt(qxpxy(t) + p′xy(t)) =
∑
z 6=x

eqxtqxzpt(z, y).

Cancelling the exponential terms and rearranging we finally get

p′xy(t) =
∑
z

qxzpt(z, y),

which shows that P ′(t) = QP (t).

Let now P̃ be another non-negative solution of the backward equations. We show that for all x, y, t
we have pxy(t) ≤ p̃xy(t).
Using the same argument as before we can show that

Px(Xt = y, t < Jn+1) = e−qxt1(x = y) +
∑
z 6=x

∫ t

0
e−qxsqxzPz(Xt−s = y, t− s < Jn) ds. (1.6)

If P̃ satisfies the backward equations, then by reversing the steps that led to (1.7) we see that it
also satisfies

p̃′xy(t) = e−qxt1(x = y) +
∑
z 6=x

∫ t

0
e−qxsqxz p̃zy(t− s) ds. (1.7)

We now show by induction that Px(Xt = y, t < Jn) ≤ p̃xy(t) for all n. Indeed, for n = 1, it
immediately follows from (1.5). Next suppose that it holds for n, i.e.

Px(Xt = y, t < Jn) ≤ p̃xy(t) ∀x, y, t.

Then using (1.6) and (1.7) we obtain that

Px(Xt = y, t < Jn+1) ≤ p̃xy(t) ∀x, y, t.

Using minimality of the chain, i.e. that after explosion it jumps to a cemetery state, we therefore
conclude that for all x, y and t

pxy(t) = Px(Xt = y, t < ζ) = lim
n→∞

Px(Xt = y, t < Jn) ≤ p̃xy(t)

and this proves the minimality of P .

(b)⇒(a) This follows in the same way as in the Poisson process case. We already showed that
if X is Markov with generator Q, then its transition semigroup must satisfy (b). But (b) deter-
mines uniquely the finite dimensional marginals of X and since X is right-continuous, we get the
uniqueness in law.

Remark 1.25. Note that in the case of a finite state space, the above proof becomes easier, since
interchanging sum and integral becomes obvious. We will see in the next section that in the finite
state space case, the solution to the backward equation can be written as P (t) = etQ and it is also
the solution to the forward equation, i.e. P ′(t) = P (t)Q. In the infinite state space case though,
to show that the semigroup satisfies the forward equations, one needs to employ a time-reversal
argument. More details on that can be found in [2, Section 2.8].
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1.7.2 Finite state space

We now restrict attention to the case of a finite state space. In this case the solution to the backward
equation has a simple expression. We start by defining the exponential of a finite dimensional
matrix.

Definition 1.26. If A is a finite-dimensional matrix, then we define its exponential via

eA =

∞∑
k=0

Ak

k!
.

Claim 1.1. For any r × r matrix A, the exponential eA is a finite dimensional matrix too and if
A1 and A2 commute, then

eA1+A2 = eA1 · eA2 .

Sketch of Proof. We set ∆ = maxi,j |aij |. Then by induction it is not hard to check that for all i, j

|aij(n)| ≤ rn−1∆n.

Using this, then any term of eA is bounded in absolute value by a convergent series, and hence this
shows the convergence in every component of the sum appearing in the definition of eA.

The commutativity property follows easily now using the definition.

Theorem 1.27. Let Q be a Q-matrix on a finite set S and let P (t) = etQ. Then (P (t))t has the
following properties:

(1) P (t+ s) = P (t)P (s) for all s, t;

(2) (P (t)) is the unique solution to the forward equation d
dtP (t) = P (t)Q and P (0) = I;

(3) (P (t)) is the unique solution to the backward equation d
dtP (t) = QP (t) and P (0) = I;

(4) for k = 0, 1, . . . we have
(
d
dt

)k |t=0 P (t) = Qk.

Proof. (1) Since the matrices sQ and tQ commute for all s, t ≥ 0, the first property is immediate.

(2)-(3) Since the sum defining etQ has infinite radius of convergence, we can differentiate term by
term and get that

d

dt
P (t) =

∞∑
k=1

tk−1

(k − 1)!
Qk−1 ·Q = P (t)Q.

Obviously P (0) = I. Suppose that P̃ is another solution. Then

d

dt
(P̃ (t)e−tQ) = P̃ ′(t)e−tQ + P̃ (t)

d

dt
(e−tQ) = P̃ (t)Qe−tQ − P̃ (t)Qe−tQ = 0

and since P̃ (0) = I, we get P̃ (t) = etQ.

The case of the forward equations follows in exactly the same way.

(4) Differentiating k times term by term gives the claimed identity.
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Theorem 1.28. Let S be a finite state space and let Q be a matrix. Then it is a Q-matrix if and
only if P (t) = etQ is a stochastic matrix for all t ≥ 0.

Proof. For t ↓ 0 we can write

P (t) = I + tQ+O(t2).

Hence for all x 6= y we get that qxy ≥ 0 if and only if pxy(t) ≥ 0 for all t ≥ 0 sufficiently small. Since
P (t) = P (t/n)n for all n we obtain that qxy ≥ 0 for x 6= y if and only if pxy(t) ≥ 0 for all t ≥ 0 and
all x, y.

Assume now that Q is a Q-matrix. Then
∑

y qxy = 0 for all x and∑
y

qxy(n) =
∑
y

∑
z

qxz(n− 1)qzy =
∑
z

qxz(n− 1)
∑
y

qzy = 0,

i.e. also Qn has zero sum rows. Hence we obtain

∑
y

pxy(t) = 1 +
∞∑
k=1

tk

k!

∑
y

qxy(n) = 1,

which means that P (t) is a stochastic matrix.

Assume now that P (t) is a stochastic matrix. Then∑
y

qxy =
d

dt

∣∣∣
t=0

∑
y

pxy(t) = 0,

which shows that Q is a Q-matrix.

Theorem 1.29. Let X be a right continuous process with values in a finite set S and let Q be a
Q-matrix on S. Then the following are equivalent:

(a) the process X is Markov with generator Q;

(b) [infinitesimal definition] conditional on Xs = x the process (Xs+t)t≥0 is independent of
(Xr)r≤s and uniformly in t as h ↓ 0 for all x, y

P(Xt+h = y | Xt = x) = 1(x = y) + qxyh+ o(h);

(c) for all n ≥ 0, 0 ≤ t0 ≤ . . . ≤ tn and all states x0, . . . , xn

P
(
Xtn = xn

∣∣ Xtn−1 = xn−1, . . . , Xt0 = x0
)

= pxn−1xn(tn − tn−1),

where (pxy(t)) is the solution to the forward equation

P ′(t) = P (t)Q and P (0) = I.

Proof. The equivalence between (a) and (c) follows from Theorem 1.23. We show the equivalence
between (b) and (c).

(c)⇒(b) Since the state space is finite, from Theorem 1.27 we obtain that P (t) = etQ and it is the
unique solution to both the forward and backward equation. Then as t ↓ 0 we get

P (t) = I + tQ+O(t2).
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So for all t > 0 as h ↓ 0 for all x, y

P(Xt+h = y | Xt = x) = 1(x = y) + qxyh+ o(h).

(b)⇒(c) For all x, y ∈ S we have uniformly for all t as h ↓ 0

pxy(t+ h) =
∑
z

Px(Xt+h = y,Xt = z) =
∑
z

(1(z = y) + qzyh+ o(h)) pxz(t),

and rearranging we get

pxy(t+ h)− pxy(t)
h

=
∑
z

qzypxz(t) +O(h),

since the state space is finite. Because this holds uniformly for all t, we can replace t+ h by t− h
as in the proof of Theorem 1.23 and thus like before we can differentiate and deduce

p′xy(t) =
∑
z

pxz(t)qzy,

which shows that (pxy(t)) satisfies the forward equation and this finishes the proof.

We now end this section by giving an example of a Q-matrix on a state space with 3 elements and
how we calculate P (t) = etQ. Suppose that

Q =

−2 1 1
1 −1 0
2 1 −3

 .

Then in order to calculate P (t) = etQ we first diagonalise Q. The eigenvalues are 0,−2,−4. Then
we can write Q = UDU−1 where D is diagonal. In this case we obtain

etQ =

∞∑
k=0

(tQ)k

k!
= U

∞∑
k=0

1

k!

0k 0 0
0 (−2t)k 0
0 0 (−4t)k

U−1 = U

1 0 0
0 e−2t 0
0 0 e−4t

U−1.

Thus p11(t) must have the form p11(t) = a + be−2t + ce−4t for some constants a, b, c. We know
p11(0) = 1, p′11(0) = q11 and p′′11(0) = q11(2).

1.8 Non-minimal chains

So far we have only considered minimal chains, i.e. those that jump to a cemetery state after
explosion. For such chains we established that the transition semigroup is the minimal non-negative
solution to the forward and backward equations.

Minimal right-continuous processes are the simplest processes but also have a lot of applications.
Let’s see now what changes when we do not require the chain to die after explosion.

Example 1.30. Consider a birth process with rates qi = 2i. Then as we proved in Proposition 1.12
this process explodes almost surely. Suppose now that after explosion the chain goes back to 0 and
restarts independently of what happened so far. After the second explosion it restarts again and
so on. We denote this process by X̃.
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Then it clearly satisfies the Markov property, i.e.

P
(
X̃tn+1 = xn+1

∣∣∣ X̃tn = xn, . . . , X̃t0 = x0

)
= p̃xnxn+1(tn+1 − tn)

and p̃xy(t) also satisfies the backward and forward equations but it is not minimal. Indeed, if X is
a minimal birth chain with the same parameters, then

pxy(t) = Px(Xt = y) = Px(Xt = y, t < ζ) ,

while

p̃xy(t) = Px
(
X̃ = y, t < ζ

)
+ Px

(
X̃t = y, t ≥ ζ

)
= Px(X = y, t < ζ) + Px

(
X̃t = y, t ≥ ζ

)
.

Since Px
(
X̃t = y, t ≥ ζ

)
> 0, it immediately follows that p̃xy(t) > pxy(t).

In general in order to characterize a non-minimal chain we need in addition to the generator Q also
the way in which it restarts after explosion.

2 Qualitative properties of continuous time Markov chains

We first note that from now on we will only be dealing with minimal continuous time Markov
chains, i.e. those that die after explosion. We will see that qualitative properties of the chain are
the same as those for the jump chain. The state space will always be countable or finite.

2.1 Class structure

Let x, y ∈ S. We say that x leads to y and denote it by x → y if Px(Xt = y for some t ≥ 0) > 0.
We say that x and y communicate if x → y and y → x. The notions of communicating class,
irreducibility, closed class and absorbing state are the same as in the discrete setting.

Theorem 2.1. Let X be a continuous time Markov chain with generator Q and transition semi-
group (P (t)). For any two states x and y the following are equivalent:

(i) x→ y;

(ii) x→ y for the jump chain;

(iii) qx0x1 . . . qxn−1xn > 0 for some x = x0, . . . , xn = y;

(iv) pxy(t) > 0 for all t > 0;

(v) pxy(t) > 0 for some t > 0.

Proof. Implications (iv)⇒(v)⇒(i)⇒(ii) are immediate.

(ii)⇒(iii): Since x → y for the jump chain, it follows that there exist x0 = x, x1, . . . , xn = y such
that

px0x1 . . . pxn−1xn > 0.

By the definition of the jump matrix, it follows that qxixi+1 > 0 for all i = 0, . . . , n − 1, and this
proves (iii).
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(iii)⇒(iv): We first note that if for two states w, z we have qwz > 0, then

pwz(t) ≥ Pw(J1 ≤ t, Y1 = z, S2 > t) =
(
1− e−qwt

) qwz
qw

e−qzt > 0.

Hence assuming (iii) we obtain

pxy(t) ≥ px0x1(t/n) . . . pxn−1xn(t/n) > 0 ∀t > 0,

where the inequality follows, since one way to go from x to y in t steps is via the path x1, . . . , xn.

2.2 Hitting times

Suppose that X is a continuous time Markov chain with generator Q on S. Let Y be the jump
chain and A ⊆ S. We set

TA = inf{t > 0 : Xt ∈ A} and HA = inf{n ≥ 0 : Yn ∈ A}.

Since X is minimal, it follows that

{TA <∞} = {HA <∞} and on this event TA = JHA .

Let hA(x) = Px(TA <∞) and kA(x) = Ex[TA].

Theorem 2.2. Let A ⊆ S. The vector of hitting probabilities (hA(x))x∈S is the minimal non-
negative solution to the system of linear equations

hA(x) = 1 ∀x ∈ A
QhA(x) =

∑
y∈S

qxyhA(y) = 0 ∀x /∈ A.

Proof. For the jump chain we have that hA(x) is the minimal non-negative solution to the following
system of linear equations:

hA(x) = 1 ∀x ∈ A
hA(x) =

∑
y 6=x

hA(y)pxy ∀x /∈ A.

The second equation can be rewritten

qxhA(x) =
∑
y 6=x

hA(y)qxy ⇒
∑
y

hA(y)qxy = 0⇒ Qh(x) = 0.

The proof of minimality follows from the discrete case.

Theorem 2.3. Let X be a continuous time Markov chain with generator Q and A ⊆ S. Suppose
that qx > 0 for all x /∈ A. Then kA(x) = Ex[TA] is the minimal non-negative solution to

kA(x) = 0 ∀x ∈ A
QkA(x) =

∑
y

qxykA(y) = −1 ∀x /∈ A.
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Proof. Clearly if x ∈ A, then TA = 0, and hence kA(x) = 0. Let x /∈ A. Then TA ≥ J1 and by the
Markov property we obtain

Ex[TA − J1 | Y1 = y] = Ey[TA] .

By conditioning on Y1 we thus get

kA(x) = Ex[J1] +
∑
y 6=x

pxyEy[TA] =
1

qx
+
∑
y 6=x

qxy
qx
kA(y).

Therefore for x /∈ A we showed QkA(x) = −1. The proof of minimality follows in the same way as
in the discrete case and is thus omitted.

Remark 2.4. We note that the hitting probabilities are the same for the jump chain and the
continuous time Markov chain. However, the expected hitting times differ, since in the continuous
case we have to take into account also the exponential amount of time that the chain spends at
each state.

2.3 Recurrence and transience

Definition 2.5. We call a state x recurrent if Px({t : Xt = x} is unbounded) = 1. We call x
transient if Px({t : Xt = x} is unbounded) = 0.

Remark 2.6. We note that ifX explodes with positive probability starting from x, i.e. if Px(ζ <∞) >
0, then x cannot be recurrent.

As in the discrete setting we have the following dichotomy.

Theorem 2.7. Let X be a continuous time Markov chain and Y its jump chain. Then

(i) If x is recurrent for Y , then x is recurrent for X.

(ii) If x is transient for Y , then x is transient for X.

(iii) Every state is either recurrent or transient.

(iv) Recurrence and transience are class properties.

Proof. (i) Suppose that x is recurrent for Y and X0 = x. Then X cannot explode, and hence
Px(ζ =∞) = 1, or equivalently Jn → ∞ with probability 1 starting from x. Since XJn = Yn for
all n and Y visits x infinitely many times, it follows that the set {t ≥ 0 : Xt = x} is unbounded.

(ii) If x is transient, then qx > 0, otherwise x would be absorbing for Y . Hence

N = sup{n : Yn = x} <∞

and if t ∈ {s : Xs = x}, then t ≤ JN+1. Since (Yn : n ≤ N) cannot contain any absorbing state, it
follows that JN+1 <∞, and therefore x is transient for X.

(iii), (iv) Recurrence and transience are class properties in the discrete setting, hence from (i) and
(ii) we deduce the same for the continuous setting.

Theorem 2.8. The state x is recurrent for X if and only if
∫∞
0 pxx(t) dt = ∞. The state x is

transient for X if and only if
∫∞
0 pxx(t) dt <∞.
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Proof. If qx = 0, then x is recurrent and pxx(t) = 1 for all t, and hence
∫∞
0 pxx(t) dt =∞.

Suppose now that qx > 0. Then it suffices to show that∫ ∞
0

pxx(t) dt =
1

qx
·
∞∑
n=0

pxx(n), (2.1)

since then the result will follow from the dichotomy in the discrete time setting. We now turn to
prove (2.1). We have∫ ∞

0
pxx(t) dt = Ex

[∫ ∞
0

1(Xt = x) dt

]
= Ex

[ ∞∑
n=0

Sn+11(Yn = x)

]
=
∞∑
n=0

Ex[Sn+11(Yn = x)]

=
∞∑
n=0

Px(Yn = x)Ex[Sn+1 | Yn = x] =
1

qx
·
∞∑
n=0

pxx(n),

where the third equality follows from Fubini and the last one from the fact that conditional on
Yn = x the holding time Sn+1 is Exponentially distributed with parameter qx.

2.4 Invariant distributions

Definition 2.9. Let Q be the generator of a continuous time Markov chain and let λ be a measure.
It is called invariant if λQ = 0.

As in discrete time, also here the term invariant means that if we start the chain according to this
distribution, then at each time t the distribution will be the same. We will prove this later.

For x ∈ S we let Tx = inf{t ≥ J1 : Xt = x} and Hx = inf{n ≥ 1 : Yn = x} be the first return times
to x for X and Y respectively.

First we show how invariant measures of the jump chain and of the continuous time chain are
related.

Theorem 2.10. Let X be a continuous time chain with generator Q and let Y be its jump chain.
The measure π is invariant for X if and only if the measure µ defined by µx = qxπx is invariant
for Y .

Proof. First note that qx(pxy − 1(x = y)) = qxy and so we get∑
x

π(x)qxy =
∑
x

π(x)qx(pxy − 1(x = y)) =
∑
x

µ(x)(pxy − 1(x = y)).

Therefore, µP = µ⇔ πQ = 0.

We now recall a result from discrete time theory concerning invariant measures.

Theorem 2.11. Let Y be a discrete time Markov chain which is irreducible and recurrent and let
x be a state. Then the measure

ν(y) = Ex

[
Hx−1∑
n=0

1(Yn = y)

]

is invariant for Y and for all y it satisfies 0 < ν(y) <∞ and ν(x) = 1.
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Theorem 2.12. Let Y be an irreducible discrete time Markov chain and ν as in Theorem 2.11.
If λ is another invariant measure with λ(x) = 1, then λ(y) ≥ ν(y) for all y. If Y is recurrent, then
λ(y) = ν(y) for all y.

Theorem 2.13. Let X be an irreducible and recurrent continuous time Markov chain with gener-
ator Q. Then X has an invariant measure which is unique up to scalar multiplication.

Proof. Since the chain is irreducible, it follows that qx > 0 for all x (except if the state space is a
singleton, which is a trivial case).

The jump chain Y will then also be irreducible and recurrent, and hence the measure ν defined in
Theorem 2.11 is invariant for Y and it is unique up to scalar multiplication.

Since we assumed that qx > 0, from Theorem 2.10 we get that the measure π(x) = ν(x)/qx is
invariant for X and it is unique up to scalar multiples.

Just like in the discrete time setting, also here the existence of a stationary probability distribution
is related to the question of positive recurrence.

Recall Tx = inf{t ≥ J1 : Xt = x} is the first return time to x.

Definition 2.14. A recurrent state x is called positive recurrent if mx = Ex[Tx] < ∞. Otherwise
it is called null recurrent.

Theorem 2.15. Let X be an irreducible continuous time Markov chain with generator Q. The
following statements are equivalent:

(i) every state is positive recurrent;

(ii) some state is positive recurrent;

(iii) X is non-explosive and has an invariant distribution λ.

Furthermore, when (iii) holds, then λ(x) = (qxmx)−1 for all x.

Proof. Again we assume that qx > 0 for all x by irreducibility, since otherwise the result is trivial.

The implication (i)=⇒(ii) is obvious. We show first that (ii)=⇒(iii). Let x be a positive recurrent
state. Then it follows that all states have to be recurrent, and hence X is non-explosive, i.e.
Py(ζ =∞) = 1 for all y ∈ S. For all y ∈ S we define the measure

µ(y) = Ex
[∫ Tx

0
1(Xs = y) ds

]
, (2.2)

i.e. µ(y) is the expected amount of time the chain spends at y in an excursion from x. Recall
that Hx denotes the first return time to x for the jump chain. We can rewrite µ(y) using the jump
chain Y and holding times (Sn) as follows

µ(y) = Ex

[ ∞∑
n=0

Sn+11(Yn = y, n < Hx)

]
=

∞∑
n=0

Ex[Sn+1 | Yn = y, n < Hx]Px(Yn = y, n < Hx)

=
1

qy
· Ex

[ ∞∑
n=0

1(Yn = y, n < Hx)

]
=

1

qy
· Ex

[
Hx−1∑
n=0

1(Yn = y)

]
=
ν(y)

qy
,
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where the second equality follows from Fubini’s theorem. Since the jump chain is recurrent, it
follows that ν is an invariant measure for Y . Using Theorem 2.10 it follows that µ is invariant
for X. Taking the sum over all y of µ(y) we obtain∑

y

µ(y) = Ex[Tx] = mx <∞,

and hence we can normalise µ in order to get a probability distribution, i.e.

λ(y) =
µ(y)

mx

is an invariant distribution, which satisfies λ(x) = (qxmx)−1.

Suppose now that (iii) holds. By Theorem 2.10 the measure β(y) = λ(y)qy is invariant for Y .
Since Y is irreducible and

∑
y λ(y) = 1, we have that qyλ(y) ≥ qxλ(x)pxy(n) > 0 for some n > 0.

Hence λ(y) > 0 for all y and since we have assumed that qy > 0 for all y, we can define the
measure a(y) = β(y)/(λ(x)qx). This is invariant for the jump chain and satisfies a(x) = 1. From
Theorem 2.12 we now obtain that for all y

a(y) ≥ Ex

[
Hx−1∑
n=0

1(Yn = y)

]
.

We also have µ(y) = ν(y)/qy and since X is non-explosive, we have mx =
∑

y µ(y). Thus we deduce

mx =
∑
y

µ(y) =
∑
y

1

qy
Ex

[
Hx−1∑
n=0

1(Yn = y)

]
≤
∑
y

a(y)

qy
=

1

λ(x)qx
·
∑
y

λ(y) =
1

λ(x)qx
<∞.

(2.3)

Therefore all states are positive recurrent.

Note that we did not need to use the relationship between mx and λ(x). Hence if (iii) holds, i.e. if
there is an invariant distribution and the chain does not explode, then this implies that all states
are positive recurrent. Therefore the jump chain is recurrent and invoking Theorem 2.12 we get
that a(y) = ν(y) for all y. (Note that we get the same equality for all starting points x.) Hence
the inequality in (2.3) becomes an equality and this proves that λ(x) = (qxmx)−1 for all states x.
This concludes the proof.

Example 2.16. Consider a birth and death chain X on Z+ with transition rates qi,i+1 = λqi and

qi,i−1 = µqi with qi > 0 for all i. It is not hard to check that the measure πi = q−1i

(
λ
µ

)i
is invariant.

(We will see later how one can find this invariant measure by solving the detailed balance equations
which is equivalent to reversibility.) Taking qi = 2i and λ = 3µ/2 we see that π can be normalized
to give an invariant distribution. However, when λ > µ, then the jump chain is transient, and
hence also X is transient.

Therefore we see that in the continuous time setting the existence of an invariant distribution is
not equivalent to positive recurrence if the chain explodes as in this example.

We now explain the terminology invariant measure. First we treat the finite state space case and
then move to the countable one.

25



Theorem 2.17. Let X be a continuous time Markov chain with generator Q on a finite state
space S. Then πP (t) = π ∀t ≥ 0⇔ π is invariant.

Proof. The transition semigroup satisfies P ′(t) = P (t)Q = QP (t). Differentiating πP (t) = π with
respect to t we get

d

dt
(πP (t)) = πP ′(t) = πQP (t) = πP (t)Q,

where in the first equality we were able to interchange differentiation and sum, because |S| < ∞.
Therefore if πP (t) = π for all t, then from the above equality we obtain

0 =
d

dt
(πP (t)) = πP (t)Q = πQ.

If πQ = 0, then d
dt(πP (t)) = 0 and thus πP (t) = πP (0) = π for all t.

Before proving the general countable state space case we state and prove an easy lemma.

Lemma 2.18. Let X be a continuous time Markov chain and let t > 0 be fixed. Set Zn = Xnt.

(i) If x is recurrent for X, then x is recurrent for Z too.

(ii) If x is transient for X, then x is transient for Z too.

Proof. Part (ii) is obvious, since if the set of times that X visits x is bounded, then Z cannot
visit x infinitely many times.

Suppose now that x is recurrent for X. We will use the criterion for recurrence in terms of the
convergence of the sum

∑∞
n=0 pxx(n). We divide time into intervals of length t. Then we have∫ ∞

0
pxx(s) ds =

∞∑
n=0

∫ t(n+1)

tn
pxx(s) ds.

For s ∈ (tn, t(n+ 1)) by the Markov property we have pxx((n+ 1)t) ≥ e−qxtpxx(s). Therefore, we
deduce ∫ ∞

0
pxx(s) ds ≤ teqxt

∞∑
n=0

pxx((n+ 1)t).

Since x is recurrent for X, by Theorem 2.8 we obtain that the integral on the left hand side above
is infinite, and hence

∞∑
n=0

pxx(nt) =∞

and this finishes the proof.

Theorem 2.19. Let X be a recurrent continuous time Markov chain on a countable state space S
with generator Q and let λ be a measure. Then λQ = 0⇔ λP (s) = λ ∀s > 0.
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Proof. We start by showing that any measure λ satisfying λQ = 0 or λP (s) = λ for all s > 0 is
unique up to scalar multiples. Indeed, if λQ = 0, then this follows from Theorem 2.13. Suppose
now that λP (t) = λ and consider the discrete time Markov chain with transition matrix P (t). Then
this is clearly irreducible (because X is irreducible and pxy(t) > 0 for all x, y from Theorem 2.1)
and recurrent from Lemma 2.18, and λ is an invariant measure. This now implies that also in this
case λ is unique up to scalar multiples.

We showed in the proof of Theorem 2.15 that the measure

µ(y) = Ex
[∫ Tx

0
1(Xs = y) ds

]
=
ν(y)

qy

is invariant, i.e. µQ = 0. (Note that since the discrete time chain is recurrent, we have ν(y) < ∞
for all y by Theorem 2.11, and hence the multiplication µQ makes sense.)

To finish the proof we now need to show that µP (s) = µ for all s > 0. By the strong Markov
property for the jump chain we get

Ex
[∫ s

0
1(Xt = y) dt

]
= Ex

[∫ Tx+s

Tx

1(Xt = y) dt

]
. (2.4)

Since we can write ∫ Tx

0
1(Xt = y) dt =

∫ s

0
1(Xt = y) dt+

∫ Tx

s
1(Xt = y) dt,

using (2.4) and Fubini’s theorem we obtain

µ(y) = Ex
[∫ Tx

0
1(Xt = y) dt

]
= Ex

[∫ s

0
1(Xt = y) dt

]
+ Ex

[∫ Tx

s
1(Xt = y) dt

]
= Ex

[∫ Tx+s

Tx

1(Xt = y) dt

]
+ Ex

[∫ Tx

s
1(Xt = y) dt

]
= Ex

[∫ s+Tx

s
1(Xt = y) dt

]
=

∫ ∞
0

∑
z∈S

Px(Xt = z,Xt+s = y, t < Tx) dt =
∑
z∈S

pzy(s)Ex
[∫ Tx

0
1(Xt = z) dt

]
=
∑
z∈S

µ(z)pzy(s),

which shows that µP (s) = µ and this completes the proof.

Remark 2.20. Note that in the above theorem we required X to be recurrent in order to prove
that the equivalence holds. We now explain that if we only assume that πP (t) = π for all t and
the chain is irreducible, then πQ = 0.

Consider the discrete time Markov chain Z with transition matrix P (t) (this is always stochastic,
since πP (t) = π and π is a distribution). Then Z is clearly irreducible and has an invariant
distribution. Therefore it is positive recurrent, and Lemma 2.18 implies that X is also recurrent.
Then applying the above theorem we get that πQ = 0.

2.5 Convergence to equilibrium

An irreducible, aperiodic and positive recurrent discrete time Markov chain converges to equilibrium
as time goes to∞. The same is true in the continuous setting, but we no longer need to assume the
chain is aperiodic, since in continuous time as we showed in Theorem 2.1 pxy(t) > 0 for all t > 0.
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Lemma 2.21. Let Q be a Q-matrix with semigroup P (t). Then

|pxy(t+ h)− pxy(t)| ≤ 1− e−qxh.

Proof. By Chapman Kolmogorov we have

|pxy(t+ h)− pxy(t)| =
∣∣∣∣∣∑
z

pxz(h)pzy(t)− pxy(t)
∣∣∣∣∣ =

∣∣∣∣∣∣
∑
z 6=x

pxz(h)pzy(t) + pxx(h)pxy(t)− pxy(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
z 6=x

pxz(h)pzy(t)− pxy(t)(1− pxx(h))

∣∣∣∣∣∣
≤ 1− pxx(h) ≤ Px(J1 ≤ h) = 1− e−qxh

and this finishes the proof.

Theorem 2.22 (Convergence to equilibrium). Let X be an irreducible non explosive continuous
time chain on S with generator Q. Suppose that λ is an invariant distribution. Then for all x, y ∈ S
we have

pxy(t)→ λ(y) as t→∞.

Proof. Fix h > 0 such that 1 − e−qxh ≤ ε/2 and let Zn = Xnh be a discrete time chain with
transition matrix P (h). Since X is irreducible, Theorem 2.1 gives that pxy(h) > 0 for all x, y which
shows that Z is irreducible and aperiodic.

Since X is irreducible, non-explosive and has an invariant distribution, Theorem 2.15 gives that X
is positive recurrent. Thus we can apply Theorem 2.19 to get that λ is an invariant measure
for Z. Hence applying the convergence to equilibrium theorem for discrete time chains we obtain
for all x, y

pxy(nh)→ λ(y) as n→∞.

This means that for all ε > 0, there exists n0 such that for all n ≥ n0 we have

|pxy(nh)− λ(y)| ≤ ε

2
.

Let t ≥ n0h. Then there must exist n ∈ N with n ≥ n0 such that nh ≤ t < (n+ 1)h. Therefore by
the choice of h we deduce

|pxy(t)− λ(y)| ≤ |pxy(t)− pxy(nh)|+ |pxy(nh)− λ(y)| ≤ 1− e−qx(t−nh) +
ε

2
≤ ε.

Hence this shows that pxy(t)→ λ(y) as t→∞.

2.6 Reversibility

Theorem 2.23. Let X be an irreducible and non-explosive continuous time Markov chain on S
with generator Q and invariant distribution π. Suppose that X0 ∼ π. Fix T > 0 and set X̂t = XT−t
for 0 ≤ t ≤ T . Then X̂ is Markov with generator Q̂ and invariant distribution π, where q̂xy =

π(y)qyx/π(x). Moreover, Q̂ is irreducible and non-explosive.
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Proof. We first note that Q̂ is a Q-matrix, since q̂xy ≥ 0 for all x 6= y and∑
y

q̂xy =
∑
y

π(y)

π(x)
qyx =

1

π(x)
· (πQ)x = 0,

since π is invariant for Q.

Let P (t) be the transition semigroup of X. Then P (t) is the minimal non-negative solution of the
forward equations, i.e. P ′(t) = P (t)Q and P (0) = I.

Let 0 = t0 ≤ t1 ≤ t2 ≤ . . . tn = T and x1, x2, . . . , xn ∈ S. Setting si = ti − ti−1, we have

P
(
X̂t0 = x0, . . . , X̂tn = xn

)
= P(XT = x0, . . . , X0 = xn) = π(xn)pxnxn−1(sn) . . . px1x0(s1).

We now define

p̂xy(t) =
π(y)

π(x)
pyx(t).

Thus we obtain

P
(
X̂t0 = x0, . . . , X̂tn = xn

)
= π(x0)p̂x0x1(s1) . . . p̂xn−1xn(sn).

We now need to show that P̂ (t) is the minimal non-negative solution to Kolmogorov’s backward
equations with generator Q̂. Indeed, we have

p̂′xy(t) =
π(y)

π(x)
p′xy(t) =

π(y)

π(x)
·
∑
z

pyz(t)qzx =
1

π(x)
·
∑
z

π(z)p̂zy(t)qzx

=
∑
z

p̂zy(t) ·
π(z)

π(x)
qzx =

∑
z

p̂zy(t)q̂xz = (Q̂P̂ (t))xy.

Next we show that P̂ is the minimal solution to these equations. Suppose that R is another solution
to these equations and define Rxy(t) = π(y)

π(x)Ryx(t). Then

R
′
xy(t) =

π(y)

π(x)
R′yx(t) =

π(y)

π(x)

∑
z

q̂yzRzx(t) =
π(y)

π(x)

∑
z

qzy
π(z)

π(y)
Rzx(t) =

∑
z

Rzx(t)qzy.

Thus R satisfies Kolmogorov’s forward equations, and hence R ≥ P , which implies that R ≥ P̂ .

Since Q is irreducible and using the definition of Q̂ we deduce that Q̂ is also irreducible. Moreover,
since π is invariant for Q, we deduce∑

y

π(y)q̂yx =
∑
y

π(y)
π(x)

π(y)
qxy = 0,

which shows that π is the invariant distribution of the Markov chain with generator Q̂.

It only remains to show that Q̂ does not explode. Let ζ̂ be the explosion time of a Markov chain
Z with generator Q̂. Then

p̂xy(t) = Px
(
Zt = y, t < ζ̂

)
.

But by the definition of p̂ we have that
∑

y p̂xy(t) = 1 (because Q does not explode) and therefore

Px
(
t < ζ̂

)
= 1 for all t, which implies that ζ̂ =∞ almost surely.
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In the same way as in discrete time, we define the notion of reversibility in the continuous setting.

Definition 2.24. Let X be a Markov chain with generator Q. It is called reversible if for all T > 0
the processes (Xt)0≤t≤T and (XT−t)0≤t≤T have the same distribution.

A measure λ and a Q-matrix Q are said to be in detailed balance if for all x, y we have

λ(x)qxy = λ(y)qyx.

Lemma 2.25. Suppose that Q and λ are in detailed balance. Then λ is an invariant distribution
for Q.

Proof. We need to show that λQ = 0. Taking the sum∑
x

λ(x)qxy =
∑
x

λ(y)qyx = 0,

since Q is a Q-matrix and this completes the proof.

Theorem 2.26. Let X be irreducible and non explosive with generator Q and let π be a probability
distribution with X0 ∼ π. Then π and Q are in detailed balance ⇔ (Xt)t≥0 is reversible.

Proof. If π and Q are in detailed balance, then Q̂ = Q, where Q̂ is the matrix defined in Theo-
rem 2.23 and π is the invariant distribution of Q̂. Therefore, from Theorem 2.23 again, the reversed
chain has the same distribution as X, and hence X is reversible.

Suppose now that X is reversible. Then π is an invariant distribution. Then from Theorem 2.23
we get that Q̂ = Q, which immediately gives that π and Q are in detailed balance.

Remark 2.27. As in discrete time, when we look for an invariant distribution, it is always easier
to look for a solution to the detailed balance equations first. If there is no such solution, which
means the chain is not reversible, then we have to do the matrix multiplication or use different
methods.

Definition 2.28. A birth and death chain X is a continuous time Markov chain on N = {0, 1, 2, . . .}
with non-zero transition rates qx,x−1 = µx and qx,x+1 = λx for x ∈ N.

Lemma 2.29. A measure π is invariant for a birth and death chain if and only if it solves the
detailed balance equations.

Proof. If π solves the detailed balance equations, then π is invariant by Lemma 2.25.

Suppose that π is an invariant measure for X. Then πQ = 0 or equivalently
∑

i πiqi,j = 0 for all j.
If j ≥ 1 this means

πj−1λj−1 + πj+1µj+1 = πj(λj + µj)⇔ πj+1µj+1 − πjλj = πjµj − πj−1λj−1.

For j = 0 we have π0λ0 = π1µ1. Plugging this into the right hand side of the above equation and
applying induction gives that for all j we have

πjλj = πj+1µj+1,

i.e. the detailed balance equations hold.
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2.7 Ergodic theorem

As in discrete time the long run proportion of time that a chain spends at a state x is given by
1/Ex[T+

x ] which is equal to the invariant probability of the state (if the chain is positive recurrent),
the same is true in continuous time. The proof of the ergodic theorem in the continuous setting is
similar to the discrete one with the only difference being that every time we visit the state we also
spend an exponential amount of time there.

Theorem 2.30. Let Q be an irreducible Q-matrix and let X be a Markov chain with generator Q
started from initial distribution ν. Then almost surely we have

1

t

∫ t

0
1(Xs = x) ds→ 1

qxmx
as t→∞,

where mx = Ex[Tx] and Tx = inf{t ≥ J1 : Xt = x}. Moreover, in the positive recurrent case, if
f : S → R is a bounded function, then almost surely

1

t

∫ t

0
f(Xs) ds→ f,

where f =
∑

x f(x)π(x) and π is the unique invariant distribution.

Proof. First we note that if Q is transient, then the set of times that X visits x is bounded, and
hence almost surely

1

t

∫ t

0
1(Xs = x) ds→ 0 as t→∞

and also mx =∞.

Suppose now that Q is recurrent. First let’s see how we can obtain the result heuristically. Let N(t)
be the number of visits to x up to time t. Then at every visit the Markov chain spends an exponential
amount of time of parameter qx. Hence

1

t

∫ t

0
1(Xs = x) ds ≈

∑N(t)
i=1 Si
N(t)

· N(t)

t
.

By the law of large numbers we have that as t→∞∑N(t)
i=1 Si
N(t)

→ 1

qx
,

since by recurrence N(t)→∞ as t→∞ almost surely. We also have that after every visit to x it
takes time mx on average to hit it again after leaving it, so N(t)/t→ 1/mx as t→∞. Let’s prove
it now rigorously.

First of all we explain that it suffices to prove the result when ν = δx. Indeed, since we assumed Q
to be recurrent, it follows that x will be hit in finite time almost surely. Let H1 be the first hitting
time of x. Then

1

t

∫ t

0
1(Xs = x) ds =

1

t

∫ t

H1

1(Xs = x) ds

and since H1 <∞, taking the limit as t→∞ does not change the long run proportion of time we
spend in x when we count it after hitting x for the first time. Therefore we consider the case when
ν = δx from now on.
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T0 = 0 T1 T2 T3
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t

Figure 1: Visits to x

We now denote by Ei the length of the i-th excursion from x, by Ti the i-th visit to x and by Si
the amount of time spent at x during the i-th visit as in Figure 1. More formally, we let T0 = 0
and

Si+1 = inf{t > Ti : Xt 6= x} − Ti
Ti+1 = inf{t > Ti + Si+1 : Xt = x}
Ei+1 = Ti+1 − Ti.

By the strong Markov property of the jump chain at the times Ti we see that (Si) are i.i.d.
exponentially distributed with parameter qx and also that (Ei) are i.i.d. with mean mx. By the
strong law of large numbers we obtain that almost surely as n→∞

S1 + . . .+ Sn
n

→ 1

qx
and

E1 + . . .+ En
n

→ mx. (2.5)

Now for every t we set n(t) to be the smallest integer so that Tn(t) ≤ t < Tn(t)+1. With this
definition we get

S1 + . . .+ Sn(t) ≤
∫ t

0
1(Xs = x) ds < S1 + . . .+ Sn(t)+1.

We also get that
E1 + . . .+ En(t) ≤ t < E1 + . . .+ En(t)+1.

Therefore, dividing the above two inequalities we obtain

S1 + . . .+ Sn(t)

E1 + . . .+ En(t)+1
≤ 1

t

∫ t

0
1(Xs = x) ds ≤

S1 + . . .+ Sn(t)+1

E1 + . . .+ En(t)
.

By recurrence we also see that n(t)→∞ as t→∞ almost surely. Hence using this together with
the law of large numbers (2.5) we deduce that almost surely

1

t

∫ t

0
1(Xs = x) ds→ 1

mxqx
as t→∞.
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We now turn to prove the statement of the theorem in the positive recurrent case, which implies
that there is a unique invariant distribution π. We can write

1

t

∫ t

0
f(Xs) ds− f =

∑
x∈S

f(x)

(
1

t

∫ t

0
1(Xs = x)− π(x)

)
. (2.6)

From the above we know that

1

t

∫ t

0
1(Xs = x)− π(x)→ 0 as t→∞, (2.7)

since π(x) = (qxmx)−1. We next need to justify that the sum appearing in (2.6) also converges
to 0. Suppose without loss of generality that |f | is bounded by 1. The rest of the proof follows as
in the discrete time case, but we include it here for completeness. Let J be a finite subset of S.
Then ∣∣∣∣∣∑

x∈S
f(x)

(
1

t

∫ t

0
1(Xs = x)− π(x)

)∣∣∣∣∣ ≤∑
x∈S

∣∣∣∣1t
∫ t

0
1(Xs = x)− π(x)

∣∣∣∣
≤
∑
x∈J

∣∣∣∣1t
∫ t

0
1(Xs = x)− π(x)

∣∣∣∣+
∑
x/∈J

∣∣∣∣1t
∫ t

0
1(Xs = x)− π(x)

∣∣∣∣
≤
∑
x∈J

∣∣∣∣1t
∫ t

0
1(Xs = x)− π(x)

∣∣∣∣+
∑
x/∈J

1

t

∫ t

0
1(Xs = x) +

∑
x/∈J

π(x)

≤
∑
x∈J

∣∣∣∣1t
∫ t

0
1(Xs = x)− π(x)

∣∣∣∣+ 1−
∑
x∈J

1

t

∫ t

0
1(Xs = x) +

∑
x/∈J

π(x)

≤ 2
∑
x∈J

∣∣∣∣1t
∫ t

0
1(Xs = x)− π(x)

∣∣∣∣+ 2
∑
x/∈J

π(x).

We can choose J finite so that
∑

x/∈J π(x) < ε/4. Using the finiteness of J and (2.7) we get that
there exists t0(ω) sufficiently large so that

∑
x∈J

∣∣∣∣1t
∫ t

0
1(Xs = x)− π(x)

∣∣∣∣ ≤ ε

4
for t ≥ t0(ω).

Therefore, taking t ≥ t0(ω) we conclude that∣∣∣∣1t
∫ t

0
f(Xs) ds− f

∣∣∣∣ ≤ ε
and this finishes the proof.

3 Queueing theory

3.1 Introduction

Suppose we have a succession of customers entering a queue, waiting for service. There are one or
more servers delivering this service. Customers then move on, either leaving the system, or joining
another queue, etc. The questions we have in mind are as follows: is there an equilibrium for the
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queue length? What is the expected length of the busy period (the time during which the server is
busy serving customers until it empties out)? What is the total effective rate at which customers
are being served? And how long do they spend in the system on average?

Queues form a convenient framework to address these and related issues. We will be using Kendall’s
notation throughout: e.g. the type of queue will be denoted by

M/G/k

• The first letter stands for the way customers arrive in the queue (M = Markovian, i.e. a
Poisson process with some rate λ).

• The second letter stands for the service time of customers (G = general, i.e. no particular
assumption is made on the distribution of the service time)

• The third letter stands for the number of servers in the system (typically k = 1 or k =∞).

3.2 M/M/1 queue

Customers arrive according to a Poisson process of rate λ > 0. There is a single server and the
service times are i.i.d. exponential with parameter µ > 0. Let Xt denote the queue length (including
the customer being served at time t ≥ 0). Then Xt is a Markov chain on S = {0, 1, . . .} with

qi,i+1 = λ and qi,i−1 = µ

and qi,j = 0 if j 6= i and j 6= i± 1. Hence X is a birth and death chain.

Theorem 3.1. Let ρ = λ/µ. Then X is transient if and only ρ > 1, recurrent if and only ρ ≤ 1,
and is positive recurrent if and only if ρ < 1. In the latter case X has an equilibrium distribution
given by

π(n) = (1− ρ)ρn.

Suppose that ρ < 1, the queue is in equilibrium, i.e. X0 ∼ π and W is the waiting time of a
customer that arrives at time t. Then the distribution of W is Exp(µ− λ).

Proof. The jump chain is given by a biased random walk on the integers with reflection at 0: the
probability of jumping to the right is p = λ/(λ+ µ). Hence the chain X is transient if and only if
p > 1/2 or equivalently λ > µ, and recurrent otherwise. Concerning positive recurrence, observe
that supi qi <∞ so by Theorem 1.19 there is a.s. no explosion. Therefore by Theorem 2.15 positive
recurrence is equivalent to the existence of an invariant distribution. Furthermore, since X is a
birth and death chain, by Lemma 2.29 it suffices to solve the Detailed Balance Equations, which
read:

π(n)λ = π(n+ 1)µ

for all n ≥ 0. We thus find π(n + 1) = (λ/µ)n+1π(0) inductively and deduce the desired form
for π(n). Note that π is the distribution of a (shifted) geometric random variable. (Shifted because
it can be equal to 0).

Suppose now that ρ < 1 and X0 ∼ π. Suppose a customer arrives at time t and let N be the number
of customers already in the queue at this time. Since X0 ∼ π, it follows that the distribution of N
is π. Then

W =

N+1∑
i=1

Ti,
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where (Ti) is an i.i.d. sequence of exponential random variables with parameter µ and independent
of N . We also have that N+1 is a geometric variable that starts from 1. Therefore, using Exercise 2
from Example Sheet 1, we deduce that W is exponential with parameter µ(1− ρ) = µ− λ.

Example 3.2. What is the expected queue length at equilibrium? We have seen that the queue
length X at equilibrium is a shifted geometric random variable with success probability 1 − ρ.
Hence

E[X] =
1

1− ρ − 1 =
ρ

1− ρ =
λ

µ− λ. (3.1)

3.3 M/M/∞ queue

Customers arrive at rate λ and are served at rate µ. There are infinitely many servers, so customers
are in fact served immediately. Let Xt denote the queue length at time t (which consists only of
customers being served at this time).

Theorem 3.3. The queue length Xt is a positive recurrent Markov chain for all λ, µ > 0. Fur-
thermore the invariant distribution is Poisson with parameter ρ = λ/µ.

Proof. The rates are qi,i+1 = λ and qi,i−1 = iµ (since when there are i customers in the queue,
the first service will be completed after an exponential time with rate iµ). Thus X is a birth and
death chain; hence for an invariant distribution it suffices to solve the Detailed Balance Equations:

λπn−1 = nµπn ∀n⇔ πn =
1

n

λ

µ
πn−1 = . . . =

1

n!

(
λ

µ

)n
π0.

Hence the Poisson distribution with parameter ρ = λ/µ is invariant. It remains to check that X is
not explosive. This is not straightforward as the rates are unbounded. However, we will show that
the jump chain Y is recurrent, and so using Theorem 1.19 this means that X is non-explosive.

The jump chain is a birth and death chain on N with reflection at 0. The transition probabilities
are

pi,i+1 =
λ

µi+ λ
= 1− pi,i−1.

Let k be sufficiently large so that µn ≥ 2λ for all n ≥ k. Then this implies that for all i ≥ k we
have

pi,i+1 ≤
1

3
and pi,i−1 ≥

2

3
. (3.2)

Suppose we start Y from k+ 1. We want to show that with probability 1 it will hit k eventually. It
follows that we can construct a (2/3, 1/3) biased random walk Ỹn such that Yn ≤ Ỹn for all times n
up to the first time they hit k. But Ỹ is transient towards −∞ and hence is guaranteed to return
to k eventually.

Here is another way of proving that Y is recurrent. We now set

γi =
pi,i−1pi−1,i−2 · · · p1,0
pi,i+1pi−1,i · · · p1,2

.

From IB Markov chains (see for instance [2, page 16]) we know that if
∑

i γi =∞, then the chain
is recurrent. Indeed, in this case we have∑

i

γi ≥ A
∑
i≥k

2i−k+2 =∞,

and hence Y is recurrent and therefore X is non-explosive. This concludes the proof.
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3.4 Burke’s theorem

Burke’s theorem is one of the most intriguing (and beautiful) results of this course. Consider a
M/M/1 queue and assume ρ = λ/µ < 1, so there is an invariant distribution. Let Dt denote the
number of customers who have departed the queue up to time t.

Theorem 3.4. (Burke’s theorem). At equilibrium, Dt is a Poisson process with rate λ, indepen-
dently of µ (so long as µ > λ). Furthermore, Xt is independent from (Ds, s ≤ t).
Remark 3.5. At first this seems insane. For instance, the server is working at rate µ; yet the
output is at rate λ! The explanation is that since there is an equilibrium, what comes in must equal
what goes out. This makes sense from the point of view of the system, but is hard to comprehend
from the point of view of the individual worker.

The independence property also doesn’t look reasonable. For instance if no completed service in
the last 5 hours surely the queue is empty? It turns out we have learnt nothing about the length
of the queue.

Remark 3.6. Note that the assumption that the queue is in equilibrium is essential. If we drop
it, then clearly the statement of the theorem fails to hold. Indeed, suppose instead that X0 = 5.
Then the first departure will happen at an exponential time of parameter µ and not λ.

Proof. The proof consists of a really nice time-reversal argument. Recall that X is a birth and
death chain and has an invariant distribution. So at equilibrium, X is reversible: thus for a given
T > 0, if X̂t = XT−t we know that (X̂t, 0 ≤ t ≤ T ) has the same distribution as (Xt, 0 ≤ t ≤ T ).
Hence X̂ experiences a jump of size +1 at constant rate λ. But note that X̂ has a jump of size +1
at time t if and only a customer departs the queue at time T − t. Therefore, departures from X
become arrivals for X̂. Since the time reversal of a Poisson process is a Poisson process, we deduce
that (Dt, t ≤ T ) is itself a Poisson process with rate λ.

Thus we showed that for all T > 0 the process D restricted to [0, T ] is a Poisson process of rate λ.
To show that D is a Poisson process on R+ we will use part (c) of Theorem 1.6. Indeed, for any
finite collection 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk find T such that tk ≤ T . Then since (Dt, t ≤ T ) is a Poisson
process, the increments Dti −Dti−1 are independent with the Poisson distribution.

For the last assertion of the theorem, it is obvious that X0 is independent from arrivals between
time 0 and T . Reversing the direction of time this shows that XT is independent from departures
between 0 and T .

Remark 3.7. The proof remains valid for any queue at equilibrium when the queue length is a
birth and death chain, e.g. for an M/M/∞ queue for arbitrary values of the parameters.

Example 3.8. In a CD shop with many lines the service rate of the cashiers is 2 per minute.
Customers spend £10 on average. How many sales do they make on average?

That really depends on the rate at which customers enter the shop, while µ is basically irrelevant
so long as µ is larger than the arrival rate λ. If λ = 1 per minute, then the answer would be
60× 1× 10 = 600.

3.5 Queues in tandem

Suppose that there is a first M/M/1 queue with parameters λ and µ1. Upon service completion,
customers immediately join a second single-server queue where the rate of service is µ2. For which
values of the parameters is the chain transient or recurrent? What about equilibrium?
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Theorem 3.9. Let Xt, Yt denote the queue lengths in the first and second queue respectively. The
process (X,Y ) is a positive recurrent Markov chain if and only if λ < µ1 and λ < µ2. In this case
the invariant distribution is given by

π(m,n) = (1− ρ1)ρm1 (1− ρ2)ρn2

where ρ1 = λ/µ1 and ρ2 = λ/µ2. In other words, Xt and Yt are independent at equilibrium and are
distributed according to shifted geometric random variables with parameters 1− ρ1, 1− ρ2.

m n

µ1 µ2

λ

Figure 2: M/M/1 queues in series

Proof. We first compute the rates. From (m,n) the possible transitions are

(m,n)→


(m+ 1, n) with rate λ

(m− 1, n+ 1) with rate µ1 if m ≥ 1

(m,n− 1) with rate µ2 if n ≥ 1.

We can check by direct computation that πQ = 0 if and only if π has the desired form. Moreover,
the rates are bounded so almost surely the chain does not explode. Hence it is positive recurrent.

An alternative, more elegant or conceptual proof, uses Burke’s theorem. Indeed, the first queue is
an M/M/1 queue so no positive recurrence is possible unless λ < µ1. In this case we know that
the equilibrium distribution is π1(m) = (1−ρ1)ρm1 . Moreover we know by Burke’s theorem that (at
equilibrium) the departure process is a Poisson process with rate λ. Hence when the first queue is
in equilibrium, the second queue is also an M/M/1 queue. Thus no equilibrium is possible unless
λ < µ2 as well. In which case the equilibrium distribution of Y is π2(n) = (1 − ρ2)ρn2 . It remains
to check independence. Intuitively this is because Yt depends only on Y0 and the departure process
(Ds, s ≤ t). But this is independent of Xt by Burke’s theorem.

More precisely, if X0 ∼ π1 and Y0 ∼ π2 are independent, then Burke’s theorem implies that the
distribution of (Xt, Yt) is still given by two independent random variables with distributions π1

and π2. Hence, since (X,Y ) is irreducible, it follows from Remark 2.20 that the product of π1

and π2 is the invariant distribution of (X,Y ).

Remark 3.10. The random variables Xt and Yt are independent at equilibrium for a fixed time t,
but the processes (Xt, t ≥ 0) and (Yt, t ≥ 0) cannot be independent: indeed, Y has a jump of
size +1 exactly when X has a jump of size −1.

Remark 3.11. You may wonder about transience or null recurrence. It is easy to see that if λ > µ1,
or if λ > µ2 and λ < µ1 then the queue will be transient. The equality cases are delicate. For
instance if you assume that λ = µ1 = µ2, it can be shown that (X,Y ) is recurrent. Basically this
is because the jump chain is similar to a two-dimensional simple random walk, which is recurrent.
However, with three or more queues in tandem this is no longer the case: essentially because a
simple random walk in Zd is transient for d ≥ 3.
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3.6 Jackson Networks

Suppose we have a network of N single-server queues. The arrival rate into each queue is λi, 1 ≤
i ≤ N . The service rate into each queue is µi. Upon service completion, each customer can either
move to queue j with probability pij or exit the system with probability pi0 := 1 −∑j≥1 pij . We
assume that pi0 is positive for all 1 ≤ i ≤ N , and that pii = 0. We also assume that the system is
irreducible in the sense that if a customer arrives in queue i it is always possible for him to visit
queue j at some later time, for arbitrary 1 ≤ i, j ≤ N .

Formally, the Jackson network is a Markov chain on S = N × . . . × N (N times), where if x =
(x1, . . . , xN ) then xi denotes the number of customers in queue i. If ei denotes the vector with
zeros everywhere except 1 in the ith coordinate, then

q(n, n+ ei) = λi

q(n, n+ ej − ei) = µipij if ni ≥ 1

q(n, n− ei) = µipi0 if ni ≥ 1

What can be said about equilibrium in this case? The problem seems very difficult to approach:
the interaction between the queues destroys independence. Nevertheless we will see that we will
get some surprisingly explicit and simple answers. The key idea is to introduce quantities, which
we will denote by λ̄i, which we will later show to be the effective rate at which customers enter
queue i. We can write down a system of equations that these numbers must satisfy, called the
traffic equations, which is as follows:

Definition 3.12. We say that a vector (λ̄1, . . . , λ̄N ) satisfies the traffic equations if for all i ≤ N
we have

λ̄i = λi +
∑
j 6=i

λ̄jpji. (3.3)

The idea of (3.3) is that the effective arrival rate into queue i consists of arrivals from outside the
system (at rate λi) while arrivals from within the system, from queue j say, should take place at
rate λ̄jpji. The reason for this guess is related to Burke’s theorem: as the effective output rate of
this queue should be the same as the effective input rate.

Lemma 3.13. There exists a unique solution to the traffic equations (3.3).

Proof. Existence: Observe that the matrix P = (pij) defines a stochastic matrix on {0, . . . , N}.
The corresponding (discrete) Markov Chain (Zn) is transient in the sense that it is eventually
absorbed at zero. Suppose P(Z0 = i) = λi/λ, for 1 ≤ i ≤ N , where λ =

∑
i λi. Since Z is transient,

the number of visits Vi to state i by Z satisfies E[Vi] <∞. But observe that

E[Vi] = P(Z0 = i) +

∞∑
n=0

P(Zn+1 = i) =
λi
λ

+

∞∑
n=0

N∑
j=1

P(Zn = j;Zn+1 = i)

=
λi
λ

+

∞∑
n=0

N∑
j=1

P(Zn = j)pji =
λi
λ

+

N∑
j=1

pjiE[Vj ] .

Multiplying by λ, we see that if λ̄i = λE[Vi], then

λ̄i = λi +
N∑
j=1

λ̄jpji
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which is the same thing as (3.3) as pii = 0.

Uniqueness: see example sheet 3.

We come to the main theorem of this section. This frequently appears in lists of the most useful
mathematical results for industry.

Theorem 3.14. (Jackson’s theorem, 1957). Assume that the traffic equations have a solution λ̄i
such that λ̄i < µi for every 1 ≤ i ≤ N . Then the Jackson network is positive recurrent and

π(n) =

N∏
i=1

(1− ρ̄i)ρ̄nii

defines an invariant distribution, where ρ̄i = λ̄i/µi. At equilibrium, the processes of departures (to
the outside) from each queue form independent Poisson processes with rates λ̄ipi0.

Remark 3.15. At equilibrium, the queue lengths Xi
t are thus independent for a fixed t. This is

extremely surprising given how much queues interact.

Proof. This theorem was proved relatively recently, for two reasons. One is that it took some time
before somebody made the bold proposal that queues could be independent at equilibrium. The
second reason is that in fact the equilibrium is non-reversible, which always makes computations
vastly more complicated a priori. As we will see these start with a clever trick: we will see that
there is a partial form of reversibility, in the sense of the Partial Balance Equations of the following
lemma.

Lemma 3.16. Suppose that Xt is a Markov chain on some state space S, and that π(x) ≥ 0 for
all x ∈ S. Assume that for each x ∈ S we can find a partition of S \ {x}, into say Sx1 , . . . such that
for all i ≥ 1 ∑

y∈Sxi

π(x)q(x, y) =
∑
y∈Sxi

π(y)q(y, x). (3.4)

Then π is an invariant measure.

Definition 3.17. The equations (3.4) are called the Partial Balance Equations.

Proof. The assumptions say that for each x you can group the state space into clumps such that
the flow from x to each clump is equal to the flow from that clump to x. It is reasonable that this
implies π is an invariant measure.

The formal proof is easy: indeed,∑
x

π(x)q(x, y) =
∑
x 6=y

π(x)q(x, y) + π(y)q(y, y) =
∑
i

∑
x∈Syi

π(x)q(x, y) + π(y)q(y, y)

=
∑
i

∑
x∈Syi

π(y)q(y, x) + π(y)q(y, y) = π(y)
∑
x

q(y, x)− π(y)q(y, y) + π(y)q(y, y) = 0,

so πQ(y) = 0 for all y ∈ S.

Here we apply this lemma as follows. Let π(n) =
∏N
i=1 ρ̄

ni
i (a constant multiple of what is in the

theorem). Then define

q̃(n,m) =
π(m)

π(n)
q(m,n).
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We will check that summing over an appropriate partition of the state space,
∑

m q(n,m) =∑
m q̃(n,m) which implies the partial balance equations.

Let
A = {ei; 1 ≤ i ≤ N}.

Thus if n ∈ S is a state and m ∈ A then n+m denotes any possible state after arrival of a customer
in the system at some queue.

Let
Dj = {ei − ej ; i 6= j} ∪ {−ej}.

Thus if n ∈ S is a state and m ∈ Dj then n + m denotes any possible state after departure of a
customer from queue j.

We will show: for all n ∈ S, ∑
m∈Dj

q(n, n+m) =
∑
m∈Dj

q̃(n, n+m) (3.5)

∑
m∈A

q(n, n+m) =
∑
m∈A

q̃(n, n+m) (3.6)

which implies that π satisfies the partial balance equations and is thus invariant.

For the proof of (3.5), note that if m ∈ Dj then q(n, n+m) = µjpj0 if m = −ej , and q(n, n+m) =
µjpji if m = ei − ej . Thus the left hand side of (3.5) is∑

m∈Dj

q(n,m) = µjpj0 +
∑
i 6=j

µjpji = µj

which makes sense as services occur at rate µj .

Now,

q̃(n, n+ ei − ej) =
π(n+ ei − ej)

π(n)
q(n+ ei − ej , n) =

ρ̄i
ρ̄j
× µipij =

λ̄i/µi
ρ̄j

µipij =
λ̄ipij
ρ̄j

.

Also,

q̃(n, n− ej) =
π(n− ej)
π(n)

q(n− ej , n) =
λj
ρ̄j

We deduce that the right hand side of (3.5) is given by

∑
m∈Dj

q̃(n,m) =
λj
ρ̄j

+
∑
i 6=j

λ̄ipij
ρ̄j

=
λ̄j
ρ̄j

(by traffic equations)

= µj ,

as desired. We now turn to (3.6). The left hand side is∑
m∈A

q(n, n+m) =
∑
i

λi.
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For the right hand side, we observe that

q̃(n, n+ ei) =
π(n+ ei)

π(n)
q(n+ ei, n) = ρ̄i × µipi0 =

λ̄i
µi
× µipi0 = λ̄ipi0.

Hence the right hand side of (3.6) is given by∑
m∈A

q̃(n, n+m) =
∑
i

λ̄ipi0 =
∑
i

λ̄i(1−
∑
j

pij) =
∑
i

λ̄i −
∑
j

∑
i

λ̄ipij

=
∑
i

λ̄i −
∑
j

(λ̄j − λj) (by traffic equations)

=
∑
j

λj ,

as desired. So π is an invariant distribution. Since the rates are bounded, there can be no explosion
and it follows that, if ρ̄i < 1 for every i ≥ 1, we get an invariant distribution for the chain and
hence it is positive recurrent.

For the claim concerning the departures from the queue, see Example Sheet 3.

3.7 Non-Markov queues: the M/G/1 queue.

Consider an M/G/1 queue: customers arrive in a Markovian way (as a Poisson process with rate λ)
to a single-server queue. The service time of the nth customer is a random variable ξn ≥ 0, and we
only assume that the (ξn)n≥1 are i.i.d.

As usual we will be interested in the queue length Xt, which this time is no longer a Markov chain.
What hope is there to study its long-term behaviour without a Markov assumption? Fortunately
there is a hidden Markov structure underneath – in fact, we will discover two related Markov
processes. Let Dn denote the departure time of the nth customer.

Proposition 3.18. The process (X(Dn), n ≥ 1) forms a (discrete) Markov chain with transition
probabilities given by 

p0 p1 p2 . . .
p0 p1 p2 . . .
0 p0 p1 p2 . . .
0 0 p0 p1 p2 . . .


where pk = E

[
exp(−λξ)(λξ)k/k!

]
, for all k ≥ 0.

Remark 3.19. The form of the matrix is such that the first row is unusual. The other rows are
given by the vector (p0, p1, . . .) which is pushed to the right at each row.

Proof. Assume X(Dn) > 0. Then the (n + 1)-th customer begins his service immediately at
time Dn. During his service time ξn+1, a random number An+1 of customers arrive in the queue.
Then we have

X(Dn+1) = X(Dn) +An+1 − 1.

If however X(Dn) = 0, then we have to wait until the (n + 1)-th customer arrives. Then during
his service, a random number An+1 of customers arrive, and we have

X(Dn+1) = X(Dn) +An+1.
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Either way, by the Markov property of the Poisson process of arrivals, the random variables An
are i.i.d. and, given ξn, An is Poisson (λξn). Hence

P(An = k) = E[P(An = k|ξn)] = E
[
exp(−λξ)(λξ)k/k!

]
= pk

as in the statement. The result follows.

We write 1/µ = E[ξ], and call ρ = λ/µ the traffic intensity. We deduce the following result:

Theorem 3.20. If ρ ≤ 1 then the queue is recurrent: i.e., it will empty out almost surely. If ρ > 1
then it is transient, meaning that there is a positive probability that it will never empty out.

Before proving the theorem we state and prove a result about transience and recurrence of 1-
dimensional random walks.

Lemma 3.21. Let (ξi)i≥1 be i.i.d. integer valued random variables and let Sn = ξ1 + . . . + ξn be
the corresponding random walk starting from 0. Suppose that E[|ξ1|] < ∞. Then S is recurrent if
and only if E[ξ1] = 0.

Proof. By the strong law of large numbers if E[ξ1] > 0, then Sn → ∞ as n → ∞ almost surely.
Similarly if E[ξ1] < 0, then Sn → −∞ as n → ∞ almost surely. Hence if E[ξ1] 6= 0, then the walk
is transient.

Suppose now that E[ξ1] = 0. By the strong law of large numbers, we then get that almost surely

Sn
n
→ 0 as n→∞.

Let ε > 0. Then for n sufficiently large we get that

P
(

max
i≤n
|Si| ≤ εn

)
≥ 1

2
. (3.7)

Let Gn(x) denote the expected number of visits to x by time n, i.e.

Gn(x) = E0

[
n∑
k=0

1(Xk = x)

]
.

Then clearly we have that for all x
Gn(x) ≤ Gn(0).

Combining this with (3.7) we get

2nεGn(0) ≥
∑
|x|≤nε

Gn(x) ≥ 1

2
n.

Hence we obtain

Gn(0) ≥ 1

4ε
.

Letting ε→ 0 shows that Gn(0)→∞ as n→∞, thus establishing recurrence.
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Proof. We will give two proofs because they are both instructive. The first one is to use the
previous proposition. Of course X is transient/recurrent in the sense of the theorem if and only
if X(Dn) is transient/recurrent (in the sense of Markov chains). But note that while X(Dn) > 0 it
has the same transition probabilities as a random walk on the integers Z with step distribution An−
1. Note that

E[An] =
∑
k

E[An1(ξn = k)] =
∑
k

E[An | ξn = k]P(ξn = k) =
∑
k

λkP(ξn = k) = λE[ξ] = ρ.

Hence we can apply Lemma 3.21 to get that the walk is transient if and only if E[An − 1] > 0 or
equivalently E[An] > 1. So the result follows.

For the second proof we will uncover a second Markov structure, which is a branching process.
Call a customer C2 an offspring of customer C1 if C2 arrives during the service of C1. This defines
a family tree. By the definition of the M/G/1 queue, the number of offsprings of each customer
is i.i.d. given by An. Hence the family tree is a branching process. Now, the queue empties out if
and only if the family tree is finite. As we know from branching process theory, this is equivalent
to E[An] ≤ 1 or ρ ≤ 1, since E[An] = ρ.

Remark 3.22. Note that the random walk in the above proof with step distribution An − 1 is
positive recurrent if and only if ρ < 1. Hence, when ρ < 1, the Markov chain (X(Dn)) is positive
recurrent.

Definition 3.23. The busy period is the time period measured between the time that a customer
arrives to an empty system until the time a customer departs leaving behind an empty system.

As an application of the branching process argument used in the proof of Theorem 3.20 we give
the following example:

Example 3.24. The length of the busy period B of the M/G/1 queue with λ < µ satisfies

E[B] =
1

µ− λ. (3.8)

We start by explaining why E[B] <∞. If ρ < 1, then by Remark 3.22, the Markov chain (X(Dn))
is positive recurrent. Let T be the length of an excursion of (X(Dn)). Then we get

E[B] ≤ E

[
T∑
i=1

(Di −Di−1)

]
.

Since the event {T ≤ n} is independent of the service times after the n-th customer has departed,
we get that

E[B] ≤ E[T ]E[ξ1] <∞.
To prove (3.8), we will adopt the branching process point of view. Let A1 denote the number of
offspring of the root individual. Then we can write

B = ξ1 +

A1∑
i=1

Bi

where Bi is the length of the busy period associated with the individuals forming the ith subtree
attached to the root. Note that A1 and ξ1 are NOT independent. Nevertheless, given A1 and ξ1,
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the Bj are independent and distributed as B. Thus

E[B] = E[ξ] + E

[
E

[
A1∑
i=1

Bi

∣∣∣∣∣ A1, ξ1

]]
= E[ξ] + E[A1E[B]]

= E[ξ] + ρE[B] .

Hence

E[B] =
E[ξ]

1− ρ
and the result follows after some simplifications.

Remark 3.25. The connection between trees and queues is general. Since queues can be described
by random walks (as we saw) this yields a general connection between branching processes and
random walks. This is a very powerful tool to describe the geometry of large random trees. Using
related ideas, David Aldous constructed a “scaling limit” of large random trees, called the Brownian
continuum random tree, in the same manner that simple random walk on the integers can be rescaled
to an object called Brownian motion.

4 Renewal Theory

4.1 Introduction

To explain the main problem in this section, consider the following example. Suppose buses arrive
every 10 minutes on average. You go to a bus stop. How long will you have to wait?

Natural answers are 5 minutes or 10 minutes. This is illustrated by the following cases: if buses
arrive exactly every 10 minutes, we probably arrive at a time which is uniformly distributed in
between two successive arrivals, so we expect to wait 5 minutes. But if buses arrive after exponential
random variables, thus forming a Poisson process, we know that the time for the next bus after any
time t will be an Exponential random variable with mean 10 minutes, by the Markov property.

We see that the question is ill-posed: more information is needed, but it is counter intuitive that
this quantity appears to be so sensitive to the distribution we choose. To see more precisely what
is happening, we introduce the notion of a renewal process.

Definition 4.1. Let (ξi, i ≥ 1) be i.i.d. non-negative random variables with P(ξ > 0) > 0. We
set Tn =

∑n
i=1 ξi and

Nt = max{n ≥ 0 : Tn ≤ t}.
The process (Nt, t ≥ 0) is called the renewal process associated with ξi.

We think of ξi as the interval of time separating two successive renewals; Tn is the time of the n-th
renewal and Nt counts the number of renewals up to time t.

Remark 4.2. Since P(ξ > 0) > 0 we have that Nt <∞ a.s. Moreover, one can see that Nt →∞
as t→∞ a.s.

44



4.2 Elementary renewal theorem

The first result, which is quite simple, tells us how many renewals have taken place by time t when t
is large.

Theorem 4.3. If 1/λ = E[ξ] <∞ then we have as t→∞
Nt

t
→ λ a.s.; and

E[Nt]

t
→ λ.

Proof. We only prove the first assertion here. (The second is more delicate than it looks). We
note that we have the obvious inequality:

TN(t) ≤ t < TN(t)+1.

In words t is greater than the time since the last renewal before t, while it is smaller than the first
renewal after t. Dividing by N(t), we get

TN(t)

N(t)
≤ t

N(t)
≤
TN(t)+1

N(t)
.

We first focus on the term on the left hand side. Since N(t)→∞ a.s. and since Tn/n→ E[ξ] = 1/λ
by the law of large numbers, this term converges to 1/λ. The same reasoning applies to the term
on the right hand side. We deduce, by comparison, that almost surely

t

N(t)
→ 1

λ
as t→∞

and the result follows.

4.3 Size biased picking

Suppose X1, . . . , Xn are i.i.d. and positive. Let Si = X1 + . . . Xi; 1 ≤ i ≤ n. We use the points
Si/Sn, 1 ≤ i ≤ n to tile the interval [0, 1]. This gives us a partition of the interval [0, 1] into n
subintervals, of size Yi = Xi/Sn.

Suppose U is an independent uniform random variable in (0, 1), and let Ŷ denote the length of the
interval containing U . What is the distribution of Ŷ ? A first natural guess is that all the intervals
are symmetric so we might guess Ŷ has the same distribution as Y = Y1, say. However this naive
guess turns out to be wrong. The issue is that U tends to fall in bigger intervals than in smaller
ones. This introduces a bias, which is called a size-biasing effect. In fact, we will show that

P(Ŷ ∈ dy) = nyP(Y ∈ dy).

Indeed, we have

P
(
Ŷ ∈ dy

)
=

n∑
i=1

P
(
Ŷ ∈ dy, Si−1

Sn
≤ U <

Si
Sn

)
=

n∑
i=1

P
(
Xi

Sn
∈ dy, Si−1

Sn
≤ U <

Si
Sn

)

=

n∑
i=1

E
[
Xi

Sn
1
(
Xi

Sn
∈ dy

)]
=

n∑
i=1

yP
(
Xi

Sn
∈ dy

)
= nyP(Y ∈ dy) .

Note the factor y accounts for the fact that if there is an interval of size y then the probability U
will fall in it is just y.

More generally we introduce the following notion.
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Definition 4.4. Let X be a nonnegative random variable with law µ, and suppose E[X] = m <∞.
Then the size-biased distribution µ̂ is the probability distribution given by

µ̂(dy) =
y

m
µ(dy).

A random variable X̂ with that distribution is said to have the size-biased distribution of X.

Remark 4.5. Note that this definition makes sense because
∫∞
0 µ̂(dy) =

∫∞
0 (y/m)µ(dy) = m

m = 1.

Example 4.6. If X is uniform on [0, 1] then X̂ has the distribution 2xdx on (0, 1). The factor x
biases towards larger values of X.

Example 4.7. If X is an exponential random variable with rate λ then the size-biased distribution
satisfies

P(X̂ ∈ dx) =
x

1/λ
λe−λxdx

= λ2xe−λxdx

so X̂ is a Gamma(2, λ) random variable. In particular X̂ has the same distribution as X1 + X2,
where X1 and X2 are two independent exponential random variables with parameter λ.

4.4 Equilibrium theory of renewal processes

We will now state the main theorem of this course concerning renewal processes. This deals with
the long-term behaviour of renewal processes (Nt, t ≥ 0) with renewal distribution ξ, in relation to
the following set of questions: for a large time t, how long on average until the next renewal? How
long since the last renewal? We introduce the following quantities to answer these questions.

Definition 4.8. Let
A(t) = t− TN(t)

be the age process, i.e, the time that has elapsed since the last renewal at time t. Let

E(t) = TN(t)+1 − t

be the excess at time t or residual life; i.e., the time that remains until the next renewal. Finally
let

L(t) = A(t) + E(t) = TN(t)+1 − TN(t)

be the length of the current renewal.

What is the distribution of L(t) for t large? A naive guess might be that this is ξ, but as before
a size-biasing phenomenon occurs. Indeed, t is more likely to fall in a big renewal interval than a
small one. We hence guess that the distribution of L(t), for large values of t, is given by ξ̂. This is
the content of the next theorem.

Definition 4.9. A random variable ξ is called arithmetic if P(ξ ∈ kZ) = 1 for some k maximal
with this property. If ξ is not arithmetic for any k, then it called non-arithmetic.
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Theorem 4.10. Suppose that ξ is non-arithmetic. Let E[ξ] = 1/λ. Then

L(t)→ ξ̂ (4.1)

in distribution as t→∞. Moreover, for all y ≥ 0,

P(E(t) ≤ y)→ λ

∫ y

0
P(ξ > x)dx. (4.2)

as t→∞ and the same result holds with A(t) in place of E(t). In fact,

(L(t), E(t))→ (ξ̂, U ξ̂) (4.3)

in distribution as t→∞, where U is uniform on (0, 1) and is independent from ξ̂. The same result
holds with the pair (L(t), A(t)) instead of (L(t), E(t)).

Remark 4.11. One way to understand the theorem is that L(t) has the size-based distribution ξ̂
and given L(t), the point t falls uniformly within the renewal interval of length L(t). This is the
meaning of the uniform random variable in the limit (4.3).

Remark 4.12. Let us explain why (4.2) and (4.3) are consistent. Indeed, if U is uniform and ξ̂
has the size-biased distribution then

P(Uξ̂ ≤ y) =

∫ 1

0
P(ξ̂ ≤ y/u)du

=

∫ 1

0
(

∫ y/u

0
λxP(ξ ∈ dx))du

=

∫ ∞
0

λxP(ξ ∈ dx)

∫ 1

0
1{u≤y/x}du

=

∫ ∞
0

λxP(ξ ∈ dx)(1 ∧ y/x)

= λ

∫ ∞
0

(y ∧ x)P(ξ ∈ dx).

On the other hand,

λ

∫ y

0
P(ξ > z)dz = λ

∫ y

0

∫ ∞
z

P(ξ ∈ dx)dz

= λ

∫ ∞
0

P(ξ ∈ dx)

∫ ∞
0

1{z<y,z<x}dz

= λ

∫ ∞
0

P(ξ ∈ dx)(y ∧ x)

so the random variable Uξ̂ indeed has the distribution function given by (4.2).

Example 4.13. If ξ ∼ Exp(λ) then the renewal process is a Poisson process with rate λ. The
formula

λ

∫ y

0
P(ξ > x)dx = λ

∫ y

0
e−λxdx = 1− e−λy

gives us an exponential random variable for the limit of E(t). This is consistent with the Markov
property: in fact, E(t) is an Exp(λ) random variable for every t ≥ 0. Also, ξ̂ = Gamma (2, λ) by
Example 4.7. This can be understood as the sum of the exponential random variable giving us the
time until the next renewal and another independent exponential random variable corresponding
to the time since the last renewal. This is highly consistent with the fact that Poisson processes
are time-reversible and the notion of bi-infinite Poisson process defined in Example Sheet 2.
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Example 4.14. If ξ is uniform on (0, 1) then for 0 ≤ y ≤ 1

P(E∞ ≤ y) = λ

∫ y

0
P(ξ > u)du = λ

∫ y

0
(1− u)du = 2(y − y2/2).

Sketch of proof of Theorem 4.10. We now sketch a proof of the theorem, in the case where ξ
is a discrete random variable taking values in {1, 2, . . .}. We start by proving (4.2) which is slightly
easier.

ξ1 ξ2 ξ3 ξ4 ξ5

E(t)

t

ξ3 − 1

Figure 3: The residual life as a function of time in the discrete case.

Then, as suggested by Figure 3, (E(t), t = 0, 1, . . .) forms a discrete time Markov chain with
transitions

pi,i−1 = 1

for i ≥ 1 and
p0,n = P(ξ = n+ 1)

for all n ≥ 1. It is clearly irreducible and recurrent, and an invariant measure satisfies:

πn = πn+1 + π0P(ξ = n+ 1)

thus by induction we deduce that

πn :=
∑

m≥n+1

P(ξ = m)

is an invariant measure for this chain. This can be normalised to be a probability measure if
E[ξ] <∞ in which case the invariant distribution is

πn = λP(ξ > n).

We recognise the formula (4.2) in the discrete case where t and y are restricted to be integers.
Using the assumption that ξ is non-arithmetic gives that the Markov chain E is aperiodic. Since
it is also irreducible, we can apply the convergence to equilibrium theorem to get (4.2).

We now consider the slightly more delicate result (4.3), still in the discrete case ξ ∈ {1, 2, . . .}.
Of course, once this is proved, (4.1) follows. Observe that {(L(t), E(t)); t = 0, 1, . . .} also forms a
discrete time Markov chain in the space N× N and more precisely in the set

S = {(n, k) : 0 ≤ k ≤ n− 1}.
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The transition probabilities are given by

p(n,k)→(n,k−1) = 1

if k ≥ 1 and
p(n,0)→(k,k−1) = P(ξ = k).

This is an irreducible recurrent chain for which an invariant measure is given by π(n, k) where:

π(n, k − 1) = π(n, k)

for 0 ≤ k ≤ n− 1 and

π(k, k − 1) =
∞∑
m=0

π(m, 0)P(ξ = k).

So taking π(n, k) = P(ξ = n) works. This can be rewritten as

π(n, k) = nP(ξ = n)× 1

n
1{0≤k≤n−1}.

After normalisation, the first factor becomes P(ξ̂ = n) and the second factor tells us that E(t) is
uniformly distributed on {0, . . . n− 1} given L(t) = n in the limit. The theorem follows.

4.5 Renewal-Reward processes

We will consider a simple modification of renewal processes where on top of the renewal structure
there is a reward associated to each renewal. The reward itself could be a function of the renewal.
The formal setup is as follows. Let (ξi, Ri) denote i.i.d. pairs of random variables (note that ξ
and R do not have to be independent) with ξ ≥ 0 and 1/λ = E[ξ] <∞. Let Nt denote the renewal
process associated with the (ξi) and let

Rt =

Nt∑
i=1

Ri

denote the total reward collected up to time t. We begin with a result telling us about the long-term
behaviour of Rt which is analogous to the elementary renewal theorem.

Proposition 4.15. If E[|R|] <∞, then as t→∞,

Rt
t
→ λE[R] a.s. and

E[Rt]

t
→ λE[R] .

Things are more interesting if we consider the current reward: i.e., r(t) = E
[
RN(t)+1

]
. The size-

biasing phenomenon has an impact in this setup too. The equilibrium theory of renewal processes
can be used to show the following fact:

Theorem 4.16. As t→∞ we have
r(t)→ λE[Rξ] .

Remark 4.17. The factor ξ in the expectation E[Rξ] comes from size-biasing: the reward R has
been biased by the size ξ of the renewal in which we can find t. The factor λ is 1/E[ξ].
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4.6 Example: Alternating Renewal process

Suppose a machine goes on and off; on and off; etc. Each time the machine is on, it breaks down
after a random variable Xi. Once broken it takes Yi for it to be fixed by an engineer. We assume
that Xi and Yi are both i.i.d. and are independent of each other. Suppose also that they have finite
second moments. Let ξi = Xi + Yi which is the length of a full cycle. Then ξi defines a renewal
process Nt. What is the fraction of time the machine is on in the long-run?

We can associate to each renewal the reward Ri which corresponds to the amount of time the
machine was on during that particular cycle. Thus Ri = Xi. We deduce from Proposition 4.15
that if Rt is the total amount of time that the machine was on during (0, t),

Rt
t
→ E[X]

E[X] + E[Y ]
and

E[Rt]

t
→ E[X]

E[X] + E[Y ]
. (4.4)

In reality there is a subtlety in deriving (4.4) from Proposition 4.15. This has to do with the fact
that in the renewal reward process the reward is only collected at the end of the cycle, where as in
our definition Rt takes into account only the time the machine was on up to time t: not up to the
last renewal before time t. The discrepancy can for instance be controlled using Theorem 4.16.

What about the probability p(t) that the machine is on at time t? Is there a size-biasing effect
taking place here as well? It can be shown no such effect needs to be considered for this question,
as is suggested by (4.4) (since E[Rt] =

∫ t
0 p(s)ds). One can then argue that

p(t)→ E[X]

E[X] + E[Y ]
(4.5)

as t→∞.

4.7 Example: busy periods of M/G/1 queue

Consider an M/G/1 queue with traffic intensity ρ < 1. Let In, Bn denote the lengths of time
during which the server is successively idle and then busy. Note that (Bn, In) form an Alternating
Renewal process. (Here it is important to consider Bn followed by In and not the other way around
in order to get the renewal structure. Otherwise it is not completely obvious that the random
variables are iid). It follows that if p(t) is the probability that the server is idle at time t, then

p(t)→ E[I]

E[B] + E[I]
.

Now, by the Markov property of arrivals, In ∼ Exp(λ) so E[I] = 1/λ. We have also calculated
using a branching process argument (see Example 3.24)

E[B] =
1

µ− λ.

We deduce that

p(t)→ 1− λ

µ
(4.6)

which is consistent with the M/M/1 queue in which case p(t) → π0 = 1 − λ/µ (letting π denote
the equilibrium distribution of the queue length).
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4.8 Little’s formula

We will now state one of applied probability’s more robust theorems. First we give the definition
of a regenerative process.

Definition 4.18. A process (Xt : t ≥ 0) is called regenerative if there exist random times τn
such that the process regenerates, i.e. the law of the process (Xt+τn)t≥0 is identical to (Xt)t≥0 and
independent of (Xt)t≤τn .

Remark 4.19. For instance X could be an M/G/1 queue and τ1 is the end of the first busy period.

For Little’s formula we suppose that we are given a queue X which is regenerative with regeneration
times τn. Let N be the arrival process, i.e. Nt counts the total number of customers that arrived
before time t. Let Wi denote the waiting time of the i-th customer, which is the time that he
spends waiting in the queue plus the service time.

Theorem 4.20 (Little’s formula). If E[τ1] < ∞ and E
[∑Nτ1

i=1 Wi

]
< ∞, then almost surely the

following limits exist and are deterministic:

(a) Long-run mean queue size

L := lim
t→∞

1

t

∫ t

0
Xs ds.

(b) Long-run average waiting time

W := lim
n→∞

1

n

n∑
i=1

Wi.

(c) Long-run average arrival rate

λ = lim
t→∞

Nt

t
.

Moreover, we have L = λW .

Proof. For every n we define

Yn =

Nτn∑
i=1

Wi.

Let now τn ≤ t < τn+1. Then we have

Yn
τn+1

≤ 1

t

∫ t

0
Xs ds ≤

Yn+1

τn
. (4.7)

We can write Yτn =
∑n

i=1(Yτi −Yτi−1), since we take Y0 = 0. By the regenerative property we have
that the increments Yτi − Yτi−1 are i.i.d. with E[Y1] < ∞ by assumption, and hence we can apply
the strong law of large numbers to obtain

lim
n→∞

Yn
τn

=
E[Y1]

E[τ1]
.

Therefore, taking the limits of the left and right hand side of (4.7) we get that

L := lim
t→∞

1

t

∫ t

0
Xs ds =

E[Y1]

E[τ1]
.
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Similarly, using the assumption that E[Nτ1 ] <∞, one can show that the following limit exists

lim
t→∞

Nt

t
= λ.

For Nτn ≤ k < Nτn+1 we also have

Yτn
Nτn+1

≤ 1

k

k∑
i=1

Wi ≤
Yτn+1

Nτn

.

Finally we conclude that almost surely

lim
n→∞

Yτn
Nτn+1

=
L

λ
and lim

n→∞

Yτn+1

Nτn

=
L

λ

and this finishes the proof.

Remark 4.21. The above theorem is remarkably simple and general. Notice that there is no
assumption on the inter-arrival distribution or the waiting time distribution. Moreover, there is
no assumption on the number of servers. Also the customers do not have to exit the queue in
the order they entered. The only assumptions are the regeneration of the queue length. From the
proof above it follows that if we only assume the existence of the limits in (a) and (b) and that
limt→∞Xt/t = 0, then the formula still holds and the limit in (c) exists and is non-random. Indeed,
in this case we have

Nt−Xt∑
k=1

Wk ≤
∫ t

0
Xs ds ≤

Nt∑
k=1

Wk

and since Nt/t→ λ and Xt/t→ 0 as t→∞, we get

lim
t→∞

∫ t
0 Xs ds

t
= λW.

Example 4.22. Waiting time in an M/M/1 queue. Recall that the equilibrium distribution is
πn = (1− ρ)ρn where ρ = λ/µ < 1. Hence in that queue

L =
∑
n

nπn =
1

1− ρ − 1 =
λ

µ− λ.

Hence by Little’s theorem,

W =
L

λ
=

1

µ− λ.

We recover (3.1), where in fact we had argued that the waiting time of a customer at large times t
was an exponential random variable with rate µ− λ.

4.9 G/G/1 queue

Consider a G/G/1 queue. Let An denote the intervals between arrival times of customers and Sn
their service times. Suppose that An and Sn are i.i.d. and independent of each other. It is not
hard to prove the following result.
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Theorem 4.23. Let 1/λ = E[An] and let 1/µ = E[Sn], and let ρ = λ/µ. Then if ρ < 1 the queue
will empty out almost surely.

Proof. Let E be the event that the queue never empties out. Let At be the arrival process (number
of customers arrived up to time t) and let Dt be the departure process (number of customers served
up to time t). Then by the elementary renewal theorem we have as t→∞

At
t
→ λ and

Dt

t
→ µ.

Hence on E, if ρ > 1, we have Dt � At for t large enough, which is impossible. Therefore we
obtain that if ρ < 1, then P(E) = 0.

Suppose now that ρ < 1 for a G/G/1 queue and consider the times Tn at which the queue is empty
and a customer arrives. Then Tn is a renewal sequence and by recurrence, there are infinitely many
times at which the queue is empty, and hence Tn →∞ as n→∞. We can apply the strong law of
large numbers to obtain that in this regime almost surely

lim
t→∞

Xt

t
= 0.

Since Nt is a renewal process with E[ξ] = 1/λ, by the renewal theorem we have Nt/t→ λ as t→∞.
The existence of the limit (b) in Theorem 4.20 follows by the strong law of large numbers using
the renewal times Tn again.

We can now apply Remark 4.21 to get that almost surely

lim
t→∞

∫ t
0 Xs ds

t
= λW.

5 Population genetics

5.1 Introduction

Sample the DNA of n individuals from a population. What patterns of diversity do we expect to
see? How much can be attributed to “random drift” vs. natural selection? In order to answer we
will assume neutral mutations and deduce universal patterns of variation.

Definition 5.1. The genome is the collection of all genetic information of an individual. This
information is stored on a number of chromosomes. Each consists of (usually many) genes. A gene
is a piece of genetic material coding for one specific protein. Genes themselves are made up of acid
bases: e.g. ATCTTAG... An allele is one of a number of alternative forms of the same gene. The
location of a base is called site.

For instance, to simplify greatly, if there was a gene coding for the colour of the eye we could have
the blue allele, the brown allele, etc.

To simplify, we will make a convenient abuse of language and speak of an individual when we
have in mind a given gene or chromosome. In particular, for diploid populations, every member of
the population has two copies of the same chromosome, which means we have two corresponding
“individuals”. In other words, we treat the two chromosomes in a given member of the population
as two distinct individuals. So gene and individual will often mean the same thing.
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5.2 Moran model

Our basic model of a population dynamics will be the Moran model. This is a very crude model
for the evolution of a population but nevertheless captures the right essential features, and allows
us to give a rigorous treatment at this level.

Definition 5.2. Let N ≥ 1. In the Moran model the population size is constant equal to N . At
rate 1, every individual dies. Simultaneously, an individual chosen uniformly at random from the
population gives birth.

Note that the population size stays constant throughout this mechanism. In particular, we allow
an individual to give birth just at the time he dies.

The Moran model can be conveniently constructed in terms of Poisson processes. In the definition
of the Moran model, one can imagine that when an individual j dies and individual i gives birth,
we can think that the offspring of i is replacing j. By properties of Poisson processes, if the rate
at which an offspring of i replaces j is chosen to be 1/N this gives us a construction of the Moran
model: indeed the total rate at which j dies will be N × (1/N) = 1, and when this happens the
individual i whose offspring is replacing j is chosen uniformly at random.

Thus a construction of the Moran model is obtained by considering independent Poisson processes
(N i,j

t , t ≥ 0) for 1 ≤ i, j ≤ N with rates 1/N . When N i,j has a jump this means that individual j
dies and is replaced by an offspring of individual i.

Corollary 5.3. The Moran model dynamics can be extended to t ∈ R, by using bi-infinite Poisson
processes (N i,j

t , t ∈ R).

5.3 Fixation

Suppose at time t = 0, a number of X0 = i of individuals carry a different allele, called a, while all
other N − i individuals carry the allele A. Let Xt = # individuals carrying allele a at time t ≥ 0,
using the Moran model dynamics. Let τ = inf{t ≥ 0 : Xt = 0 or N}. We say that a fixates if
τ <∞ and Xτ = N . We say that there is no fixation if τ <∞ and Xτ = 0.

Theorem 5.4. We have that τ < ∞ a.s. so these are the only two alternatives, and P(Xτ =
N |X0 = i) = i/N . Moreover,

E[τ | X0 = i] =
i−1∑
j=1

N − i
N − j +

N−1∑
j=i

i

j
.

Remark 5.5. If p = i/N ∈ (0, 1) and N → ∞ then it follows that E[τ ] is proportional to N and
more precisely, E[τ ] ∼ N(−p log p− (1− p) log(1− p)).

Proof. We begin by observing that Xt is a Markov chain with

qi,i+1 = (N − i)× i/N (5.1)

(the first factor corresponds to an individual from the A population dying, the second to choosing
an individual from the a population to replace him). Likewise,

qi,i−1 = i× (N − i)/N. (5.2)
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Hence the qi,i−1 = qi,i+1, qi = 2i(N − i)/N , and Xt is a Birth and Death chain whose jump is
Simple Random Walk on Z, absorbed at 0 and N . We thus get the first result from the fact that
for Simple Random Walk,

Pi(TN < T0) = i/N. (5.3)

Now let us write τ =
∑N

j=1 τj where τj is the total time spent at j. Note that

Ej [τj ] =
1

qj
Ej [# visits to j] =

1

qj
Pj(no return to j)−1

since the number of visits to j is a geometric random variable. Now, by decoposing on the first
step, the probability to not return to j is given by

Pj( no return to j) =
1

2

1

j
+

1

2

1

N − j
by using (5.3) on the interval [0, j] and [j,N ] respectively. Hence

Ej [τj ] =
1

qj

2j(N − j)
N

= 1.

Consequenty,

Ei[τ ] =
∑
j

Ei[τj ]

=
∑
i

Pi(Xt = j for some t ≥ 0)× Ej [τj ]

=
∑
j≥i

i

j
+
∑
j<i

N − i
N − j .

The result follows.

5.4 The infinite sites model of mutations

Consider the case of point mutations. These are mutations which change one base into another, say
A into G. When we consider a long sequence of DNA it is extremely unlikely that two mutations
will affect the same base or site. We will make one simplifying assumption that there are infinitely
many sites: i.e., no two mutations affect the same site.

Concretely, we consider the (bi-infinite) Moran model. We assume that independently of the
population dynamics, every individual is subject to a mutation at rate u > 0, independently for all
individuals (neutral mutations). Since we suppose that there infinitely many sites, we can safely
assume that no two mutations affect the same site. It thus makes sense to ask the following question:
Sample 2 individuals from the population at time t = 0. What is the probability they carry the same
allele? More generally we can sample n individuals from the population and ask how many alleles
are there which are present in only one individual of the sample? Or two individuals?

The infinite sites model tells us that if we look base by base in the DNA sequence of a sample of
individuals, either all bases agree in the sample, or there are two variants (but no more), since we
assumed that no two mutations affect the same site.

Definition 5.6. Suppose we are given a table with the DNA sequences of all n individuals in the
sample. Let Mj(n) be the number of sites where exactly j individuals carry a base which differs
from everyone else in the sample.
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Remark 5.7. Note that in the above definition the quantity Mj(n) counts the number of sites
that have been mutated and exactly j individuals carry the same mutation.

Example 5.8. Suppose the DNA sequences in a sample are as follows

1 : . . . A T T T C G G G T C . . .
2 : . . . − A − G − − − − − − . . .
3 : . . . − − − − − − − − C − . . .
4 : . . . − − − G − − − − C − . . .
5 : . . . − A − − − − − − − − . . .
6 : . . . − − − − − − − − − − . . .
7 : . . . − − − − − − − − C − . . .

In this example n = 7. To aid visualisation we have put a dash if the base is identical to that of the
first individual in the sample. Hence we have M2(n) = 2 (second and fourth sites) and M3(n) = 1
(second to last).

Our first result tells us what happens in the (unrealistic) case where n = N .

Theorem 5.9. Let θ = uN . Then

E[Mj(N)] =
θ

j
.

Proof. Mutations occur at a total rate of u × N = θ in the time interval (−∞, 0]. Suppose a
mutation arises at time −t (t > 0) on some site. What is the chance that it affects exactly j
individuals in the population at time 0? Let Xs denote the number of individuals carrying this
mutation at time −t+ s. Then since mutations don’t affect each other, X evolves like the Markov
chain in the previous theorem, i.e., has the Q-matrix given by (5.1) and (5.2). Hence the chance
that this mutation affects exactly j individuals in the population at time zero is precisely pt(1, j)
where pt(x, y) is the semi-group associated with the Q-matrix. Thus

E[Mj(N)] =

∫ ∞
0

uNdtpt(1, j)

= θE1[τj ]

= θP1(Xt = j for some t ≥ 0)Ej [τj ]
= θ × (1/j)× 1,

as desired.

5.5 Kingman’s n-coalescent

Consider a Moran model defined on R. Sample n individuals at time 0. What is the genealogical
tree of this sample? Since an individual is just a chromosome, there is just one parent for any
given individual. (This is one of the advantages of making this change of perspective). Thus for
any t > 0 there is a unique ancestor for this individual at time −t. As −t goes further and further
back in time, it may happen that the ancestor for two individuals in the population becomes the
same. We speak of a coalescence event.

To put this on a mathematical footing, we introduce the notion of ancestral partition. This is a
partition Πt of the sample (identified with {1, . . . , n}) such that i and j are in the same block of
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Πt if and only if i and j have the same ancestor at time −t. One way to think about Πt is that
there is a block for each distinct ancestor of the population at time −t.
How does Πt evolve as t increases? It turns out that Πt forms a Markov process with values in
Pn =

{
partitions of {1, . . . , n}

}
.

Theorem 5.10. (ΠNt/2, t ≥ 0) is a Markov chain in Pn with

qπ,π′ =


1 if π′ can be obtained from π by coagulating two of its blocks

−
(
k
2

)
if π′ = π and π has k blocks

0 else .

This is Kingman’s n-coalescent.

Proof. It suffices to show that Πt is a Markov chain with rates (2/N)qπ,π′ . Now, recall that each
block of Πt is associated to an ancestor of the sample at time −t. The rate at which this pair of
blocks coalesces is 2/N , since if the ancestors are i and j at this time then the rate is equal to the
sum of the rates for N i,j and N j,i in the Poisson construction of the Moran model, i.e., 2/N . All
other transitions do not take place, hence the result.

Properties. We list some immediate properties of Kingman’s n-coalescent.

1. Π0 = {{1}, . . . , {n}}.

2. For t sufficiently large Πt = {{1, . . . , n}}. The first such time is the time to the MRCA (the
most recent common ancestor) of the sample.

3. Πt is a coalescing process. The only possible transitions involve merging a pair of blocks.
Each possible pair of blocks merges at rate 1 in Kingman’s n-coalescent (and at rate 2/N for
Π itself).

4. If Kt is the size of Kingman’s n-coalescent, i.e. the number of blocks at time t, then Kt is a
pure death process with rates k → k−1 given by

(
k
2

)
. Moreover the jump chain is independent

from Kt.

Recall Theorem 5.9 and the quantity Mj(n), which is the number of sites where exactly j individuals
carry a base that has been mutated and is different from everyone else in the sample. Then Mj(n)
depends only on the mutations which intersect with the genealogical tree. In other words, we have
a genealogical tree with each pair of branches coalescing at rate 2/N . Mutations fall on the tree
at rate u > 0 per branch and per unit length. For such a tree we proved in Theorem 5.9 that
E[Mj(N)] = θ/j, where θ = uN .

If we speed up time by N/2, then the genealogy becomes Kingman’s n-coalescent and the rate of
mutations becomes α = uN/2. For any such tree Theorem 5.9 applies to give that

E[Mj(n)] =
2α

j
=
θ

j
.

Therefore, we proved:

Theorem 5.11. For any 1 ≤ n ≤ N , for θ = uN , E[Mj(n)] = θ/j.

The function j 7→ θ/j is called the site frequency spectrum of the infinite sites model.
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Example 5.12. Biologists often measure the so-called SNP count Sn, or Single Nucleotide Poly-
morphism. This is the number of sites in the sequence for which there is some variation in the
sequence, i.e. Sn =

∑n
j=1Mj(n). Then we deduce from the theorem above that as n→∞

E[Sn] = θ

(
1 + . . .+

1

n

)
∼ θ log n.

5.6 Consistency and Kingman’s infinite coalescent

A further interesting property is the compatibility or sampling consistency. Intuitively, this means
that if we have a sample of size n, then a subsample of size n−1 behaves as if we had directly n−1
individuals from the population. Mathematically, this can be expressed as follows. If π is a
partition of [n] = {1, . . . , n} then we can speak of π|[n−1], the induced partition of [n− 1] obtained
by restricting π to [n− 1].

Proposition 5.13. Let Πn be Kingman’s n-coalescent. Then the restriction to [n − 1], i.e. the
process Πn|[n−1] has the law of Kingman’s (n− 1)-coalescent.

Proof. This follows directly from the construction of Kingman’s n-coalescent by sampling from
the Moran model. Alternatively it can be shown directly using the transition rates via some rather
tedious calculations.

Using the sampling consistency and Kolmogorov’s extension theorem we can deduce the existence of
a unique process (Πt, t ≥ 0) taking values in partitions P of N = {1, 2, . . .} such that for every n ≥ 1,
the process Π|[n] has the law of Kingman’s n-coalescent.

Definition 5.14. (Πt, t ≥ 0) is called Kingman’s infinite coalescent.

Initially we have Π0 consisting of infinitely many singletons. How does it look like for positive
times? For instance, will it ever completely coalesce? One remarkable phenomenon with Kingman’s
coalescent is the following fact.

Theorem 5.15. Kingman’s coalescent comes down from infinity: that is, with probability one, the
number of blocks of Πt is finite at any time t > 0. In particular, there is a finite time ζ > 0 such
that Πt = {1, 2, . . .} for t ≥ ζ.

This should be viewed as some kind of big bang event, reducing the number of blocks from infinity
to finitely many in an infinitesimal amount of time.

Proof. Write |Πt| for the number of blocks. Since the events {|Πn
t | ≥ M} are increasing in n, we

get

P(|Πt| ≥M) = lim
n→∞

P(|Πn
t | ≥M) = lim

n→∞
P

 n∑
j=M+1

τj ≥ t


where τj is the time for Πn to drop from j blocks to j − 1 blocks. Hence τj is Exponential with
rate

(
j
2

)
. By Markov’s inequality

P(|Πt| ≥M) ≤ 1

t
E

 ∞∑
j=M+1

τj

 ≤ 1

t

∞∑
j=M+1

1(
j
2

) =
2

t

∞∑
j=M+1

1

j(j − 1)

This tends to 0 as M →∞, so the result follows.
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5.7 Intermezzo: Pólya’s urn and Hoppe’s urn∗

The proofs in this section are not examinable but we will use the conclusions later on. Consider
the following urn model, due to Pólya. Initially an urn contains one white and one black ball. At
each subsequent step, a ball is drawn from the urn. The ball is then put back in the urn along with
a ball of the same colour. Let Xn denote the number of black balls in the urn when there are n
balls in total in the urn. What is the limiting behaviour of Xn?

The first time they see this question, many people believe that Xn/n will converge to 1/2 when
n→∞. But the result is quite different.

Theorem 5.16. We have that as n→∞, Xn/n→ U almost surely, where U is a uniform random
variable on (0, 1).

This theorem can be thought of as a ’rich get richer’ phenomenon. Initially there is a lot of
randomness. There are a great variety of events that might happen during the first n = 100 draws
say. However, once there is a large number of balls in the urn, a law of large number kicks in. For
instance if the fraction is p at that time, then the probability to pick a black ball will be p and
the probability to pick a while ball will be 1 − p. Hence by the law of large numbers the fraction
of black balls will tend to remain close to p for a very long time. This reinforces itself and explain
why the convergence is almost sure. We will sketch a different (rigorous) proof below.

Proof. We start by doing a few simple computations. What is the probability to get first m black
balls and then n−m white balls (in that order)? We see that it is

1

2

2

3
. . .

m

m+ 1
× 1

m+ 2
. . .

n−m
n+ 1

=
m!(n−m)!

(n+ 1)!
. (5.4)

The first factor account for drawing all the black balls (whose number increase from 1 to m− 1 at
the last draw) and the second accounts for then drawing all white balls, whose numbers increase
from 1 to n−m at the last draw.

The key observation is exchangeability : if we were to compute the probability of any other sequence
of draws, also resulting in m+ 1 black balls and n+ 1 white balls in the urn, the probability would
be unchanged. This is because the bottom of the fraction gives the number of balls in the urn
(which can only increase by one at each draw) and the fraction gives the number of black or white
balls currently in the urn. But this has to go increase from 1 to m and from 1 to n respectively,
albeit at different times than in the above order. Still the product is unchanged. Hence

P(Xn+2 = m) =

(
n

m

)
m!(n−m)!

(n+ 1)!

=
n!

m!(n−m)!

m!(n−m)!

(n+ 1)!

=
1

n+ 1
,

so Xn+2 is uniformly distributed over {1, . . . , n+ 1}. It is hence no surprise that the limit of Xn/n,
if it exists, is uniform over [0, 1].

To see why in fact the limit does exist, we assert that Xn has the same dynamics as the following
(seemingly very different) process: first pick a number U ∈ (0, 1) uniformly at random. Then insert
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in the urn a black ball with probability U , and a while ball with probability 1 − U . Indeed, the
probability to get m black balls followed by n−m white balls in that process is given by∫ 1

0
um(1− u)n−mdu.

This integral can easily be evaluated and shown to be identical to m!(n−m)!/(n+ 1)!. Clearly the
probability is also invariant under permutations of the sequence, so these two processes must be
identical! By the law of large numbers, it now follows that Xn/n→ U , almost surely.

It seems mad that the two processes considered in the proof can in fact be identical. In the Pólya
urn case, there is a complex dependency phenomenon dominated by ’rich get richer’. In the second
there is no such dependency – it is perhaps the most basic process of probability: i.i.d. draws,
except that the parameter for drawing is itself random and is identical for all draws.

Hoppe’s urn is a generalisation of Pólya’s urn. This is an urn with balls of different colours of
mass 1 and a single black ball of mass θ. At each step, we draw from the urn (with probability
proportional to the mass of the ball). If it is a coloured ball, we put back the ball in the urn along
with a ball of the same colour. If it is a black ball we put it back in the urn along with a ball of a
new colour.

5.8 Infinite Alleles Model

Consider a Moran model with N individuals, defined for t ∈ R. Assume that each individual is
subject to a mutation at rate u > 0. When a mutation occurs, it is unlikely that the allelic type
remains the same, or is identical to something which ever arose prior to that. Simplifying, this
leads to the Infinite Alleles Model : we assume that each time a mutation occurs, the allelic type
of the corresponding individual changes to something entirely new. (For instance, thinking of eye
colour, if the type was blue before the mutation, it could change to any different colour after, say
green).

The Infinite Sites Model and the Infinite Alleles Model look quite similar on the surface. However,
in the Infinite Alleles Model we only look at the individual’s current allelic type, and have no way of
knowing or guessing the allelic type of the individual’s ancestors. On the contrary this information
remains accessible in the case of the Infinite Sites Model as we are given the full DNA sequence.
So the main difference between the models is that we don’t know if two allelic types are close or
completely unrelated. We just know they are different. This is particularly appropriate in some
cases where sequencing is not convenient or too expensive.

In the Infinite Alleles Model the variation in the sample is encoded by a partition Πn of the sample
(identified, as usual, with {1, . . . , n}) such that i is in the same block of Πn as j if and only if i
and j have the same allelic type.

Definition 5.17. Πn is called the allelic partition.

As in the case of the ISM, we introduce the quantities Aj = Aj(n) = # of distinct alleles which are
carried by exactly j individuals. In terms of partitions, the quantity Aj counts how many sets of
the partition have exactly j elements.
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Example 5.18. Suppose n = 8 and the eye colour of the sample is

1 2 3 4 5 6 7 8
blue red brown green brown yellow red brown

Then Πn has 4 blocks (corresponding to the five colours in the sample): {1}, {2, 7}, {3, 5, 8}, {4}, {6}.
Hence a1 = 3, a2 = 1, a3 = 1.

5.9 Ewens sampling formula

It turns out that we can describe the distribution of Πn or, equivalently, of (A1, . . . , An), explicitly.
This is encoded in a beautiful and important formula which bears the name of Warren Ewens, who
discovered it in 1972. This is also widely used by geneticists in practice.

Theorem 5.19 (Ewens sampling formula). Let aj be such that
∑n

j=1 jaj = n. Then

P(A1 = a1, . . . , An = an) =
n!

θ(θ + 1) . . . (θ + n− 1)

n∏
j=1

(θ/j)aj

aj !
. (5.5)

Remark 5.20. It is far from obvious that the right hand side adds up to one! Another way of
rewriting (5.5) is

P(A1 = a1, . . . , An = an) = c(θ, n)
n∏
j=1

e−θ/j
(θ/j)aj

aj !
, (5.6)

where c(θ, n) is a constant only depending on θ and n. The product appearing above is the probabil-
ity that n independent random variables Z1, . . . , Zn with Zj ∼Poisson(θ/j) are equal to a1, . . . , an

respectively. Hence the probability appearing in (5.6) is P
(
Z1 = a1, . . . , Zn = an

∣∣∣ ∑j jZj = n
)

.

When n is large and j is finite, this conditioning becomes irrelevant, and hence the distribution
of Aj is close to Poisson with mean θ/j. So for large n we have P(Aj = 0) ≈ e−θ/j .
Remark 5.21. An equivalent way of stating the formula is that for π ∈ Pn we have

P(Πn = π) =
θk

θ(θ + 1) . . . (θ + n− 1)

k∏
i=1

(ni − 1)! (5.7)

where k is the number of blocks of π and ni is the size of the i-th block. This is actually the version
we will use below.

We now show that the two formulas (5.5) and (5.7) are equivalent. It is obvious that the distribution
of Πn is invariant under permutation of the labels. So if (aj) is fixed such that

∑
j jaj = n and π

is a given partition having (aj) as its allele count, we have:

P(A1 = a1, . . . , An = an) = P(Πn = π)×#{partitions with this allele count}

=
θk

θ(θ + 1) . . . (θ + n− 1)

k∏
j=1

(nj − 1)!× n!
1∏k

j=1 nj !

1∏n
i=1 ai!

=
θkn!

θ(θ + 1) . . . (θ + n− 1)
× 1∏k

j=1 nj

1∏n
i=1 ai!

=
n!

θ(θ + 1) . . . (θ + n− 1)

n∏
j=1

(θ/j)aj

aj !
,

as desired.
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Figure 4: On the left, a Kingman n-coalescent, with mutations falling at rate θ/2 on each lineage.
An individual from the sample is coloured according to the allelic type which it carries. On the
right, the same process where ancestral lineages are killed off when there is a mutation, and the
definition of the times T1, . . . , Tn in the proof.

Proof of Theorem 5.19. As we have done before, (A1, . . . , An) depends only on the mutations
which intersect the genealogical tree of the sample. Hence we may and will assume that the
genealogical tree is given by Kingman’s n-coalescent and that mutations fall on the tree at rate θ/2
per unit length on each branch.

Step 1. We think of each mutation as a killing. Hence as the time of the coalescent evolves, branches
disappear progressively, either due to coalescence or to killing caused by a mutation. Let Tn, . . . , T1
denote the successive times at which the number of branches drops from n to n−1, then from n−1
to n − 2, and so on. The key idea of the proof is to try to describe what happens in the reverse
order, going from T1 to T2 all the way up to Tn.

We now consider the partition Πm, which is the partition defined by the m lineages uncovered by
time Tm.

Between times Tm and Tm+1 there are m branches. At time Tm+1 we add an extra branch to the
tree. This can be attached to an existing allelic group of branches (corresponding, in the time
direction of the coalescent, to a coalescence event) or create a new allelic group (corresponding
to a mutation event). We will now calculate the probabilities of these various possibilities, using
“competition of exponential random variables”: between Tm and Tm+1 there were m branches and
at time Tm+1 we add a new branch. So there are in total m + 1 exponential clocks with rate θ/2
corresponding to mutation, and m(m+ 1)/2 clocks with rate 1, corresponding to coalescence.

Hence the probability to form a new allelic group for the new branch at time Tm is

P(new block) =
(m+ 1)θ/2

(m+ 1)θ/2 +m(m+ 1)/2
=

θ

θ +m
. (5.8)

The probability to join an existing group of size ni is

P(join a group of size ni) =
m(m+ 1)/2

(m+ 1)θ/2 +m(m+ 1)/2
× ni
m

=
ni

m+ θ
. (5.9)
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The extra factor ni comes from the fact that, given that this extra branch disappeared by co-
alescence, it joined a uniformly chosen existing branch, and hence joins a group of size ni with
probability ni/m.

Step 2. We observe that the above process behaves exactly as Hoppe’s urn from the previous
section. The “new block” or mutation event is the same as drawing the black ball of mass θ > 0,
while the event joining a group of size ni is identical to drawing a ball from that colour. We will
now prove

P(Πn = π) =
θk

θ(θ + 1) . . . (θ + n− 1)

k∏
i=1

(ni − 1)!

by induction on n, where π ∈ Pn is arbitrary and k is the number of blocks of π. The case n = 1
is trivial. Now let n ≥ 2, and let π′ = π|[n−1]. There are two cases to consider: either (a) n is a
singleton in π, or (b) n is in a block of size nj in π. In case (a), π′ has k − 1 blocks. Hence

P(Πn = π) = P(Πn−1 = π′)× θ

θ + n− 1

=
θk−1

θ(θ + 1) . . . (θ + n− 2)

k−1∏
i=1

(ni − 1)!× θ

θ + n− 1

=
θk

θ(θ + 1) . . . (θ + n− 1)

k∏
i=1

(ni − 1)!

as desired.

In case (b),

P(Πn = π) = P(Πn−1 = π′)× nj − 1

θ + n− 1

=
θk

θ(θ + 1) . . . (θ + n− 2)

k∏
i=1;i 6=j

(ni − 1)!× (nj − 2)!× nj − 1

θ + n− 1

=
θk

θ(θ + 1) . . . (θ + n− 1)

k∏
i=1

(ni − 1)!

as desired. Either way, the formula is proved.

Corollary 5.22. Let Kn = # distinct alleles in a sample of size n. Then

E[Kn] =

n∑
i=1

θ

θ + i− 1
∼ θ log n;

var(Kn) ∼ θ log n

and
Kn − E[Kn]√

var(Kn)
→ N (0, 1)

a standard normal random variable.

Proof. This follows from the Hoppe’s urn representation in the proof. At step i a new block is
added with probability pi = θ/(θ+i−1). Hence Kn =

∑n
i=1Bi where Bi are independent Bernoulli

random variables with parameter pi. The expressions for E[Kn], var(Kn) follow, and the central
limit theorem comes from computing the characteristic function.
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The Central Limit Theorem is what is needed for hypothesis testing. Kn/ log n is an estimator
of θ which is asymptotically normal. But its standard deviation is of order 1/

√
log n. Eg if you

want σ = 10% you need n = e100, which is totally impractical...! Unfortunately, Kn is a sufficient
statistics for θ (see example sheet): the law of the allelic partition Πn, given Kn, does not depend
on θ. Hence there is no information about θ beyond Kn, so this really is the best we can do.

5.10 The Chinese restaurant process

This section follows Pitman’s St Flour notes [3].

Suppose we have a consistent sequence of random permutations, i.e. σn is a uniform permutation
on [n] = {1, 2, . . . , n} for each n. Then we can write σn as a product of its cycles.

For each n we can get σn−1 by deleting the element n from the cycle containing it in σn. For
example, if σ5 = (123)(4)(5), then σ4 = (123)(4).

We now describe another process which gives rise to uniform random permutations. Suppose that
there is an infinite number of tables in a restaurant and they are numbered 1, 2, . . .. Each table
has infinite capacity. Customers numbered 1, 2, . . . arrive into the restaurant. Customer 1 occupies
table 1. Customer n+1 chooses with equal probability either to sit to the left of a customer already
sitting in a table or to start a new table.

Hence the n-th person opens a new table with probability 1/n and sits to the left of j ≤ n− 1 with
probability 1/n. So the probability he joins a group of size ni is ni/n, which is the same as (5.8)
and (5.9) for θ = 1.

We define σn : [n] → [n] as follows. If customer i is sitting to the left of customer j, then we set
σn(i) = j, while if customer i is sitting by himself, then we set σn(i) = i.

By induction, it is not hard to check that σn has the properties listed above, i.e. for each fixed n it
is a random permutation and it also satisfies the consistency property.

Combining this with Ewens sampling formula from Theorem 5.19 we see that the total number of
permutations of {1, . . . , n} with a1 cycles of size 1, a2 cycles of size 2 and so on, is equal to

n!∏n
j=1(j

ajaj !)
.

More properties of random permutations can be immediately read from this construction.

Let Kn be the number of occupied tables when n customers have arrived. Then this is equal to the
number of cycles in the permutation σn. But

Kn = Z1 + . . .+ Zn,

where Zi is the indicator that the i-th customer occupies a new table. But this is a Bernoulli
random variable of success probability 1/i and is independent of Zj ’s for j 6= i. Therefore,

E[Kn] =
n∑
j=1

1

j
∼ log n as n→∞.

Also we have almost surely
Kn

log n
→ 1 as n→∞.
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By the central limit theorem we obtain

Kn − log n√
log n

→ N as n→∞ in distribution,

where N is a standard normal random variable.

Let Xn be the indicator that the (n + 1)-th customer sits at table 1. Then Xn has the same
dynamics as Pólya’s urn. We now set Sn = X1 + . . .+Xn. In the proof of Theorem 5.16 we showed
that Sn is uniform on {1, . . . , n} and also that almost surely

Sn
n
→ U as n→∞,

where U ∼ U [0, 1]. In the language of permutations, Sn + 1 is the size of the cycle that contains
the element 1. Therefore, we showed that the length of the cycle of the permutation containing the
element 1 is uniform on {2, . . . , n + 1}. Since all elements of {1, . . . , n} are exchangeable for the
permutation, the same is true for the cycle containing element k ≤ n.

Now, let’s calculate the probability that two elements i 6= j are in the same cycle of the permutation.
By exchangeability again, this probability is the same as the probability that elements 1 and 2 are
in the same cycle. Translating this question into the Chinese restaurant process, we see that this
probability is equal to 1/2, since customer 2 must sit at table 1 which happens with probability 1/2.

Similarly the probability that i, j, k are in the same cycle is equal to 1/3, since it is equal to

P(customers 1, 2, 3 sit at the same table) =
1

2
· 2

3
=

1

3

and for any number ` ≤ n we get

P(customers 1, . . . , ` sit at the same table) =
1

`
.

For ` = n we recover P(σn has one cycle) = 1/n.
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