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1 Mixing times

1.1 Background

These notes are largely based on [1].

Definition 1.1. A sequence of random variables (Xn)n≥0 taking values in a space E is called a

Markov chain if for all x0, . . . , xn ∈ E such that P(X0 = x0, . . . , Xn−1 = xn−1) > 0 we have

P(Xn = xn | X0 = x0, . . . , Xn−1 = xn−1) = P(Xn = xn | Xn−1 = xn−1) .

In other words, the future of the process is independent of the past given the present.

For an event A we write Pi(A) to denote P(A | X0 = i).

A Markov chain is defined by its transition matrix P given by

P (i, j) = P(X1 = j | X0 = i) ∀ i, j ∈ E.

We will also write pi,j(n) or pn(i, j) for Pn(i, j).

Definition 1.2. A Markov chain is called irreducible if for all x, y ∈ E there exists n ≥ 0 such

that Pn(x, y) > 0.

An irreducible Markov chain is called recurrent if for all i we have Pi(Ti <∞) = 1, where Ti =

inf{n ≥ 1 : Xn = i}. Otherwise, it is called transient.

A Markov chain is called aperiodic, if for all x we have g.c.d.{n ≥ 1 : Pn(x, x) > 0} = 1.

Let E be a countable (infinite or finite) state space and let π be a probability distribution on E.

We call π an invariant distribution if πP = π. This means that if X0 ∼ π, then Xn ∼ π for all n.

Let π be the invariant distribution and suppose that X0 ∼ π. Fix N and consider the chain

Yi = XN−i for all i ∈ {0, . . . , N}. Then Y is also a Markov chain with transition matrix given by

P ∗(x, y) =
π(y)

π(x)
P (y, x) for all x, y.

We call P ∗ the reversal of P . It is easy to check that P ∗ is the adjoint operator, in the sense that

for all f, g : E → R we have

〈Pf, g〉π = 〈f, P ∗g〉π,

where 〈f, g〉π = Eπ[fg] =
∑

x π(x)f(x)g(x).

A Markov chain X is called reversible if for all N when X0 ∼ π, then (X0, . . . , XN ) has the same

distribution as (XN , . . . , X0). This is equivalent to the detailed balance equations, i.e. that

π(x)P (x, y) = π(y)P (y, x) for all x, y.

Let G = (V,E) be a connected graph, which may be infinite or finite. A simple random walk on G

is a Markov chain evolving on the vertices V with transition matrix given by

P (i, j) =
1

deg(i)
,
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for i and j neighbours, i.e. joined by an edge, where deg(i) is equal to the total number of neighbours

of i. If G is finite, then random walk on G is reversible and the invariant distribution is given by

π(x) =
deg(x)

2|E|
for all x ∈ V.

1.2 Total variation distance and coupling

Recall the convergence to equilibrium theorem for Markov chains.

Theorem 1.3. Suppose that X is an irreducible and aperiodic Markov chain on a finite state space

with invariant distribution π. Then for all x, y we have

P t(x, y)→ π(y) as t→∞.

The theorem above does not tell us anything about the rate of the convergence to equilibrium. Also

we need to define a metric between probability measures in order to be able to measure distance

between P t and π. The most widely used metric is the total variation distance.

Definition 1.4. Let E be a finite space and let µ and ν be two probability distributions on E. We

define

‖µ− ν‖TV = max
A⊆E

|µ(A)− ν(A)|.

This is a probabilistic definition, as the distance between µ and ν is given in terms of the proba-

bilities assigned to events A.

Proposition 1.5. Let µ and ν be two probability distributions on E. Then

‖µ− ν‖TV =
1

2

∑
x

|µ(x)− ν(x)| =
∑

x:µ(x)≥ν(x)

(µ(x)− ν(x)).

Proof. Let B = {x : µ(x) ≥ ν(x)} and let A ⊆ E be an arbitrary set. Then we have

µ(A)− ν(A) = (µ(A ∩B)− ν(A ∩B)) + (µ(A ∩Bc)− ν(A ∩Bc)) ≤ µ(A ∩B)− ν(A ∩B),

because µ(A ∩Bc)− ν(A ∩Bc) ≤ 0 by the definition of B. We further have

µ(A ∩B)− ν(A ∩B) = (µ(B)− ν(B))− (µ(Ac ∩B)− ν(Ac ∩B)) ≤ µ(B)− ν(B),

again using the definition of B. Similarly we can get

ν(A)− µ(A) ≤ ν(Bc)− µ(Bc) = µ(B)− ν(B).

This proves that

max
A⊆Ω
|µ(A)− ν(A)| ≤ µ(B)− ν(B)

and taking A = B we get

max
A⊆Ω
|µ(A)− ν(A)| = µ(B)− ν(B) =

∑
x:µ(x)≥ν(x)

(µ(x)− ν(x)).
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Using that ν(Bc)− µ(Bc) = µ(B)− ν(B) finally gives

‖µ− ν‖TV =
1

2

∑
x

|µ(x)− ν(x)|

and completes the proof.

Remark 1.6. The theorem above shows that the total variation distance satisfies the triangle

inequality.

Definition 1.7. A coupling of two probability distributions µ and ν is a pair of random variables

X and Y defined on the same probability space such that the marginal distribution of X is µ and

that of Y is ν.

Example 1.8. Suppose that µ = ν. Then one coupling of µ and ν is to take X and Y be independent

random variables with distribution µ. Another coupling is to take X = Y .

Proposition 1.9. Let µ and ν be two probability distributions on Ω. Then

‖µ− ν‖TV = inf{P(X 6= Y ) : (X,Y ) is a coupling of µ and ν}

and there is a coupling achieving the infimum above. We will call this coupling the optimal coupling

of µ and ν.

Proof. Let (X,Y ) be a coupling of µ and ν. Then for any event A we have

|µ(A)− ν(A)| = |P(X ∈ A)− P(Y ∈ A) | = |P(X ∈ A, Y /∈ A)− P(X /∈ A, Y ∈ A) | ≤ P(X 6= Y ) .

This shows that

‖µ− ν‖TV ≤ inf{P(X 6= Y ) : (X,Y ) is a coupling of µ and ν}.

In order to prove the equality, we will construct a coupling for which P(X 6= Y ) is exactly equal to

the total variation distance. We want to construct their coupling in such a way so that they are

equal as often as possible. We do it as follows: imagine we throw a point in the regions I∪II∪III.

If the point lands in III, then we set X = Y . Otherwise, we throw X in the region I \ III and Y

in II \ III. In this way, they are equal only if the initial point lands in III.
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More formally, let p =
∑

x µ(x) ∧ ν(x), where we write a ∧ b = min(a, b). We toss a coin with

probability of heads equal to p. If the coin comes up heads, then we sample Z according to the

distribution

γIII(x) =
µ(x) ∧ ν(x)

p

and we set X = Y = Z. If the coin comes up tails, then we sample X according to

γI(x) =
µ(x)− ν(x)

1− p
1(µ(x) > ν(x))

and we sample Y according to

γII(x) =
ν(x)− µ(x)

1− p
1(ν(x) > µ(x)).

First it is easy to check that X and Y have the correct distributions. Indeed,

P(X = x) = p · µ(x) ∧ ν(x)

p
+ (1− p) · µ(x)− ν(x)

1− p
1(µ(x) > ν(x)) = µ(x)

P(Y = x) = p · µ(x) ∧ ν(x)

p
+ (1− p) · ν(x)− µ(x)

1− p
1(ν(x) > µ(x)) = ν(x).

Also from the construction, since γI and γII are supported on disjoint sets, it follows that X 6= Y

only if the coin comes up tails. Thus we get

P(X 6= Y ) = 1− p = 1−
∑
x

µ(x) ∧ ν(x) =
∑

x:µ(x)≥ν(x)

(µ(x)− ν(x)) = ‖µ− ν‖TV

and this completes the proof.

1.3 Distance to stationarity

Let X be a Markov chain with transition matrix P and invariant distribution π. We define the

distance to stationarity

d(t) = max
x

∥∥P t(x, ·)− π∥∥
TV

.

We also define

d(t) = max
x,y

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

.

Lemma 1.10. For all t we have the following

d(t) ≤ d(t) ≤ 2d(t).

Proof. The second inequality is immediately from the triangle inequality for the total varia-

tion distance. To prove the first inequality, we use that for any set A, by stationarity π(A) =
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∑
y π(y)P t(y,A). Therefore, we get for all x

∥∥P t(x, ·)− π∥∥
TV

= max
A
|P t(x,A)− π(A)| = max

A

∣∣∣∣∣∑
y

π(y)(P t(x,A)− P t(y,A))

∣∣∣∣∣
≤
∑
y

π(y) max
A

∣∣P t(x,A)− P t(y,A)
∣∣ ≤ d(t),

since
∑

y π(y) = 1.

Theorem 1.11. Let X be an irreducible and aperiodic Markov chain on a finite state space with

invariant distribution π. Then there exist α ∈ (0, 1) and a positive constant C so that for all t we

have

max
x

∥∥P t(x, ·)− π∥∥
TV
≤ Cαt.

Proof. By irreducibility and aperiodicity we get that there exists r > 0 so that the matrix P r has

strictly positive entries. Define α = minx,y(P
r(x, y)/π(y)). Then α > 0 and for all x, y we have

P r(x, y) ≥ απ(y).

Therefore, we can write

P r(x, y) = απ(y) + (1− α)Q(x, y).

From this it is easy to check that Q is a stochastic matrix. A probabilistic interpretation of the

above equality is that with probability α we sample y according to π and with probability 1−α we

sample according to Q(x, y). So in order to sample P rk(x, y), with probability (1 − α)k we never

sampled from π and we sampled from Qk(x, ·) and with the complementary probability, 1−(1−α)k

we did, in which case it is distributed according to π. This means that

P rk = (1− α)kQk + (1− (1− α)k)π,

where we think of the vector π as a matrix whose rows are all equal to π. Using stationarity, we

get for all j

P rk+j = (1− α)kQkP j + (1− (1− α)k)π.

This now gives ∥∥∥P rk+j − π
∥∥∥

TV
= (1− α)k

∥∥∥QkP j − π∥∥∥
TV
≤ (1− α)k

and this concludes the proof.

The theorem above says that the Markov chain run long enough will converge to equilibrium, but

it does not give information on the rate of convergence.

Exercise 1.12. Check that d(t) is a non-increasing function of t.

We define the mixing time to be the first time the total variation distance from stationarity drops

below ε, i.e.

tmix(ε) = min{t : d(t) ≤ ε}.
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Lemma 1.13. The function d is submultiplicative, i.e. d(s+ t) ≤ d(s)d(t) for all s, t.

Proof. Fix x and y and let (X,Y ) be the optimal coupling of P s(x, ·) and P s(y, ·), i.e.

‖P s(x, ·)− P s(y, ·)‖TV = P(X 6= Y ) . (1.1)

By the definition of total variation we have∥∥P s+t(x, ·)− P s+t(y, ·)∥∥
TV

=
1

2

∑
z

∣∣P s+t(x, z)− P s+t(y, z)∣∣ .
But by the Markov property, we also have

P s+t(x, z) = E
[
P t(X, z)

]
and P s+t(y, z) = E

[
P t(Y, z)

]
.

Substituting this above gives∥∥P s+t(x, ·)− P s+t(y, ·)∥∥
TV

=
1

2

∑
z

∣∣E[P t(X, z)]− E
[
P t(Y, z)

]∣∣
≤ E

[
1

2

∑
z

∣∣P t(X, z)− P t(Y, z)∣∣] = E

[
1(X 6= Y ) · 1

2

∑
z

∣∣P t(X, z)− P t(Y, z)∣∣]
≤ E

[
1(X 6= Y ) · d(t)

]
= P(X 6= Y ) d(t).

Maximising over x and y and using (1.1) completes the proof.

Exercise 1.14. By slightly modifying the proof above, show that

d(s+ t) ≤ d(s)d(t).

In the definition of mixing time we usually take ε = 1/4 and in this case we write tmix = tmix(1/4).

The choice of 1/4 is rather arbitrary – any number strictly smaller than 1/2 would do. Indeed, by

the submultiplicativity of d and Lemma 1.10 we have

d(`tmix(ε)) ≤ d(`tmix(ε)) ≤ d(tmix(ε))` ≤ (2ε)`.

So taking ε = 1/4 gives

d(`tmix) ≤ 2−` and tmix(ε) ≤
⌈

log2

1

ε

⌉
tmix.

Remark 1.15. By Exercise 1.14 one can actually slightly improve and get

d(`tmix) ≤ ε(2ε)`−1.
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2 Markovian coupling and other metrics

2.1 Coupling

Definition 2.1. A coupling of Markov chains with transition matrix P is a process (Xt, Yt)t so

that both X and Y are Markov chains with transition matrix P and with possibly different starting

distributions.

A Markovian coupling of P is a coupling of Markov chains which is itself a Markov chain which

also satisfies that for all x, x′, y, y′

P
(
X1 = x′

∣∣ X0 = x, Y0 = y
)

= P (x, x′) and P
(
Y1 = y′

∣∣ X0 = x, Y0 = y
)

= P (y, y′).

A coupling is called coalescent, if whenever there exists s such that Xs = Ys, then Xt = Yt for

all t ≥ s.

Remark 2.2. Any Markovian coupling can be modified so that it becomes coalescent. Simply

run the Markov chains using their Markovian coupling until they meet for the first time and then

continue them together.

All couplings used in this course will be Markovian.

Theorem 2.3. Let (X,Y ) be a Markovian coalescent coupling with X0 = x and Y0 = y. Let

τcouple = inf{t ≥ 0 : Xt = Yt}.

Then ∥∥P t(x, ·)− P t(y, ·)∥∥
TV
≤ Px,y(τcouple > t) .

Moreover, if for each pair of states (x, y), there is a Markovian coalescent coupling with τcouple the

coupling time, then

d(t) ≤ max
x,y

Px,y(τcouple > t) .

Proof. Since the coupling is Markovian we have

P t(x, x′) = Px,y
(
Xt = x′

)
and P t(y, y′) = Px,y

(
Yt = y′

)
.

So (Xt, Yt) is a coupling of P t(x, ·) and P t(y, ·), and hence we get∥∥P t(x, ·)− P t(y, ·)∥∥
TV
≤ Px,y(Xt 6= Yt) ≤ Px,y(τcouple > t) .

The final assertion of the theorem follows now from Lemma 1.10.

We now look at some examples in order to illustrate the use of coupling as a means of upper

bounding mixing times.

Notation For functions f, g we will write f(n) . g(n) if there exists a constant c > 0 such that

f(n) ≤ cg(n) for all n. We write f(n) & g(n) if g(n) . f(n). Finally, we write f(n) � g(n) if both

f(n) . g(n) and f(n) & g(n).
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The lazy version of a Markov chain with transition matrix P is the Markov chain with transition

matrix (P + I)/2, i.e. at every state it stays in place with probability 1/2 and with probability 1/2

it jumps according to P .

Random walk on Zn. Consider the integers mod n, i.e. Zn = {0, . . . , n− 1}. A simple random

walk on Zn is a Markov chain with transition probabilities P (i, (i ± 1) mod n) = 1/2. In order to

get rid of the periodicity issue, we consider the lazy version of this chain, i.e. the Markov chain

with transition matrix (P + I)/2.

Claim 2.1. The mixing time of lazy simple random walk on Zn satisfies tmix � n2.

Proof. We start with the upper bound. We are going to construct a coupling of two lazy walks X

and Y starting from x and y respectively. At each step we toss a fair coin independently of previous

tosses. If the coin comes up heads, then X makes a move (left or right with equal probability),

otherwise Y moves. If at some point they are in the same location, then they continue moving

together. Therefore, the coupling time is the time it takes for X and Y to meet under the dynamics

we defined. The clockwise distance between the two walks evolves as a simple symmetric random

walk on Z started from x− y and run until it hits 0 or n for the first time (and then gets absorbed

there). By gambler’s ruin we get

Ex,y[τcouple] = k(n− k),

where k is the clockwise distance between x and y. So using Theorem 2.3 we obtain

d(t) ≤ max
x,y∈Zn

Px,y(τcouple > t) ≤
Ex,y[τcouple]

t
≤ n2

4t
,

where we used Markov’s inequality for the second inequality. Taking t = n2 gives d(n2) ≤ 1/4, and

hence this proves the upper bound on tmix.

For the lower bound, let S be a lazy simple random walk on Z, i.e. with probability 1/4 it jumps

to the right, with 1/4 to the left and with 1/2 it stays in place. Then we can write Xt = St mod n

and by Chebyshev’s inequality

P0(Xt ∈ {dn/4e+ 1, . . . , d3n/4e}) ≤ P0(|St| > n/4) ≤ 16
Var (St)

n2
=

8t

n2
.

Taking now t = n2/32 gives P0(Xt ∈ A) ≤ 1/4, where A = {dn/4e + 1, . . . , d3n/4e}. But π(A) >

1/2, and hence we deduce

d(t) ≥ π(A)− P0(Xt ∈ A) ≥ 1/4,

which shows that tmix ≥ n2/32 and completes the proof of the lower bound.

2.1.1 Random walk on the binary tree

Consider a finite rooted tree on n vertices with the property that the root has degree two and every

other vertex has degree 3. We are interested in the mixing time of a lazy simple random walk on

this tree. In order to find an upper bound, we will construct a coupling of two chains X and Y

started from two different vertices x and y respectively. Until the first time that the two walks are

in the same level, at each step we toss a fair coin. If it comes up Heads, then we X jumps to a
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neighbour chosen uniformly at random and Y stays in place. If Tails, then we do the corresponding

thing for Y . The first time they reach the same level, we move them up or down together. Then if

we wait for the first time they have visited the root after having visited the leaves, they must have

coupled. By reducing to a biased random walk on the segment, if τ is the first time they couple,

then Ex,y[τ ] ≤ Cn for a positive constant C. Therefore, we obtain

Px,y(τ > t) ≤ Ex,y[τ ]

t
≤ Cn

t
,

and hence taking t = 4Cn shows that tmix ≤ 4Cn. In order to obtain a lower bound, we use

Exercise 7 and let A be the right half of the tree. Starting from a leaf on the left side of the tree,

the expected time to hit A is of order n. Therefore, tmix & n, thus tmix � n.

2.2 Strong stationary times

We start with an example, the top to random shuffle. Consider a deck of n cards and suppose we

shuffle it with the following method: at each time step we pick the top card and insert it in a random

location. This is a Markov chain taking values in the space of permutations of n elements Sn.

Proposition 2.4. Let X be the Markov chain corresponding to the order of the cards in the top to

random shuffle and let τtop be one step after the first time that the original bottom card arrives at

the top of the deck. Then at this time the order of the cards is uniform in Sn and the time τtop is

independent of Xτtop.

Proof. We first prove by induction on the number of steps that the set of cards under the original

bottom card is in a uniform order. Indeed, at time t = 0, the claim trivially holds. Now suppose

that it holds at time t. We show it also holds at time t + 1. There are two possibilities. Either a

card is placed under the original bottom card or not. In the second case, the order remains uniform

by the induction hypothesis. In the first case, the order is again uniform, since the new card was

inserted in a random location.

The claim we just proved shows that at time τtop the order of the cards under the original bottom

card is uniform, and hence Xτtop is in a uniform order and independent of τtop.

For the Markov chain X we have found a random time τ with the property that τ is independent

of Xτ and Xτ has the desired distribution, uniform over Sn in this case. We now show how to use

the expectation of such a time in order to bound the mixing time of a chain.

Definition 2.5. A stopping time is a random variable T with the property that {T ≤ t} is

completely determined by X0, . . . , Xt for all t and more generally by the filtration Ft to which X

is adapted.

Let X be a Markov chain with stationary distribution π. A stopping time τ is called a stationary

time (possibly depending on the starting point) if for all y we have Px(Xτ = y) = π(y).

A stationary time τ is called a strong stationary time (possibly depending on the starting point)

if Xτ is independent of τ , i.e. it satisfies

Px(Xτ = y, τ = t) = Px(τ = t)π(y) ∀ y.
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Proposition 2.6. If τ is a strong stationary time when X0 = x, then for all t∥∥P t(x, ·)− π∥∥
TV
≤ Px(τ > t) .

Definition 2.7. We define the separation distance

s(t) = max
x,y

(
1− P t(x, y)

π(y)

)
.

Lemma 2.8. For all x we have∥∥P t(x, ·)− π∥∥
TV
≤ max

x

(
1− P t(x, y)

π(y)

)
=: sx(t),

and hence d(t) ≤ s(t).

Proof. Using the definition of total variation distance we have

∥∥P t(x, ·)− π∥∥
TV

=
∑

y:P t(x,y)<π(y)

(π(y)− P t(x, y)) =
∑

y:P t(x,y)<π(y)

π(y)

(
1− P t(x, y)

π(y)

)
≤ sx(t)

and this concludes the proof.

Proof of Proposition 2.6. Using Lemma 2.8 it suffices to show

sx(t) ≤ Px(τ > t) .

For all x and y we have

1− P t(x, y)

π(y)
= 1− Px(Xt = y)

π(y)
≤ 1− Px(Xt = y, τ ≤ t)

π(y)
.

We now show that Px(Xt = y, τ ≤ t) = Px(τ ≤ t)π(y). Indeed, we have

Px(Xt = y, τ ≤ t) =
∑
s≤t

∑
z

Px(Xt = y, τ = s,Xs = z) =
∑
s≤t

∑
z

Px(τ = s,Xs = z)P t−s(z, y),

where for the last equality we used the strong Markov property at the stopping time τ . Since τ is

a strong stationary time, we now have

Px(Xt = y, τ ≤ t) =
∑
s≤t

∑
z

π(z)P t−s(z, y)Px(τ = s) = π(y)Px(τ ≤ t) ,

where for the last equality we used the stationarity of π. This concludes the proof.

Lemma 2.9. For reversible chains we have

s(2t) ≤ 1− (1− d̄(t))2.

12



Proof. Note that by reversibility we have P t(x, y)/π(y) = P t(y, x)/π(x). Therefore, we obtain

P 2t(x, y)

π(y)
=
∑
z

P t(x, z) · P
t(z, y)

π(y)
=
∑
z

P t(x, z) · P
t(y, z)

π(z)
=
∑
z

P t(x, z)P t(y, z)

π(z)2
· π(z)

≥

(∑
z

√
P t(x, z)P t(y, z)

)2

≥

(∑
z

P t(x, z) ∧ P t(y, z)

)2

=
(
1−

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

)2
,

where for the inequality we used Cauchy-Schwarz. Rearranging the above and taking the maximum

over all x and y proves the lemma.

2.3 Examples

Start with coupon collector, since it will be used for both examples.

Proposition 2.10. A company issues n different types of coupons. A collector needs all n types

to win a prize. We suppose that each coupon he acquires is equally likely each of the n types. Let τ

be the number of coupons he acquires until he obtains a full set. Then E[τ ] = n
∑n

k=1 1/k and for

any c > 0

P(τ > dn log n+ cne) ≤ e−c.

Proof. Let τi be the number of coupons he acquires in order to get i+ 1 distinct coupons when he

starts with i distinct ones. Then τi has the geometric distribution with parameter (n − i)/n. We

can then write

τ = τ0 + τ1 + . . .+ τn−1,

and hence, taking expectations proves the desired equality. Regarding the second claim, we let Ai
be the event that the i-th coupon does not appear in the first dn log n+ cne coupons drawn. Then

P(τ > dn log n+ cne) = P(∪ni=1Ai) ≤
n∑
i=1

P(Ai) .

Since the probability of not drawing coupon i in a given trial is 1−1/n and the trials are independent,

we obtain

P(Ai) =

(
1− 1

n

)dn logn+cne
.

This finally gives

P(τ > dn log n+ cne) ≤ n
(

1− 1

n

)dn logn+cne
≤ e−c

and concludes the proof.

Random walk on the hypercube

The n-dimensional hypercube is the graph whose vertex set is {0, 1}n and two vertices are joined

by an edge if they differ in exactly one coordinate. The lazy simple random walk on {0, 1}n can

be realised by choosing at every step a coordinate at random and refreshing its bit with a uniform

one.

13



Define τrefresh to be the first time that all coordinates have been picked at least once. Then this is

a strong stationary time. The time τrefresh has the same distribution as the coupon collector time.

Therefore, taking t = n log n+ cn we obtain from Proposition 2.10 that

d(t) ≤ P(τrefresh > t) ≤ e−c,

and hence by taking c large, we get that tmix ≤ n log n+ cn.

Top to random shuffle In Proposition 2.4 we showed that τtop is a strong stationary time for

the top to random shuffle. It is not hard to see that τtop has the same distribution as the coupon

collector time. Indeed, when there are k cards under the original bottom card, then at the next

step the probability that there are k + 1 cards under it is equal to (k + 1)/n. Therefore, taking

t = n log n+ cn we get

d(t) ≤ P(τtop > t) ≤ e−c,

and hence we obtain that tmix(ε) ≤ n log n+ c(ε)n for all ε ∈ (0, 1).

We will now establish a lower bound on tmix(ε). To do so, let j be an index to be determined later.

Suppose we start from the identity permutation. We define A to be the event that the original j

bottom cards retain their original relative order. Then π(A) = 1/j! and if τj is the first time the

card original j-th from the bottom makes it to the top of the deck, then similarly to the coupon

collector proof we obtain

E[τj ] ≥ n(log n− log j) and Var (τj) ≤
n2

j − 1
.

It is clear that if τj ≥ t, then the event A holds. Taking t = n log n− cn, we thus deduce

P t(id, A) ≥ P(τj ≥ t) ≥ 1− 1

j − 1

for c ≥ log j + 1 using Chebyshev’s inequality. So

d(t) ≥ P t(id, A)− π(A) ≥ 1− 2

j − 1
.

Taking j = bec−1c provided n ≥ j we get

d(t) ≥ 1− 2

ec−2 − 1
,

and hence taking c sufficiently large gives that tmix(ε) ≥ n log n− c(ε)n.

Definition 2.11. A sequence of Markov chains Xn is said to exhibit cutoff, if for all ε ∈ (0, 1)

lim
n→∞

tnmix(ε)

tnmix(1− ε)
= 1.

Equivalently, writing dn(t) for d(t) defined with respect to Xn, there is a sequence tn such that for

all δ > 0

dn((1− δ)tn)→ 1 and dn((1 + δ)tn)→ 0 as n→∞.

14



2.4 Lp distance

Instead of the total variation distance (which is equal to 1/2 the L1 norm) one can consider other

distances. We start by defining the Lp norm for p ∈ [1,∞]. Let π be a probability distribution and

f : E → R be a function. Then

‖f‖p = ‖f‖p,π =

{
(
∑

x |f(x)|pπ(x))1/p if 1 ≤ p <∞
maxy |f(y)| if p =∞.

For functions f, g we define the scalar product 〈f, g〉π =
∑

x f(x)g(x)π(x). Finally we define

qt(x, y) = P t(x, y)/π(y). When the chain is reversible, then qt(x, y) = qt(y, x). We define the Lp

distance via

dp(t) = max
x
‖qt(x, ·)− 1‖p .

Using Jensen it is easy to see that 2d(t) = d1(t) ≤ d2(t) ≤ d∞(t).

We define the Lp mixing time via

t
(p)
mix(ε) = min{t ≥ 0 : dp(t) ≤ ε}.

When p =∞, we call t
(∞)
mix (ε) the uniform mixing time.

Proposition 2.12. For reversible Markov chains we have

d∞(2t) = (d2(t))2 = max
x

P 2t(x, x)

π(x)
− 1.

Proof. By reversibility we have

P 2t(x, y)

π(y)
− 1 =

∑
z

(
P t(x, z)

π(z)
− 1

)(
P t(y, z)

π(z)
− 1

)
π(z).

Taking x = y proves the second equality of the proposition. Applying Cauchy-Schwarz we now

obtain

∣∣∣∣P 2t(x, y)

π(y)
− 1

∣∣∣∣ ≤
√√√√∑

z

(
P t(x, z)

π(z)
− 1

)2

π(z) ·
∑
z

(
P t(y, z)

π(z)
− 1

)2

π(z)

=

√(
P 2t(x, x)

π(x)
− 1

)
·
(
P 2t(y, y)

π(y)
− 1

)
.

Taking the maximum over all x and y shows that d∞(2t) ≤ (d2(t))2 and then taking x = y proves

the equality.
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3 Spectral techniques

3.1 Spectral decomposition and relaxation time

In this section we focus on reversible chains with transition matrix P and invariant distribution π.

Recall the inner product 〈·, ·〉π defined to be 〈f, g〉π =
∑

x f(x)g(x)π(x).

Theorem 3.1. Let P be reversible with respect to π. The inner product space (RE , 〈·, ·〉π) has

an orthonormal basis of real-valued eigenfunctions (fj)j≤|E| corresponding to real eigenvalues (λj)

and the eigenfunction f1 corresponding to λ1 = 1 can be taken to be the constant vector (1, . . . , 1).

Moreover, the transition matrix P t can be decomposed as

P t(x, y)

π(y)
= 1 +

|E|∑
j=2

fj(x)fj(y)λtj .

Proof. We consider the matrix A(x, y) =
√
π(x)P (x, y)/

√
π(y) which using reversibility of P is

easily seen to be symmetric. Therefore, we can apply the spectral theorem for symmetric matrices

and get the existence of an orthonormal basis (gj) corresponding to real eigenvalues. It is easy

to check that
√
π is an eigenfunction of A with eigenvalue 1. Let D be the diagonal matrix with

elements (
√
π(x)). Then A = DPD−1 and it is easy to check that fj = D−1gj are eigenfunctions

of P and 〈fj , fi〉π = 1(i = j). So we have P tfj = λtjfj and hence

P t(x, y) = (P t1y)(x) =

|E|∑
j=1

λtjfj(x)〈fj ,1y〉π =

|E|∑
j=1

λtjfj(x)fj(y)π(y).

Using that f1 = 1 and λ1 = 1 gives the desired decomposition.

Let P be a reversible matrix with respect to π. We order its eigenvalues

1 = λ1 ≥ λ2 ≥ . . . λ|E| ≥ −1.

We let λ∗ = max{|λ| : λ is an eigenvalue of P, λ 6= 1} and define γ∗ = 1 − λ∗ to be the absolute

spectral gap. The spectral gap is defined to be γ = 1− λ2.

Exercise 3.2. Check that if the chain is lazy then γ∗ = γ.

Definition 3.3. The relaxation time for a reversible Markov chain is defined to be

trel =
1

γ∗
.

For a probability measure ν we write ‖ν − π‖2 = ‖ν/π − 1‖2,π.

Theorem 3.4 (Poincaré inequality). Let P be a reversible matrix with respect to the invariant

distribution π. Then for all starting distributions ν we have

‖Pν(Xt = ·)− π‖2 ≤ (1− γ∗)t ‖ν − π‖2 ≤ e
−t/trel ‖ν − π‖2 .
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Proof. We have

‖Pν(Xt = ·)− π‖22 =
∑
y

Pν(Xt = y)2

π(y)
− 1 =

∑
y

1

π(y)

(∑
x

ν(x)Px(Xt = y)

)2

− 1.

Using the decomposition of P t(x, y) from Theorem 3.1 we obtain

∑
y

1

π(y)

(∑
x

ν(x)Px(Xt = y)

)2

=
∑
x,x′

ν(x)ν(x′)
n∑

i,j=1

λtiλ
t
jfi(x)fi(x

′)
∑
y

fi(y)fj(y)π(y)

By the orthogonality of the eigenfunctions we obtain that this last sum is equal to

∑
x,x′

ν(x)ν(x′)
n∑

i,j=1

λtiλ
t
jfi(x)fi(x

′)1(i = j) =
∑
x,x′

ν(x)ν(x′)
n∑
i=1

λ2t
i fi(x)fi(x

′)

= 1 +
∑
x,x′

ν(x)ν(x′)

n∑
i=2

λ2t
i fi(x)fi(x

′) = 1 +

n∑
i=2

λ2t
i

(∑
x

ν(x)fi(x)

)2

≤ 1 + λ2t
∗

n∑
i=2

(∑
x

ν(x)fi(x)

)2

= 1 + λ2t
∗

n∑
i=2

∑
x,x′

ν(x)ν(x′)fi(x)fi(x
′).

Using that P 0(·, ·) = I and Theorem 3.1 we deduce

n∑
i=2

fi(x)fi(x
′) =

1(x = x′)

π(x)
− 1,

and hence this finally gives

‖Pν(Xt = ·)− π‖22 ≤ λ
2t
∗

∑
x,x′

ν(x)ν(x′)
1(x = x′)

π(x)
− 1

 = λ2t
∗

(∑
x

ν(x)2

π(x)
− 1

)

= (1− γ∗)2t ‖ν − π‖22 ≤ e
−2tγ∗ ‖ν − π‖22 = e−2t/trel ‖ν − π‖22

and this concludes the proof.

If we do not upper bound the eigenvalues by the second one, then the proof above also gives the

following lemma.

Lemma 3.5. Let P be reversible with respect to π and let

1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1

be its eigenvalues and (fj) the corresponding orthonormal eigenfunctions. Then for all x we have

4
∥∥P t(x, ·)− π∥∥2

TV
≤
∥∥P t(x, ·)− π∥∥2

2
=

n∑
j=2

fj(x)2λ2t
j .

Definition 3.6. A Markov chain with transition matrix P is transitive if for all x, y in the state
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space there is a bijection ϕ = ϕ(x,y) such that ϕ(x) = y and P (z, w) = P (ϕ(z), ϕ(w)) for all z, w.

Lemma 3.7. Let P be reversible and transitive. Then for all x we have

∥∥P t(x, ·)− π∥∥2

2
=

n∑
j=2

λ2t
j .

Proof. First of all it is easy to check that the uniform distribution, i.e. π(x) = 1/n for all x, is

invariant for P . Next recall that for all x we have∥∥P t(x, ·)− π∥∥2

2
=
P 2t(x, x)

π(x)
− 1 = nP 2t(x, x)− 1.

By the definition of transitivity, it follows that the right hand side above is independent of x.

Therefore, by Lemma 3.5 we get that
∑n

j=2 fj(x)2λ2t
j is independent of x. Taking the sum over all

x and using that (fj) constitutes an orthonormal basis implies that

n∑
j=2

fj(x)2λ2t
j =

n∑
j=2

λ2t
j

and this concludes the proof.

Theorem 3.8. Let P be reversible with respect to the invariant distribution π and let πmin =

minx π(x). Then for all ε ∈ (0, 1) we have

tmix(ε) ≤ t(∞)
mix (ε) ≤ trel log

(
1

επmin

)
.

Proof. By the monotonicity of the Lp norms it suffices to prove the second inequality above. Also,

using that t
(∞)
mix (ε) ≤ 2t

(2)
mix(
√
ε), it suffices to prove that

t
(2)
mix(
√
ε) ≤ 1

2
trel log

(
1

επmin

)
. (3.1)

To this end, fix x in the state space and by the Poincaré inequality (Theorem 3.4) we have

∥∥P t(x, ·)− π∥∥
2
≤ e−t/trel ‖δx − π‖2 = e−t/trel

(
1

π(x)
− 1

)1/2

≤ e−t/trel 1√
π(x)

≤ e−t/trel 1
√
πmin

.

Taking t = trel log(1/(επmin))/2 in the above inequality shows that t
(2)
mix(
√
ε) ≤ t and thus proves (3.1)

and completes the proof of the theorem.

Theorem 3.9. Let P be a reversible matrix with respect to π. Let λ be an eigenvalue with λ 6= 1.

Then 2d(t) ≥ |λ|t. Moreover, for all ε ∈ (0, 1) we have

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
.
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Proof. Let f be the eigenfunction corresponding to the eigenvalue λ. Then, by the orthogonality

of the eigenfunctions, f is orthogonal to f1 = (1, . . . , 1) corresponding to λ1 = 1. Therefore,

Eπ[f ] = 〈f, 1〉π = 0. Using that P tf = λtf for all t ≥ 0 gives

|λtf(x)| = |P tf(x)| =

∣∣∣∣∣∑
y

(
P t(x, y)f(y)− π(y)f(y)

)∣∣∣∣∣ ≤ max
y
|f(y)| · 2d(t).

Taking now x such that |f(x)| = maxy |f(y)| shows that |λ|t ≤ 2d(t), and hence |λ|tmix(ε) ≤ 2ε,

which implies that

tmix(ε) ≥ log

(
1

2ε

)
1

log(1/|λ|)
.

Maximising over all eigenvalues λ 6= 1 and using that log x ≤ x− 1 for all x > 0 shows that

tmix(ε) ≥ log

(
1

2ε

)
· 1

log(1/λ∗)
≥ log

(
1

2ε

)
· 1

1
λ∗
− 1

= log

(
1

2ε

)
· λ∗

1− λ∗
= log

(
1

2ε

)
· (trel − 1)

and this completes the proof.

Corollary 3.10. Let P be reversible with respect to π. Then we have

d(t)1/t → λ∗ as t→∞.

Proof. Theorem 3.9 gives one direction. For the other one we use again the monotonicity of Lp

norms in p to get

d(t) ≤ d2(t) ≤ (1− γ∗)t ·
1

√
πmin

,

where the last inequality follows from the Poincaré inequality, Theorem 3.4.

Recall that a sequence of chains exhibits cutoff if for all ε ∈ (0, 1)

lim
n→∞

tnmix(ε)

tnmix(1− ε)
= 1.

A sequence of chains satisfies a weaker condition called pre-cutoff if

sup
0<ε<1/2

lim sup
n→∞

tnmix(ε)

tnmix(1− ε)
<∞.

Proposition 3.11. Let P (n) be a sequence of reversible Markov chains with mixing times t
(n)
mix and

relaxation times t
(n)
rel . If t

(n)
mix/t

(n)
rel is bounded from above, then there is no pre-cutoff.

Proof. Dividing both sides of the statement of Theorem 3.9 by t
(n)
mix we get

t
(n)
mix(ε)

t
(n)
mix

≥
t
(n)
rel − 1

t
(n)
mix

log

(
1

2ε

)
.
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Using now that t
(n)
mix/t

(n)
rel is bounded from above, we obtain that the right hand side above is lower

bounded by c1 log(1/(2ε)) for a positive constant c1. Letting ε→ 0 proves the proposition.

3.2 Examples

Lazy random walk on the cycle Zn

Consider the lazy simple random walk on Zn. We want to find the eigenfunctions and the corre-

sponding eigenvalues. Let f be an eigenfunction with eigenvalue λ. Then it must satisfy

f(x)

2
+
f(x+ 1)

4
+
f(x− 1)

4
= λf(x), (3.2)

for all x ∈ Zn where addition and subtraction above are taken mod n. Thinking of the points on

the cycle are the roots of unity, we set for k = 0, . . . , n− 1 and all x ∈ Zn

fk(x) = exp

(
2πkix

n

)
.

Then it is straightforward to check that for each k, the function fk satisfies (3.2) with

λk =
1 + cos(2πk/n)

2
.

Since for each k the function fk is an eigenfunction of a real matrix corresponding to a real eigen-

value, it follows that both its real and imaginary parts are also eigenfunctions. So let

ϕk(x) = cos

(
2πkx

n

)
.

Taking k = 0 gives (as expected) λ0 = 1 and taking k = 1 gives the second eigenvalue, which by

laziness also corresponds to the second maximum. So we get

λ∗ = λ1 =
1 + cos(2π/n)

2
= 1− π2

n2
+O(n−4).

Therefore, this implies that trel ∼ n2/π2 as n→∞.

Since trel � tmix, it follows that the lazy random walk on the cycle does not exhibit pre-cutoff.

Lazy random walk on the hypercube {0, 1}n

Recall that the lazy random walk on the hypercube can be realised by every time picking a co-

ordinate at random and refreshing its bit with a uniform {0, 1} bit. The walk on the hypercube

can be thought of as the product of n matrices each corresponding to the Markov chain on {0, 1}
with transition matrix P (x, y) = 1/2 for all x, y. The product means that every time we pick one

coordinate at random and we use the corresponding matrix to move it to the next value. So we

start by considering the case n = 1 and the walk on {0, 1} with transition matrix P (x, y) = 1/2 for

all x, y. It is straightforward to check that the eigenfunctions of this chain are g1(x) = 1 for all x

corresponding to λ = 1 and g2(x) = 1− 2x corresponding to λ = 0.

20



For x ∈ {0, 1}n we now set

f(x1, . . . , xn) =
n∏
i=1

fi(xi),

where fi is either g1 or g2 for each i. It is straightforward to check that indeed f is an eigenfunction

for the lazy random walk on {0, 1}n. Now for every subset I ⊆ {1, . . . , n} we take

fI(x1, . . . , xn) =
∏
i∈I

g2(xi).

Then this is an eigenfunction corresponding to the eigenvalue

λI =
n− |I|
n

.

It is easy to check that if I 6= J , then fI and fJ are orthogonal. Since there are in total 2n subsets

I, we get an orthonormal basis of eigenfunctions. When I = ∅, this gives the eigenvalue λ∅ = 1

and for |I| = 1 we get λ∗ = λ2 = 1− 1/n, which implies that trel = n. Note that πmin = 2−n, and

hence applying Theorem 3.8 gives

tmix(ε) ≤ n (log(1/ε) + log(2n)) . n2.

This is not a good bound, since we have already obtained a better upper bound of order n log n

using strong stationary times. However, using the full spectrum and not just the second eigenvalue

we will see now how we can get the correct order as well as the correct constant.

It is clear by symmetry that the lazy random walk on the hypercube is a transitive chain. Therefore,

we can use Lemma 3.7 to get for all x

4
∥∥P t(x, ·)− π∥∥2

TV
≤
∥∥P t(x, ·)− π∥∥2

2
=

∑
∅6=I⊆{1,...,n}

λ2t
I =

n∑
k=1

(
n

k

)
·
(
n− k
n

)2t

≤
n∑
k=1

(
n

k

)
e−2kt/n =

(
1 + e−2t/n

)n
− 1.

Taking now t = n log n/2 + cn gives

4
∥∥P t(x, ·)− π∥∥2

TV
≤ ee−2c − 1,

and hence taking c sufficiently large (independent of n) shows that the right hand side above can

be made arbitrarily small, thus showing that for all ε ∈ (0, 1) we have

tmix(ε) ≤ 1

2
n log n+ c(ε)n.

We now prove a matching (to the leading order and constant) lower bound.
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Suppose we start with X0 = (0, . . . , 0). For x = (x1, . . . , xn) we define

Φ(x1, . . . , xn) =

n∑
i=1

(1− 2xi).

Then Φ(Xt) satisfies

E[Φ(Xt+1) | X0, . . . , Xt] =

(
1− 1

n

)
Φ(Xt), (3.3)

and hence using that Φ(X0) = n this immediately gives

E[Φ(Xt)] = n

(
1− 1

n

)t
.

Now letting t→∞ shows that Eπ[Φ(X)] = 0, which also follows from the fact that each coordinate

is equally likely to be either 0 or 1. Since changing each coordinate changes the value of Φ by ±2,

this gives

E
[
(Φ(Xt+1)− Φ(Xt))

2
∣∣ X0, . . . , Xt

]
= 2.

Therefore, combining this with (3.3) and using again that Φ(X0) = n imply

E
[
Φ(Xt)

2
]

= n+ n(n− 1)

(
1− 2

n

)t
.

Therefore, this gives that

Var (Φ(Xt)) = n+ n(n− 1)

(
1− 2

n

)t
− n2

(
1− 1

n

)2t

≤ n,

since 1− 2/n ≤ (1− 1/n)2. Notice that when X ∼ π, then Varπ (Φ(X)) = n. So we now get

d(t) ≥ P1

(
Φ(Xt) ≥

1

2
n

(
1− 1

n

)t)
− Pπ

(
Φ(X) ≥ 1

2
n

(
1− 1

n

)t)
≥ 1− 8

n
(
1− 1

n

)2t ,
where for the last inequality we used Chebyshev. Taking now t = 1/2n log n − cn for a suitable

constant c shows that the right hand side above can be made arbitrarily close to 1, hence showing

that for all ε ∈ (0, 1) we have

tmix(ε) ≥ 1

2
n log n− c(ε)n

and thus concluding the proof of the lower bound.

The previous technique generalises to any eigenfunction and gives lower bounds on mixing.

Theorem 3.12 (Wilson’s method). Let X be an irreducible and aperiodic Markov chain and let Φ

be an eigenfunction corresponding to eigenvalue λ with 1/2 < λ < 1. Suppose there exists R > 0

such that

Ex
[
(Φ(X1)− Φ(X0))2

]
≤ R ∀ x.
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Then for all ε ∈ (0, 1) and all x we have

tmix(ε) ≥ 1

2 log(1/λ)

(
log

(
(1− λ)Φ(x)2

2R

)
+ log

(
1− ε
ε

))
.

3.3 Hitting time bound

For a Markov chain X and a state x we let

τx = inf{t ≥ 0 : Xt = x}

be the first hitting time of x. We also define thit = maxx,y Ex[τy].

Theorem 3.13. Let P be a lazy reversible Markov chain with invariant distribution π. Then

tmix ≤ 4thit.

First proof. Recall the definition of the separation distance

s(t) = max
x,y

(
1− P t(x, y)

π(y)

)
and the separation mixing time is defined to be tsep = min{t ≥ 0 : s(t) ≤ 1/4}. We showed in

Lemma 2.8 that d(t) ≤ s(t) for all t. So it suffices to prove the bound on the separation mixing.

We now have

P t(x, y)

π(y)
≥ Px(τy ≤ t) min

s

P s(y, y)

π(y)
. (3.4)

Since the chain was assumed to be lazy, it follows that for all times t and all states x we have

P t(x, x) ≥ π(x). Therefore, this shows that the right hand side of (3.4) is larger than Px(τy ≤ t).
So this shows that

s(t) ≤ max
x,y

Px(τy > t) .

Taking now t = 4thit gives that s(t) ≤ 1/4 and finishes the proof.

Second proof. Recall from the example sheet that if P is aperiodic and irreducible, then

π(x)Eπ[τx] =

∞∑
t=0

(P t(x, x)− π(x)).

Since the chain is lazy and reversible, by the spectral theorem it is easy to see that P t(x, x) is

decreasing in t and converges to π(x) as t→∞. Therefore, we can lower bound the sum above

π(x)Eπ[τx] ≥
T∑
t=0

(P t(x, x)− π(x)) ≥ T (P T (x, x)− π(x)),
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where in the last inequality we used again the decreasing property. Dividing through by Tπ(x)

gives

Eπ[τx]

T
≥ P T (x, x)

π(x)
− 1.

Recall from Proposition 2.12 that

d∞(2t) = max
x

P 2t(x, x)

π(x)
− 1.

So we obtain

d∞(2T ) = max
x

(
P 2T (x, x)

π(x)
− 1

)
≤ maxx Eπ[τx]

2T
.

Taking now T = 2 maxx Eπ[τx], shows that t
(∞)
mix (1

4) ≤ 4 maxx Eπ[τx] and this concludes the second

proof.

Remark 3.14. Note that the reversibility assumption in Theorem 3.13 is essential. Consider a

biased random walk on Zn, for which tmix � n2 while thit � n.

4 Dirichlet form and the bottleneck ratio

Recall the definition of the inner product: for f, g : E → R two functions we define

〈f, g〉π =
∑
x

f(x)g(x)π(x).

Definition 4.1. Let P be a transition matrix with invariant distribution π. The Dirichlet form

associated to P and π is defined for all f, g : E → R

E(f, g) = 〈(I − P )f, g〉π.

Expanding in the definition of E we get

E(f, g) =
∑
x

(I − P )f(x)g(x)π(x) =
∑
x,y

(f(x)− f(y))g(x)P (x, y)π(x).

When P is reversible with respect to π, then the right hand side above is also equal to

E(f, g) =
∑
x,y

(f(y)− f(x))g(y)P (x, y)π(x).

Therefore, in the reversible case we get

E(f, g) =
1

2

∑
x,y

(f(x)− f(y))(g(x)− g(y))π(x)P (x, y).

When f = g we simply write E(f) = E(f, f).
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Corollary 4.2. Let P be a reversible matrix with respect to π. Then for all f : E → R we have

E(f) =
1

2

∑
x,y

(f(x)− f(y))2π(x)P (x, y).

Theorem 4.3. Let P be a reversible matrix with respect to π. Then the spectral gap γ = 1 − λ2

satisfies

γ = min
f : ‖f‖2=1,Eπ[f ]=0

E(f) = min
f : f 6≡0
Eπ[f ]=0

E(f)

‖f‖22
= min

f : Varπ(f)6=0

E(f)

Varπ (f)
.

Proof. Using that E(f + c) = E(f) for any constant c ∈ R and ‖f − Eπ[f ]‖22 = Varπ (f) gives the

third equality. Also taking f̃ = f(x)/ ‖f‖2 gives the second one. So we now prove the first equality.

Let (fj) be an orthonormal basis for the space (RE , 〈·, ·〉π). Then any function f with Eπ[f ] = 0

can be expressed as

f =
n∑
j=2

〈f, fj〉πfj ,

and hence the Dirichlet form is equal to

E(f) = 〈(I − P )f, f〉π =

n∑
j=2

(1− λj)〈f, fj〉2π ≥ (1− λ2)

n∑
j=2

〈f, fj〉2π.

Taking f with ‖f‖2 = 1, gives that the last sum appearing above is equal to 1, and hence proves

that

min
f : ‖f‖2=1,Eπ[f ]=0

E(f) ≥ 1− λ2.

Finally, taking f = f2 we get E(f2) = 1− λ2 and this concludes the proof.

Lemma 4.4. Let P and P̃ be two transition matrices reversible with respect to π and π̃ respectively.

Suppose that there exists a positive A such that Ẽ(f) ≤ AE(f) for all functions f : E → R. Let γ

and γ̃ be the spectral gaps of P and P̃ respectively. Then they satisfy

γ̃ ≤
(

max
x

π(x)

π̃(x)

)
Aγ.

Proof. From Theorem 4.3 and the assumption we have

γ̃ = min
f not constant

Ẽ(f)

Varπ̃ (f)
≤ A · min

f not constant

E(f)

Varπ̃ (f)
. (4.1)

Since the variance of a random variable X is the minimum of E(X − a)2 over all a ∈ R, it follows

that

Varπ (f) = Eπ
[
(f − Eπ[f ])2

]
≤ Eπ

[
(f − Eπ̃[f ])2

]
=
∑
x

π(x)(f(x)− Eπ̃[f ])2

=
∑
x

π(x)

π̃(x)
π̃(x)(f(x)− Eπ̃[f ])2 ≤

(
max
x

π(x)

π̃(x)

)
·Varπ̃ (f) .
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Substituting this into (4.1) finishes the proof.

4.1 Canonical paths

Suppose that for each x and y in the state space we choose an E-“path” Γxy = (e0, e1, . . . , ek) with

e0 = (x, x1) and ek = (xk−1, y) with the property that P (xi, xi+1) > 0 for all i ≤ k − 1. We write

|Γxy| = k for the length of the path, i.e. the number of edges used. We call e = (x, y) an edge if

P (x, y) > 0 and we write Q(e) = π(x)P (x, y). We also let E = {(x, y) : P (x, y) > 0}.

Theorem 4.5. Let P be a reversible transition matrix with invariant distribution π. Define the

congestion ratio

B = max
e∈E

 1

Q(e)

∑
x,y:e∈Γxy

|Γxy|π(x)π(y)

 ,

where e ∈ Γxy means there exists i such that e = (xi, xi+1) with xi, xi+1 consecutive vertices on Γxy.

Then the spectral gap γ satisfies γ ≥ 1/B.

Proof. For an edge e = (x, y) we write ∇f(e) = f(x) − f(y). Let X and Y be independent and

both distributed according to π. Then

Varπ (f) =
E
[
(f(X)− f(Y ))2

]
2

=
1

2

∑
x,y

(f(x)− f(y))2π(x)π(y)

=
1

2

∑
x,y

 ∑
e∈Γxy

∇f(e)

2

π(x)π(y) ≤ 1

2

∑
x,y

|Γxy|
∑
e∈Γxy

(∇f(e))2π(x)π(y)

=
1

2

∑
e

Q(e)(∇f(e))2 · 1

Q(e)

∑
x,y:e∈Γxy

|Γxy|π(x)π(y) ≤ E(f)B,

where for the inequality we used Cauchy-Schwartz. Using Theorem 4.3 completes the proof.

Claim 4.1. Let X be a lazy simple random walk on the box [1, n]d ∩ Zd with reflection at the

boundary. There exists c > 0 such that trel ≤ c(dn)2.

Proof. We describe the choice of path Γxy in two dimensions. For each x and y we take Γxy to

be the path that goes first horizontally and then vertically. Then for a given edge e the number

of x, y with the property that e ∈ Γxy is at most nd+1. Also the invariant distribution satisfies

π(x) ≤ c/nd and Q(e) � (dnd)−1. We bound the quantity B from Theorem 4.5 by

B . n1−dd2nd+1 = d2n2

and this concludes the proof.

4.2 Comparison technique

The following is taken from Berestycki’s notes.
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Theorem 4.6. Let P be a reversible matrix with respect to the invariant distribution π and let λj
be its eigenvalues with 1 = λ1 ≥ λ2 ≥ . . . ≥ λn. The for all j ∈ {1, . . . , n} we have

1− λj = max
ϕ1,...,ϕj−1

min{E(f) : ‖f‖2 = 1, f ⊥ ϕ1, . . . , ϕj−1}.

Proof. Let (fj) be the eigenfunctions corresponding to the eigenvalues (λj). Let ϕ1, . . . , ϕj−1 be

arbitrary functions. Consider W = span(ϕ1, . . . , ϕj−1)⊥. Then dim(W ) ≥ n − j + 1, and hence

W ∩ span(f1, . . . , fj) 6= ∅. So there exists g in the intersection. By normalising we can assume that

‖g‖2 = 1. Let g =
∑j

i=1 ajfj . Then
∑

j a
2
j = 1 and we have

E(g) = 〈(I − P )g, g〉π =

〈
j∑
i=1

ai(1− λi)fi,
j∑
i=1

aifi

〉
π

=

j∑
i=1

a2
i (1− λi) ≤ 1− λj .

Finally taking ϕi = fi for all i ≤ j − 1 gives the equality.

Corollary 4.7. Let P and P̃ be two transition matrices reversible with respect to the same invariant

distribution π. Let E and Ẽ be their Dirichlet forms and (λi)i and (λ̃)i their respective eigenvalues.

If there exists a positive constant A such that for all f : E → R we have Ẽ(f) ≤ AE(f), then

1− λ̃j ≤ A(1− λj) for all j.

Theorem 4.8. Let P and P̃ be two transition matrices reversible with respect to the invariant

distributions π and π̃ respectively. Suppose that for each (x, y) ∈ Ẽ we pick a path Γxy in E and

we set

B = max
e∈E

 1

Q(e)

∑
x,y:e∈Γxy

Q̃(x, y)|Γxy|

 .

Then for all f we have Ẽ(f) ≤ BE(f).

Proof. This proof is very similar to the proof of Theorem 4.5. We have

2Ẽ(f) =
∑
(x,y)

Q̃(x, y)(f(x)− f(y))2 =
∑
(x,y)

Q̃(x, y)

 ∑
e∈Γxy

∇f(e)

2

≤
∑
x,y

Q̃(x, y)|Γxy|
∑
e∈Γxy

(∇f(e))2 =
∑
e

Q(e)(∇f(e))2 · 1

Q(e)

∑
x,y:e∈Γxy

Q̃(x, y)|Γxy|

≤ 2E(f)B,

where for the first inequality we used Cauchy-Schwarz.

4.3 Bottleneck ratio

As before, we write Q(x, y) = π(x)P (x, y) for any two states x, y and we define

Q(A,B) =
∑
x∈A

∑
y∈B

Q(x, y).
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Definition 4.9. The bottleneck ratio is defined to be

Φ∗ = min
S:π(S)≤1/2

Q(S, Sc)

π(S)
.

Theorem 4.10. For any irreducible transition matrix P we have

tmix = tmix(1/4) ≥ 1

4Φ∗
.

Proof. Let A be such that π(A) ≤ 1/2 and Q(A,Ac)/π(A) = Φ∗. Then we have

Pπ(X0 ∈ A,Xt ∈ Ac) ≤
t∑
i=1

Pπ(Xi ∈ A,Xi+1 ∈ Ac) = tPπ(X0 ∈ A,X1 ∈ Ac) = tQ(A,Ac).

Dividing through by π(A) we obtain

PπA(Xt ∈ Ac) ≤ t
Q(A,Ac)

π(A)
= tΦ∗.

Taking now t = (4Φ∗)
−1 gives PπA(Xt ∈ Ac) ≤ 1/4, and therefore,

d(t) ≥ π(Ac)− Pπ|A(Xt ∈ Ac) ≥
1

2
− 1

4
=

1

4

which completes the proof.

Theorem 4.11 (Jerrum and Sinclair, Lawler and Sokal). Let P be a reversible transition matrix

with respect to the invariant distribution π. Let γ be the spectral gap. Then we have

Φ2
∗

2
≤ γ ≤ 2Φ∗.

Proof. We start with the easy direction that is the upper bound. Using the variational character-

isation of γ from Theorem 4.3 we get

γ = min
f 6=0,Eπ[f ]=0

E(f, f)

‖f‖22
= min

f 6=0,Eπ[f ]=0

∑
x,y(f(x)− f(y))2Q(x, y)∑
x,y π(x)π(y)(f(x)− f(y))2

.

Let S be a set with π(S) ≤ 1/2. Taking now f(x) = −π(Sc) for x ∈ S and f(x) = π(S) for x ∈ S,

we obtain

γ ≤ 2Q(S, Sc)

2π(S)π(Sc)
≤ 2Q(S, Sc)

π(S)
.

Taking the minimum over all sets S with π(S) ≤ 1/2 proves the upper bound.

We next turn to the lower bound. The proof will consist of three steps.

1st step Let f2 be the eigenfunction corresponding to λ2. Suppose without loss of generality that

π(f2 > 0) ≤ 1/2, otherwise consider the function −f2. Let f = max(f2, 0). We claim that

(I − P )ψ(x) ≤ γψ(x). (4.2)
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Indeed, if f(x) = 0, then this is obvious, since f ≥ 0. If f(x) > 0, then f(x) = f2(x) and

(I − P )f(x) = f2(x)− Pf(x) ≤ f2(x)− Pf2(x) = γf2(x) = γf(x),

where the inequality follows since f ≥ f2. Using that f ≥ 0 and (4.2) give

γ ≥ E(f, f)

‖f‖22
. (4.3)

2nd step For any non-negative function ψ define S(ψ) = {x : ψ(x) > 0} and

h(ψ) = inf

{
Q(S, Sc)

π(S)
: ∅ 6= S ⊆ S(ψ)

}
.

In this step we show that for any function ψ ≥ 0

E(ψ,ψ) ≥ h(ψ)

2
‖ψ‖22 . (4.4)

Fix ψ ≥ 0 and for every t > 0 define St = {x : ψ(x) > t}. Then by the definition of h(ψ) for all t

such that St 6= ∅ we have

π(St)h(ψ) ≤ Q(St, S
c
t ) = Q(Sct , St)

∑
ψ(x)≤t<ψ(y)

Q(x, y).

Multiplying both sides by 2t and integrating from 0 to ∞ we obtain

h(ψ)

∫ ∞
0

2tπ({x : ψ(x) > t}) dt ≤
∑

ψ(x)<ψ(y)

∫ ψ(y)

ψ(x)
2tQ(x, y) dt =

∑
ψ(x)<ψ(y)

(ψ(y)2 − ψ(x)2)Q(x, y)

=
1

2

∑
x,y

|ψ(x)2 − ψ(y)2|Q(x, y) ≤ 1

2

(∑
x,y

(ψ(x)− ψ(y))2Q(x, y)

) 1
2

·

(∑
x,y

(ψ(x) + ψ(y))2Q(x, y)

) 1
2

≤ 1

2

√
2E(ψ) · 2 ‖ψ‖2 =

√
2E(ψ) ‖ψ‖2 ,

where for the inequality on the second line we used Cauchy Schwarz and for the final inequality we

used (a + b)2 ≤ 2(a2 + b2). The left hand side on the first line above is equal to h(ψ) ‖ψ‖22. Thus

rearranging proves (4.4) and completes the proof the second step.

3rd step Since we assumed π(f2 > 0) ≤ 1/2, using the definition of the bottleneck ratio and the

definition of h(f) we deduce

h(f) ≥ Φ∗.

This now combined with (4.3) and (4.4) completes the proof of the theorem.

Remark 4.12. The bounds in Theorem 4.11 are the best one could hope for. Indeed, both bounds

are achieved.

The lower bound is achieved for the lazy simple random walk on the cycle Zn. Indeed, in Section 3.2

it was proved that trel ∼ n2/π2 as n→∞. It is easy to check that in this case Φ∗ � 1/n.
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The upper bound is achieved by the lazy simple random walk on the hypercube. Indeed, if we

consider the set

A = {x = (x1, . . . , xn) ∈ {0, 1}n : x1 = 0},

then π(A) = 1/2 and Φ(A) = 1/(2n), which shows that Φ∗ ≤ 1/(2n). We proved in Section 3.2

that γ = 1/n, and hence Φ∗ ≥ 1/(2n), showing that Φ∗ = 1/(2n), and hence the upper bound is

sharp in this case.

4.4 Expander graphs

Definition 4.13. A sequence of graphsGn = (Vn, En) is called a (d, α)-expander family if limn→∞ |Vn| = ∞,

for each n the graph Gn is d-regular and the bottleneck ratios Φ∗(Gn) ≥ α for all n.

Proposition 4.14. Let Gn be a (d, α)-expander family. Then the mixing time of lazy simple

random walk on Gn satisfies tmix = O(log |V (Gn)|).

Proof. Applying Theorem 4.11 we get that γ ≥ α2/2, and hence the upper bound follows from

Theorem 3.8.

Claim 4.2. Expander graphs of bounded degree have the fastest mixing time (up to constants)

among all regular graphs.

Proof. It is immediate that the diameter of an expander graph of bounded degree is at least (up to

constants) log |V (Gn)|. The claim then follows in view of the diameter lower bound on the mixing

time.

The definition of expanders does not make it clear why such graphs actually exist! Here we will

show that a random 3-regular graph is an expander with high probability. Thus an expander exists!

Theorem 4.15. There exists a random graph with P(Φ∗ > c) = 1 − o(1) as n → ∞, where c is a

positive constant.

Proof. Here we describe Pinsker’s method. Let A = {a1, . . . , an} and B = {b1, . . . , bn}. We will

construct a bipartite graph between A and B. Let σ1 and σ2 be two independent permutations of

{1, . . . , n}. For every i we place three edges

Ei =
{

(ai, bi), (ai, bσ1(i)), (ai, bσ2(i))
}
.

We now claim that the resulting graph is an expander with high probability. We first prove that

for any subset S of A with |S| = k ≤ n/2 the number of neighbours N(S) of S satisfies for δ

sufficiently small

P(N(S) ≤ (1 + δ)k) = o(1) as n→∞.

Indeed, |N(S)| is at least k. We now want to find the probability that there are less than δk surplus

vertices. To do this, we use a union bound over all possible sets of δk vertices and multiply it by
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the probability that σ1 and σ2 fall within the specified set. So we have

P(N(S) ≤ (1 + δ)k) ≤
(
n

δk

)((1+δ)k
δk

)2(
n
k

)2 .

Using a union bound again we obtain

P(∃S ⊆ Q : |S| ≤ n/2 and N(S) ≤ (1 + δ)|S|) ≤
n/2∑
k=1

(
n

k

)(
n

δk

)((1+δ)k
δk

)2(
n
k

)2 .

It is now a calculus problem to show that for δ sufficiently small the quantity above tends to 0

as n→∞.

So we showed that all subsets S ⊆ A of size k ≤ n/2 have at least (1 + δ)k neighbours with high

probability. Similarly, the same result holds for all subsets of B. Using this, we will now show that

Φ∗ > δ/2.

So we now work on the high probability event above. Let S ⊆ A ∪ B of size |S| ≤ n. We write

A′ = S ∩A and B′ = S ∩B. Wlog suppose that |A′| ≥ |B′|. Then this implies that |A′| ≥ |S|/2.

If |A′| ≤ n/2, then by the assumption on all subsets of A of size ≤ n/2 we get that A′ will have

at least (1 + δ)|A′| neighbours in B. Since |B′| ≤ |S|/2 ≤ |A′|, it follows that A′ will have al least

δ|S|/2 neighbours in B \B′. These must be edges connecting S to Sc.

If |A′| > n/2, then take a subset A′′ such that |A′′| = dn/2e. Then again, since |B′| ≤ n/2, there

will be at least δ|S|/2 neighbours in B \B′ and the corresponding edges will connect S to Sc.

Therefore, in either case the bottleneck ratio is lower bounded by δ/2.

The graph produced by Pinsker’s method is a multigraph. The expected number of triple edges is

1/n and the expected number of double edges is at most 2. Therefore, with probability bounded

away from 0, the graph Gn will have at most 3 double edges and no triple edges. We can now

subdivide every double edge and create a 3 regular graph. It is easy to check that the bottleneck

ratio will be decreased by a multiplicative constant.

5 Path coupling

Suppose we have a Markov chain with values in a space E which is endowed with a metric ρ

satisfying ρ(x, y) ≥ 1(x 6= y).

Suppose that for all states x and y, there exists a coupling of P (x, ·) and P (y, ·) that contracts the

distance in the sense

Ex,y[ρ(X1, Y1)] ≤ e−αρ(x, y).

Define the diameter of E to be diam(E) = maxx,y ρ(x, y). Iterating the above inequality we get

that for all t

Ex,y[ρ(Xt, Yt)] ≤ e−αtdiam(E).
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This now gives a bound on the total variation mixing, since∥∥P t(x, ·)− P t(y, ·)∥∥
TV
≤ Px,y(Xt 6= Yt) ≤ Ex,y[ρ(Xt, Yt)] ≤ e−αtdiam(E).

Therefore,

tmix(ε) ≤ 1

α
(log(diam(E)) + log(1/ε)) .

In this section, we are going to see that when ρ is a path metric, to be defined below, then it suffices

to check the contraction property only for neighbouring pairs x and y.

5.1 Transportation metric

The first step is to lift the metric on E to a metric between probability distributions on E. We

define the transportation metric between the probability measures µ and ν

ρK(µ, ν) = inf{E[ρ(X,Y )] : (X,Y ) is a coupling of µ and ν}. (5.1)

We note that if µ = δx and ν = δy, then ρK(µ, ν) = ρ(x, y) and if ρ(x, y) = 1(x 6= y), then

ρK(µ, ν) = ‖µ− ν‖TV.

Lemma 5.1. There exists a coupling q∗ of µ and ν such that

ρK(µ, ν) =
∑

(x,y)∈E×E

q∗(x, y)ρ(x, y).

The coupling q∗ is called the optimal ρ-coupling of µ and ν.

Proof. We can think of all the couplings q of µ and ν as vectors (q(x, y))(x,y) with
∑

y q(x, y) = µ(x)

and
∑

x q(x, y) = ν(y). Therefore, the space of all couplings is a compact subset of the |E|2 − 1

dimensional simplex. The function

q 7→
∑
(x,y)

ρ(x, y)q(x, y)

is continuous on this set, and hence there exists q∗ where the minimum is attained and we have∑
(x,y)

ρ(x, y)q∗(x, y) = ρK(µ, ν).

This concludes the proof.

Lemma 5.2. The function ρK defines a metric on the space of probability distributions on E.

Proof. It is obvious that ρK(µ, ν) ≥ 0 and symmetric. Also, if ρK(µ, ν) = 0, then this means that∑
(x,y)

ρ(x, y)q∗(x, y) = 0,
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which implies that for all (x, y) for which ρ(x, y) > 0, then q∗(x, y) = 0. So q∗ is supported on the

diagonal {(x, x) : x ∈ E}. This immediately gives now that µ = ν.

We now prove the triangle inequality. Let µ, ν, η be three probability distributions. We will show

ρK(µ, η) ≤ ρK(µ, ν) + ρK(ν, η). (5.2)

Let p(x, y) be the optimal ρ-coupling of µ and ν and let q(y, z) be the optimal ρ-coupling of ν

and η. Define now

r(x, y, z) =
p(x, y)q(y, z)

ν(y)
.

Then this is a coupling of µ, ν, η and if (X,Y, Z) ∼ r, then (X,Z) is a coupling of µ and η. By the

triangle inequality for the metric ρ we get

E[ρ(X,Z)] ≤ E[ρ(X,Y )] + E[ρ(Y,Z)] = ρK(µ, ν) + ρK(ν, η).

Since (X,Z) is a coupling of µ and η this proves (5.2).

5.2 Path metric

Suppose that the Markov chain takes values in the vertex set of a graph G which is endowed with a

length function defined on the edges of the graph. Note, however, that the transition matrix of the

Markov chain does not have to obey the graph structure. The length function ` satisfies `(x, y) ≥ 1

for all edges (x, y). If x0, . . . , xr is a path, then its length is defined to be
∑r−1

i=0 `(xi, xi+1). We now

define the path metric

ρ(x, y) = min{length of ξ : ξ is a path from x to y}.

By the assumption on `, we get ρ(x, y) ≥ 1(x 6= y), so this gives

P(X 6= Y ) ≤ E[ρ(X,Y )] ,

and hence taking the minimum over all couplings (X,Y ) of µ and ν we obtain

‖µ− ν‖TV ≤ ρK(µ, ν).

Theorem 5.3. [Bubley and Dyer (1997)] Suppose that X takes values in the vertex set V of a

graph G with length function ` and let ρ be the corresponding path metric. Suppose that for all

edges (x, y) there exists a coupling (X1, Y1) of P (x, ·) and P (y, ·) such that

Ex,y[ρ(X,Y )] ≤ e−αρ(x, y).

Then for any probability measures µ and ν we have

ρK(µP, νP ) ≤ e−αρK(µ, ν).

In particular,

d(t) ≤ e−αtdiam(V ),

33



where diam(V ) = maxx,y ρ(x, y).

Proof. We first establish the inequality ρK(µP, νP ) ≤ e−αρK(µ, ν) for µ = δx and ν = δy. Let

x = x0, x1, . . . , xk = y be the path from x to y of the shortest length. Then by the triangle

inequality for the transportation metric we get

ρK(P (x, ·), P (y, ·)) ≤
k−1∑
i=0

ρK(P (xi, ·), P (xi+1, ·)) ≤ e−α
k−1∑
i=0

ρ(xi, xi+1)

≤ e−α
k−1∑
i=0

`(xi, xi+1) = e−αρ(x, y),

which proves it in this case.

For general measures µ and ν, let (X,Y ) be an optimal ρ-coupling of µ and ν. Given (X,Y ) = (x, y),

generate (X ′, Y ′) using an optimal ρ-coupling of P (x, ·) and P (y, ·). Then (X ′, Y ′) is a coupling of

µP and νP . We then have

ρK(µP, νP ) ≤ E
[
ρ(X ′, Y ′)

]
=
∑
(x,y)

P((X,Y ) = (x, y))E
[
ρ(X ′, Y ′)

∣∣ (X,Y ) = (x, y)
]

=
∑
(x,y)

P((X,Y ) = (x, y)) · ρK(P (x, ·), P (y, ·)) ≤ e−α
∑
(x,y)

P((X,Y ) = (x, y)) ρ(x, y)

= e−αE[ρ(X,Y )] = e−αρK(µ, ν),

where the last equality follows from the fact that (X,Y ) is an optimal ρ-coupling of µ and ν.

Iterating this inequality we obtain that for all t

ρK(µP t, νP t) ≤ e−αtρK(µ, ν) ≤ e−αtdiam(V ).

Taking now µ = δx and ν = π, gives the second inequality of the theorem.

5.3 Applications

Colourings Let G = (V,E) be a graph. We consider the set of all proper colourings of G, i.e. the

set

X = {x ∈ {1, . . . , q}V : x(v) 6= x(w) ∀ (v, w) ∈ E}.

We want to sample a proper colouring uniformly at random from X . We use Glauber dynamics for

sampling which work as follows: choose a vertex w of V uniformly at random and update the colour

at w by choosing a colour at random from the set of colours not taken by any of its neighbours.

It is easy to check that this Markov chain is reversible with respect to the uniform distribution on

the set X .

Theorem 5.4. Let G be a graph on n vertices with maximal degree ∆ and let q > 2∆. Then the

Glauber dynamics chain has mixing time

tmix(ε) ≤
⌈(

q −∆

q − 2∆

)
n(log n− log ε)

⌉
.
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Proof. Let x and y be two proper colourings of the graph. Then we define their distance to be

ρ(x, y) =
∑

v 1(x(v) 6= y(v)), i.e. it is given by the number of vertices where they differ. For a

vertex v in V we write x(v) for the colour of v in the configuration x ∈ X . We also write Av(x) for

the set of allowed colours for v, i.e. the set of colours not present in any of the neighbours of v.

We define a coupling for (X1, Y1) when X0 = x and Y0 = y with ρ(x, y) = 1. Let v be the vertex

where x and y differ. We pick the same uniform vertex w in both configurations. If w is not a

neighbour of v, then we update both configurations in the same way, since all such w’s have the

same allowed colours in both configurations. If w ∼ v, then suppose without loss of generality that

|Aw(x)| ≤ |Aw(y)|. We then pick a colour U uniformly at random from Aw(y). If U 6= x(v), then

we update x(w) to U . If, however U = x(v), then we consider two cases: if |Aw(x)| = |Aw(y)|,
then we set x(w) = y(v). If |Aw(x)| < |Aw(y)| (in which case we have |Aw(y)| = |Aw(x)|+ 1), then

we update x(w) to a uniform colour from Aw(x). It is straightforward to then check that x(w) is

updated to a uniform colour from Aw(x).

We now need to calculate Ex,y[ρ(X1, Y1)]. We notice that the distance increases to 2 when we pick

a neighbour of v and it is updated differently in both configurations. If we pick v, then the distance

goes down to 0, while picking any other vertex other than v or a neighbour of v, results in the

distance remaining equal to 1. Putting all things together we obtain

Ex,y[ρ(X1, Y1)] = 2 · deg v

n
· 1

|Aw(y)|
+ 1− 1

n
− deg v

n
· 1

|Aw(y)|
= 1− 1

n
+

deg v

n
· 1

|Aw(y)|
.

Using the bound |Aw(y)| ≥ q −∆ and deg v ≤ ∆, we immediately get

Ex,y[ρ(X1, Y1)] ≤ 1− 1

n
+

∆

n
· 1

q −∆
= 1− 1

n

(
1− ∆

q −∆

)
≤ exp (−α(q,∆)/n) ,

where α = ∆/(q−∆), which is in (0, 1) by the assumption q > 2∆. Theorem 5.3 together with the

fact that diam(X ) = n completes the proof.

Approximate counting colourings

Theorem 5.5 (Jerrum and Sinclair). Let G be a graph on n vertices with maximal degree ∆

satisfying q > 2∆. Then there exists a random variable W which can be simulated by running

n

⌈
n log n+ n log(6eqn/ε)

1− ∆
q−∆

⌉⌈
27qn

ηε2

⌉
Glauber updates and it satisfies

P
(
(1− ε)|X |−1 ≤W ≤ (1 + ε)|X |−1

)
≥ 1− η.

The idea of the proof is to define a sequence of sets of proper colourings, Xk, run Glauber dynamics

on them, and approximate |Xk−1|/|Xk|. Then take the product.

Fix an ordering of the vertices of G = {v1, . . . , vn} and fix a proper colouring x0. Define

Xk = {x ∈ X : x(vj) = x0(vj) ∀ j > k}.
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In the proof of Theorem 5.5 we will need to use that |Xk−1|/|Xk| is not too small.

Lemma 5.6. Let q > 2∆. Then for all k we have

|Xk−1|
|Xk|

≥ 1

eq
.

Proof. Suppose that vk has r neighbours in the set {v1, . . . , vk−1}. Start with the uniform dis-

tribution on Xk and update in the order given by the ordering of the graph the colours at the r

neighbours of vk and last the colour at vk as follows: for each vertex to be updated choose a colour

at random from the set of allowed colours. Then this clearly preserves the uniform distribution

on Xk. Let Y be the configuration of colours at the end of this process. Then Y is uniform on Xk.
Let A be the event that at the end of this process the colour at each of the r neighbours is different

to x0(vk) and the colour of vk is updated to x0(vk). Then Y ∈ Xk−1 if and only if the event A

occurs. So we have

|Xk−1|
|Xk|

= P(Y ∈ Xk−1) = P(A) ≥
(

1− 1

q −∆

)r 1

q
≥
(

1− 1

q −∆

)∆ 1

q

≥
(

∆

∆ + 1

)∆ 1

q
≥ 1

eq
,

where for the first inequality we used that the set of allowed colours for every vertex is at least

q −∆ and for the penultimate inequality we used the assumption that q ≥ 2∆ + 1.

Proof of Theorem 5.5. First notice that |X0| = 1 and |Xn| = |X |. So we have

n−1∏
i=0

|Xi|
|Xi+1|

=
1

|X |
.

The strategy of the proof is to define a random variable Wi which will be close to |Xi−1|
|Xi| with high

probability. Then we will define W =
∏n
i=1Wi and get that it will be close to 1/|X |.

Running Glauber dynamics on Xk with frozen boundary conditions at the vertices vk+1, . . . , vn will

generate a uniform element of Xk. The same proof as in Theorem 5.4 gives that if

t =

⌈
n log n+ n log(6eqn/ε)

1− ∆
q−∆

⌉
,

then the distribution of Glauber dynamics on Xk at time t is within ε/(6eqn) in total variation

from the uniform distribution on Xk.

We now take an = d27qn/(ηε2)e independent copies of Glauber dynamics on Xk each run for t steps

independently for different k’s. For i = 1, . . . , an we let

Zk,i = 1(i-th sample is in Xk−1) and Wk =
1

an

an∑
i=1

Zk,i.
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Using the mixing property at time t we get that∣∣∣∣E[Zk,i]−
|Xk−1|
|Xk|

∣∣∣∣ ≤ ε

6eqn
and

∣∣∣∣E[Wk]−
|Xk−1|
|Xk|

∣∣∣∣ ≤ ε

6eqn
. (5.3)

The second inequality together with Lemma 5.6 now give

1− ε

6n
≤ |Xk|
|Xk−1|

E[Wk] ≤ 1 +
ε

6n
. (5.4)

We now define W =
∏n
i=1Wi. We will shortly show that each Wk is concentrated around its

expectation, which is close to |Xk−1|/|Xk|. So by taking the product of Wi’s in the definition of W

we will get that W is close to the product of |Xi−1|/|Xi| for i = 1, . . . , n, which is equal to 1/|X |,
since |X0| = 1 and |Xn| = |X |. Using the independence of Wk’s we get

Var (W )

(E[W ])2
=

E
[
W 2
]
− (E[W ])2

(E[W ])2
=

∏n
i=1 E

[
W 2
i

]∏n
i=1(E[Wi])2

− 1 =

n∏
i=1

(
1 +

Var (Wi)

(E[Wi])2

)
− 1. (5.5)

Using the independence of Zk,i for different i’s we obtain for all k

Var (Wk) =
1

a2
n

an∑
i=1

E[Zk,i] (1− E[Zk,i]) ≤
1

an
E[Wk] ,

which means that

Var (Wk)

(E[Wk])2
≤ 1

anE[Wk]
≤ 3q

an
≤ ηε2

9n
, (5.6)

where for the second inequality we used that

E[Wk] ≥
1

eq
− ε

6eqn
≥ 1

3q
,

which follows from (5.3) and Lemma 5.6. Plugging the bound of (5.6) into (5.5) we obtain

Var (W )

(E[W ])2
≤

n∏
i=1

(
1 +

ηε2

9n

)
− 1 ≤ eηε2/9 − 1 ≤ 2ηε2/9,

using that ex ≤ 1 + 2x for x ∈ [0, 1]. Therefore, by Chebyshev’s inequality we get

P
(
|W − E[W ] | ≥ εE[W ]

2

)
≤ η.

By (5.4) we deduce

1− ε

6
≤
(

1− ε

6n

)n
≤ |X | · E[W ] ≤

(
1 +

ε

6n

)n
≤ eε/6 ≤ 1 +

ε

3
.

Therefore, ∣∣∣∣E[W ]− 1

|X |

∣∣∣∣ ≤ ε

3|X |
.
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Using this we now see that on the event {|W − E[W ] | < εE[W ] /2} we have that∣∣∣∣W − 1

|X |

∣∣∣∣ ≤ ε

3|X |
+
εE[W ]

2
≤ ε

3|X |
+
ε

2

(
1

|X |
+

ε

3|X |

)
≤ ε

|X |
.

So in order to simulate the random variable W we need to run at most an copies of t steps of

Glauber dynamics on each Xk for k = 1, . . . , n and this concludes the proof.

5.4 Ising model

Definition 5.7. Let V and S be two finite sets. Let X be a subset of V S and π a distribution on X .

The Glauber dynamics on X is the Markov chain that evolves as follows: when at state x, we pick a

vertex of V uniformly at random and a new state is chosen with probability equal to π conditioned

on the set of states equal to x at all vertices except for v. Formally, for each x ∈ X and v ∈ V we

define A(x, v) = {y ∈ X : y(w) = x(w), ∀ w 6= v} and πx,v(y) = 1(y ∈ A(x, v))π(y)/π(A(x, v)). So

when at state x ∈ X , the Glauber dynamics are defined by picking v uniformly at random from V

and then choosing a new state according to πx,v.

Remark 5.8. It is straightforward to check that the Glauber dynamics is a reversible Markov

chain with respect to the distribution π.

Ising model. Let G = (V,E) be a finite connected graph. The Ising model on G is the probability

distribution on {−1, 1}V given by

π(σ) =
1

Z(β)
· exp

β ∑
(i,j)∈E

σ(i)σ(j)

 ,

where σ ∈ {−1, 1}V is a spin configuration. The parameter β > 0 is called the inverse temperature

and the partition function Z(β) is the normalising constant in order for π to be a probability

distribution. When β = 0, then all spin configurations are equally likely, which means that π is

uniform on {−1, 1}V . When β > 0, the distribution π favours spin configurations where the spins

of neighbouring vertices agree.

The Glauber dynamics for the Ising model evolve as follows: when at state σ ∈ {−1, 1}V , a vertex

v is picked uniformly at random and the new state σ′ ∈ {−1, 1}V with σ′(w) = σ(w) for all w 6= v

is chosen with probability

π(σ′)

π(A(σ, v))
=

π(σ′)

π({z : z(w) = σ(w), ∀ w 6= v})
=

eβσ
′(v)Sv(σ)

eβSv(σ) + e−βSv(σ)
,

where Sv(σ) =
∑

w∼v σ(w) with i ∼ j meaning that (i, j) is an edge of G.

Definition 5.9. Suppose that X is a Markov chain taking values in a partially ordered set (S,�).

A coupling of two chains (Xt, Yt)t is called monotone, if whenever X0 � Y0, then Xt � Yt for

all t. The Markov chain X is called monotone, if for every two ordered initial states, there exists a

monotone coupling.
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Glauber dynamics for the Ising model is a monotone chain. We define the ordering σ � σ′ if for

all v we have σ(v) ≤ σ′(v). Indeed, suppose the current state is σ and the vertex chosen to be

updated is v. Then one way to sample the new state is to take a uniform random variable U in

[0, 1] and set the spin at v to be +1 if

U ≤ 1 + tanh(βSv(σ))

2

and −1 otherwise. Since 1+tanh(βSv(σ))
2 is non-decreasing in σ, it follows that the coupling is mono-

tone.

6 Coupling from the past

6.1 Algorithm

Coupling from the past is an ingenious algorithm invented by Propp and Wilson in 1996 to exactly

sample from the invariant distribution π. In order to describe it we start with the random function

representation of a Markov chain with transition matrix P .

Lemma 6.1. Let X be a Markov chain on S with transition matrix P . There exists a function

f : S × [0, 1]→ S such that if (Ui) is an i.i.d. sequence of random variables uniform on [0, 1], then

Xn+1 = f(Xn, Un).

We can think of the function f as a grand coupling of X, in the sense that we couple all transitions

from all starting points using the same randomness coming from the uniform random variables.

Let {Ut,x : x ∈ S, t ∈ Z} be a collection of uniform random variables in [0, 1] with the property that

(Ut,x : x ∈ S)t∈Z are i.i.d. Note that we do not specify the correlations between Ut,x for different

x ∈ S. For every t ∈ Z we let ft : S → S be given by

ft(x) = f(x, Ut,x).

So for a Markov chain X, the functions ft will define the evolution of X, i.e. Xt+1 = ft(Xt).

For s < t we now define

F ts(x) = (ft−1 ◦ . . . ◦ fs)(x) = ft−1(ft−2(. . . fs(x) . . .)).

The function F ts gives the evolution of the Markov chain from time s to t and so for all x and y we

have

P
(
F ts(x) = y

)
= P t−s(x, y).

We call the maps F t0 the forward maps for the chain and the maps F 0
−t the backward maps for

t > 0. Now notice that if for some t > 0 we have F 0
−t is a constant function, then for all s > t we

also have that F 0
−s is a constant function equal to F 0

−t, since

F 0
−s = F 0

−t ◦ (f−t−1 ◦ . . . f−s).
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The idea of coupling from the past is that under ergodicity assumptions, there will exist a random

time T at which F 0
−T will be a constant function and F 0

−T will be distributed according to π.

We define T to be the first time that F 0
−T becomes constant, i.e.

T = min{t ≥ 0 : F 0
−t is a constant function}.

Theorem 6.2 (Coupling from the past (Propp and Wilson)). Let X be a Markov chain that is

irreducible and aperiodic on the finite state space S with invariant distribution π. Then either

P(T <∞) = 1 or P(T <∞) = 1. In the case when P(T <∞) = 1, then F 0
−T (S) ∼ π, i.e. the

unique value that F 0
−T takes is distributed according to π.

Remark 6.3. We note that it is crucial that in the algorithm above we consider time backwards.

Indeed, if not, then if F t0 is constant for t > 0, then of course F t+1
0 would also be a constant

function, but not necessarily equal to F t0.

Proof of Theorem 6.2. We start by showing that if P(T <∞) > 0, then P(T <∞) = 1. Indeed,

there must exist L sufficiently large and ε > 0 so that

P
(
F 0
−L is a constant function

)
≥ ε. (6.1)

Since the collection (Ut,x : x ∈ S)t∈Z is i.i.d. it follows that the events

{F 0
−L is constant}, {F−L−2L is constant}, ...

are independent and have the same probability. So by (6.1) we get that each of the events above

has probability at least ε of happening and since they are also independent, we get that at least

one of them will eventually happen with probability 1, proving that P(T <∞) = 1.

Suppose now that P(T <∞) = 1. For all t > 0 and all x, y we have

P
(
F 0
−t(x) = y

)
= P t(x, y).

Since X is assumed to be irreducible and aperiodic, from the above it follows that

lim
t→∞

P
(
F 0
−t(x) = y

)
= π(y). (6.2)

We are now going to use the important observation mentioned earlier that if there exists t > 0

such that F 0
−t is a constant function, then for all s > t we also have that F 0

−s is a constant function

equal to F 0
−t. Therefore, we obtain that for all t > T , we have

F 0
−t = F 0

−T .

We can now finish the proof by writing for every t > 0

P
(
F 0
−T (S) = x

)
= P

(
F 0
−T (S) = x, T > t

)
+ P

(
F 0
−T (S) = x, T ≤ t

)
= P

(
F 0
−T (S) = x, T > t

)
+ P

(
F 0
−t(S) = x

)
,
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where we used that if F 0
−t(S) is a single point, then T ≤ t. Taking the limit as t→∞ on the right

hand side above we get that

P
(
F 0
−T (S) = x

)
= π(x),

where we used (6.2) for the second term and the assumption that P(T <∞) = 1 for the first one.

This concludes the proof.

Remark 6.4. If for every fixed t the variables (Ut,x)x∈S are also independent, then if the Markov

chain is irreducible and aperiodic, it will follow that there exists L sufficiently large and ε > 0 such

that

P
(
F 0
−L is a constant function

)
≥ ε.

So in this case we get that P(T <∞) = 1.

6.2 Monotone chains

Let as above T be the first time that F 0
−T is a constant function and let C be the coalescence time,

i.e. the first time t that F t0 is constant.

Claim 6.1. The times T and C have the same distribution.

Proof. Since for all t we have that F t0 and F 0
−t have the same distribution, it follows that for all k

P(T > k) = P
(
F 0
−k is not constant

)
= P

(
F k0 is not constant

)
= P(C > k) ,

which concludes the proof.

We now restrict our attention to monotone chains. Let (S,�) be a partially ordered set and

suppose that it contains two elements 0̂ and 1̂ such that 0̂ ≤ x ≤ 1̂ for all x ∈ S. Suppose that

the monotonicity is preserved under the map f . Using monotonicity, we see that if there exists a

time t such that F 0
−t(0̂) = F 0

−t(1̂), then since all the other states are sandwiched between 0̂ and 1̂,

it follows that F 0
−t is a constant function. So for monotone chains, we do not need to run Markov

chains starting from all initial states, but only from 0̂ and 1̂, making the algorithm computationally

more efficient.

Theorem 6.5. Let ` be the size of the largest totally ordered subset of S (or in other words the

length of the longest chain in S). Then

E[T ] ≤ 2tmix(1 + log2 `).

Proof. Using Claim 6.1 it suffices to prove the bound of the statement for E[C]. We start by

proving that for all k

P(C > k)

`
≤ d(k) ≤ P(C > k) . (6.3)
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For every x we write h(x) for the length of the longest chain having x as the top element. Let (Xt)

and (Yt) be two Markov chains started from 0̂ and 1̂ respectively at time 0 coupled using the same

maps f . Then we see that if Xt ≺ Yt, then h(Xt) + 1 ≤ h(Yt). So we have

P(C > k) = P(Xk 6= Yk) ≤ E[h(Yk)− h(Xk)] ,

where we used Markov’s inequality. Let (X̃, Ỹ ) be the optimal coupling of the distributions of Xk

and Yk. Then we get

E[h(Yk)− h(Xk)] = E
[(
h(Ỹ )− h(X̃)

)
1(Ỹ 6= X̃)

]
≤ P

(
Ỹ 6= X̃

)
≤
(

max
x

h(x)−min
x
h(x)

)
P
(
X̃ 6= Ỹ

)
≤ ` ‖L(Yk)− L(Xk)‖TV ≤ `d(k),

which proves the first inequality. The second one follows immediately from the coupling upper

bound on total variation distance.

We next claim that for all k1, k2 we have P(C > k1 + k2) ≤ P(C > k1)P(C > k2). Indeed, this

follows since if F k1+k2
0 is not a constant, then this means that both F k10 and F k1+k2

k1
are not

constant. Using that these two last events are independent proves the sub-multiplicativity.

Using the sub-multiplicativity, we get that P(C > ik) ≤ P(C > k)i for all k and i. Therefore,

E[C] =
∞∑
i=0

P(C > i) ≤
∞∑
i=0

kP(C > ik) ≤
∞∑
i=0

kP(C > k)i =
k

P(C ≤ k)
. (6.4)

Let now k = tmix log2(2`). Then using sub-multiplicativity of d we have

d(k) ≤ (d(tmix))log2(2`) ≤ 1

2log2(2`)
=

1

2`
.

From (6.3) we obtain

P(C > k) ≤ `d(k) ≤ 1

2
,

and hence from (6.4) we deduce

E[C] ≤ 2tmix log2(2`) = 2tmix(1 + log2 `)

and this completes the proof.

Remark 6.6. From the theorem above we see that the expected running time of the coupling from

the past algorithm is governed by the mixing time of the chain. So if a chain is rapidly mixing,

then it is also rapidly coupling.
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