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Abstract

We study fractal properties of the image and the graph of Brownian motion in Rd with an
arbitrary càdlàg drift f . We prove that the Minkowski (box) dimension of both the image and
the graph of B + f over A ⊆ [0, 1] are a.s. constants. We then show that for all d ≥ 1 the
Minkowski dimension of (B + f)(A) is at least the maximum of the Minkowski dimension of
f(A) and that of B(A). We also prove analogous results for the graph. For linear Brownian
motion, if the drift f is continuous and A = [0, 1], then the corresponding inequality for the
graph is actually an equality.
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1 Introduction

Let (Bt) be a standard Brownian motion in Rd and f : [0, 1] → Rd a càdlàg function. By the
Cameron-Martin theorem, the law of B+ f is equivalent to the law of B when f is in the Dirichlet
space

D[0, 1] =

{
f ∈ C[0, 1] : f(t) =

∫ t

0
g(s)ds for some function g ∈ L2[0, 1]

}
,

and singular to the law of B otherwise.

In [9] it is shown that if f is any continuous function, then the Hausdorff dimension of the image and
the graph of B+f are almost surely constants. In the same paper it is also proved that if A is a closed
subset of [0, 1], then the Hausdorff dimension of (B+f)(A) is at least max{dimH B(A), dimH f(A)}
and similarly for the dimension of the graph of B + f over A.

In this paper we prove analogous results for the Minkowski (or otherwise called box) dimension of
the same sets. We would like to emphasize that the presence of the drift f implies that we cannot
use techniques relying on self-similarity of the paths.

Before stating our main results, we recall the definition of Minkowski dimension. For other equiv-
alent definitions and properties see [4, Definition 3.1].
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Definition 1.1. Let A be a non-empty bounded subset of Rd. For ε > 0 let P (A, ε) be the
maximum number of disjoint balls of radius ε with centers in A:

P (A, ε) = max {k : ∃ x1, . . . , xk ∈ A s.t. B(xi, ε) ∩ B(xj , ε) = ∅ if i 6= j} .

The upper and lower Minkowski dimensions of A are defined as

dimM (A) = lim sup
ε→0

logP (A, ε)

log ε−1
and dimM (A) = lim inf

ε→0

logP (A, ε)

log ε−1

respectively. Whenever these two limits are equal, we call the common value the Minkowski di-
mension of A.

Let f : [0, 1] → Rd be a càdlàg function and A a subset of [0, 1]. In this paper we first prove that
the Minkowski dimension of the image and the graph of B + f over the set A are a.s. constants.
The 0-1 law (Theorem 2.1) from [9] used to prove the a.s. constancy of the Hausdorff dimension of
(B+ f)(A) cannot be used to prove the a.s. constancy in this case, since the Minkowski dimension
does not satisfy the countable stability property; this means that the Minkowski dimension of a
countable union of sets is not in general the supremum of their dimensions.

Theorem 1.2. Let (Bt) be a standard Brownian motion in d dimensions. Let f : [0, 1] → Rd be
a càdlàg function and let A be a subset of [0, 1]. Then, there exist constants c1 and c2 such that,
almost surely,

dimM (B + f)(A) = c1 and dimM (B + f)(A) = c2.

For a function h : [0, 1] → Rd and a set A ⊆ [0, 1] we denote by GA(h) = {(t, h(t)) : t ∈ A} the
graph of h over A.

Theorem 1.3. Let (Bt) be a standard Brownian motion in d ≥ 1 dimensions, f : [0, 1] → Rd a
càdlàg function and A a subset of [0, 1]. Then, there exist constants c3 and c4 such that, almost
surely,

dimMGA(B + f) = c3 and dimMGA(B + f) = c4.

We prove Theorems 1.2 and 1.3 in Section 2 by relating the Minkowski dimension to the expected
volume of the “sausage” around the graph or the image. In the same section we also give an
alternative proof of Theorem 1.3 using Lévy’s construction of Brownian motion.

Having established that the Minkowski dimension of the image and the graph of Brownian motion
with a càdlàg drift are a.s. constants we show that adding a deterministic drift to the Brownian
motion cannot decrease the dimension of the image and the graph.

Theorem 1.4. Let (Bt) be a standard Brownian motion in d ≥ 1 dimensions. Let A be a subset
of [0, 1] and f : [0, 1]→ Rd a càdlàg function. Then almost surely

dimM (B + f)(A) ≥ max{dimMB(A),dimMf(A)}
dimM (B + f)(A) ≥ max{dimMB(A),dimMf(A)}.

McKean’s theorem (see for instance [8, Theorem 4.33]) states that if A is a closed subset of [0,∞),
then dimH B(A) = (2 dimH A)∧ d, where dimH stands for the Hausdorff dimension. In the case of
Minkowski dimension there cannot be such a formula as the following corollary shows.
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Corollary 1.5. Let (Bt) be a standard Brownian motion in d ≥ 1 dimensions and f : [0, 1]→ Rd
a càdlàg function. Then, for every subset A of [0, 1], if d = 1, then almost surely,

dimM (B + f)(A) ≥ 2dimMA

dimMA+ 1
, and dimM (B + f)(A) ≥ 2dimMA

dimMA+ 1
.

The lower bounds can be achieved. If d ≥ 2, then the right hand side in these inequalities is replaced
by 2dimMA and 2dimMA respectively.

Remark 1.6. Inequalities analogous to Corollary 1.5 for packing dimension of images X(A) where
X is a multi-parameter fractional Brownian motion were established by Talagrand and Xiao in [12].

We prove Theorem 1.4 and Corollary 1.5 in Section 3.
We now state our results concerning the Minkowski dimension of the graph of B + f . We prove
them in Section 4.

Theorem 1.7. Let (Bt) be a standard Brownian motion in d dimensions and let f : [0, 1]→ Rd be
a càdlàg function. Then, for every subset A of [0, 1], we have, almost surely,

dimMGA(B + f) ≥ max{dimMGA(B), dimMGA(f)}
dimMGA(B + f) ≥ max{dimMGA(B), dimMGA(f)}.

In one dimension, when the drift function f is continuous and A = [0, 1], equality is achieved in
the inequalities of Theorem 1.7.

Theorem 1.8. Let (Bt) be a standard Brownian motion in one dimension and f : [0, 1] → R a
continuous function. Then, almost surely,

dimMG[0,1](B + f) = max{dimMG[0,1](B),dimMG[0,1](f)},
dimMG[0,1](B + f) = max{dimMG[0,1](B),dimMG[0,1](f)}.

Remark 1.9. The equalities in Theorem 1.8 can fail if f is not continuous. In Section 5 we describe
a càdlàg function f such that dimMG[0,1](f) = 5/3 and dimMG[0,1](B + f) ≥ 7/4 a.s.

Remark 1.10. We note that all the results stated above readily extend to packing dimension due
to its representation in terms of upper Minkowski dimension, see [4, Proposition 3.8].

Related results. Fractal properties of images X(A), where X is a Lévy process or a multi-
parameter fractional Brownian motion were investigated in [6, 7, 11, 12, 13]. Here we restrict
attention to Brownian motion; the new feature is the effect of the drift function f .

2 A 0-1 law

In this section we prove Theorems 1.2 and 1.3 by first stating and proving a more general result for
any càdlàg adapted process with stationary and independent increments. At the end of the section
we give a second proof of Theorem 1.3 using Lévy’s construction of Brownian motion.

We introduce some notation that will be used throughout the paper. If g : R+ → Rd is a measurable
function and A a subset of [0, 1], then for any r > 0 we define

Vg(A, r) = vol (∪s∈AB(g(s), r)) , (2.1)

where B(x, r) stands for the ball centered at x of radius r.

We are now ready to state the main result of this section.
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Proposition 2.1. Let (Ft) be a right continuous filtration and (Xt) a càdlàg adapted process taking
values in Rd, d ≥ 1, with stationary and independent increments. Let f : [0, 1] → Rd be a càdlàg
function and A a subset of [0, 1]. Then almost surely we have

dimM (X + f)(A) = lim sup
ε→0

logE[VX+f (A, ε)]

log 1
ε

dimM (X + f)(A) = lim inf
ε→0

logE[VX+f (A, ε)]

log 1
ε

.

Before proving it we explain how Theorems 1.2 and 1.3 follow.

Proof of Theorem 1.2. Setting Xt = Bt, since Brownian motion satisfies the assumptions of
Proposition 2.1, the theorem follows.

Proof of Theorem 1.3. For t ∈ R+, let Xt = (t, Bt) and g(t) = (t, f(t)). Then X and g clearly
satisfy the assumptions of Proposition 2.1, and hence this finishes the proof.

We now devote the rest of the section to the proof of Proposition 2.1. First we state a standard
fact about Minkowski dimensions which can be found e.g. in [4, Proposition 3.2].

Claim 2.2. Let A be a bounded subset of Rd. Then

dimMA = lim sup
ε→0

log vol(A+ B(0, ε))

log 1
ε

+ d

dimMA = lim inf
ε→0

log vol(A+ B(0, ε))

log 1
ε

+ d.

Proof. Let P (ε) be the maximum number of disjoint ε-balls with centers x1, . . . , xP (ε) in A. It is
easy to see that

P (ε)⋃
i=1

B(xi, ε) ⊆ A+ B(0, ε) ⊆
P (ε)⋃
i=1

B(xi, 2ε).

It then follows that
c(d)εdP (ε) ≤ vol(A+ B(0, ε)) ≤ c(d)(2ε)dP (ε).

Taking logarithms of both sides, dividing by log ε−1 and taking the limit as ε goes to 0 completes
the proof of the claim.

The main ingredient of the proof of Proposition 2.1 is the following lemma on the concentration of
the volume of the sausage around its mean.

Lemma 2.3. Let (Ft) be a right continuous filtration and (Xt) a càdlàg adapted process taking
values in Rd, d ≥ 1, with stationary and independent increments. Let f : [0, 1] → Rd be a càdlàg
function and A a subset of [0, 1]. Then almost surely we have

lim sup
ε→0

log VX+f (A, ε)

log 1
ε

= lim sup
ε→0

logE[VX+f (A, ε)]

log 1
ε

lim inf
ε→0

log VX+f (A, ε)

log 1
ε

= lim inf
ε→0

logE[VX+f (A, ε)]

log 1
ε

.
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Claim 2.4. Let (Ft) be a right continuous filtration and (Xt) a càdlàg adapted process taking values
in Rd, d ≥ 1. Let D be an open set in Rd and F a subset of [0, 1]. Then

τ = inf{t ∈ F : Xt ∈ D}

is a stopping time.

Proof. Let F∞ be a countable dense subset of F . Then for all t ∈ [0, 1] we deduce

{τ < t} = ∪q∈F∞,q<t{Xq ∈ D},

since X is càdlàg and D is an open set. Hence {τ < t} ∈ Ft. Writing

{τ ≤ t} =
⋂
n

{τ < t+ 1/n},

we get that {τ ≤ t} ∈ Ft+ = Ft.

Proof of Lemma 2.3. First notice that by the monotonicity of the volume we have

lim sup
ε→0

log VX+f (A, ε)

log 1
ε

= lim sup
k→∞

log VX+f (A, 2−k)

log 2k
and

lim inf
ε→0

log VX+f (A, ε)

log 1
ε

= lim inf
k→∞

log VX+f (A, 2−k)

log 2k
.

Hence it suffices to show that a.s. for all large enough k we have

1

2k
E
[
VX+f (A, 2−k)

]
≤ VX+f (A, 2−k) ≤ k2E

[
VX+f (A, 2−k)

]
.

The upper bound follows easily from Markov’s inequality and the Borel Cantelli lemma. We now
show the lower bound. In fact, note that by Borel Cantelli, it suffices to show that for all k we have

P
(
VX+f (A, 2−k) ≥ 1

2k
E
[
VX+f (A, 2−k)

])
≥ 1−

(
7

8

)k
. (2.2)

We first show that for any measurable F ⊆ R+ and any δ > 0 we have

E
[
(VX+f (F, δ))2

]
≤ 2(E[VX+f (F, δ)])2. (2.3)

For any x ∈ Rd we write
τx = inf{t ∈ F : X(t) + f(t) ∈ B(x, δ)}

with the convention that τx is infinite, if X + f does not hit the ball B(x, δ). We have

E
[
(VX+f (F, δ))2

]
=

∫
Rd

∫
Rd

P(τx <∞, τy <∞) dx dy = 2

∫
Rd

∫
Rd

P(τx ≤ τy <∞) dx dy

= 2

∫
Rd

P(τx <∞)

∫
Rd

P (τx ≤ τy <∞ | τx <∞) dy dx

= 2

∫
Rd

P(τx <∞)E[VX+f (F ∩ [τx,∞), δ) | τx <∞] dx. (2.4)

5



Since X and f are càdlàg and the filtration is right continuous, it follows from Claim 2.4 that τx is
a stopping time. By the stationarity, the independence of increments and the càdlàg property of X,
we get that X satisfies the strong Markov property (see [1, Proposition I.6]). Thus the conditional
law of the process {X(τx+s)−X(τx)}s≥0 given that {τx <∞}, is identical to the law of {X(s)}s≥0.
Let X ′ be a process independent of X but with the same law as X. The Markov property of X ′ and
its independence from τx implies that the conditional law of the process {X ′(τx + s)−X ′(τx)}s≥0
given that {τx < ∞}, is also identical to the law of {X(s)}s≥0. Therefore given τx < ∞, the two
random paths {X(t) − X(τx)}t≥τx and {X ′(t) − X ′(τx)}t≥τx have the same law. Since volume is
unaffected by translation,

E[VX+f (F ∩ [τx,∞), δ) | τx <∞] = E
[
VX′+f (F ∩ [τx,∞), δ)

∣∣ τx <∞]
≤ E

[
VX′+f (F, δ)

]
= E[VX+f (F, δ)] ,

and hence this together with (2.4) concludes the proof of (2.3).

Therefore, from (2.3), applying the second moment method to the random variable VX+f (F, δ) we
get that for any set F and any δ > 0

P
(
VX+f (F, δ) ≥ 1

2
E[VX+f (F, δ)]

)
≥ 1

8
. (2.5)

We set t0 = 0. It is easy to see that E
[
VX+f (A ∩ [0, t], 2−k)

]
is continuous as a function of t. Hence

for j = 1, . . . , k we can define

tj = inf

{
t ≥ 0 : E

[
VX+f (A ∩ [0, t], 2−k)

]
=
j

k
E
[
VX+f (A, 2−k)

]}
and we write Ij = [tj−1, tj ]. By the subadditivity property of the volume, we get that for all j

E
[
VX+f (A ∩ Ij , 2−k)

]
≥ E

[
VX+f (A ∩ [0, tj ], 2

−k)
]
−E
[
VX+f (A ∩ [0, tj−1], 2

−k)
]

=
1

k
E
[
VX+f (A, 2−k)

]
.

Therefore we get

P
(
VX+f (A, 2−k) ≥ 1

2k
E
[
VX+f (A, 2−k)

])
≥ P

(
∃j : VX+f (A ∩ Ij , 2−k) ≥

1

2
E
[
VX+f (A ∩ Ij , 2−k)

])
= 1−

k∏
j=1

P
(
VX+f (A ∩ Ij , 2−k) <

1

2
E
[
VX+f (A ∩ Ij , 2−k)

])
≥ 1−

(
7

8

)k
,

where the equality follows by the independence of the increments of X and the last inequality follows
from (2.5). This finishes the proof of (2.2), and hence concludes the proof of the lemma.

Remark 2.5. We note that if X and f are càdlàg and A is a subset of [0, 1], then VX+f (A, ε) is a
random variable. Indeed, let A∞ be a countable dense subset of A, then VX+f (A, ε) = VX+f (A∞, ε).
Now VX+f (A∞, ε) = limn→∞ VX+f (An, ε), where An are finite sets. By the continuity of the volume
(see [10, Lemma 4.1]) VX+f (An, ε) is a random variable for each n.

Proof of Proposition 2.1. The statement of the proposition follows directly from Lemma 2.3
and Claim 2.2.
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2.1 Another proof of Theorem 1.3

In this section we give an alternative proof of Theorem 1.3 that relies on Lévy’s construction of
Brownian motion. The only properties of Minkowski dimension that are used in this proof are
stability under finite unions and under adding linear functions.

Proposition 2.6. Let f : [0, 1] → Rd be a bounded measurable function, and µ ∈ Rd. Define
g : [0, 1]→ Rd by

g(t) = f(t) + µt.

Then, for every subset A of [0, 1], we have

dimMGA(f) = dimMGA(g) and dimMGA(f) = dimMGA(g).

Proof. For ε ∈ (0,∞) and k ∈ N define

Cε(k) = [(k − 1)ε, kε]× {some cube of edge length ε in Rd} and Cε =
⋃
k∈N
Cε(k).

Write N = d‖µ‖∞e, and consider a covering of GA(f) by cubes of Cε. Consider the cubes of the
covering that are in Cε(k), and thus form a covering of GA∩[(k−1)ε,kε](f). Clearly, shifting them by
the vector (0, µ1(k − 1)ε, . . . , µd(k − 1)ε) produces a covering of

GA∩[(k−1)ε,kε](f + µ(k − 1)ε).

But within a time interval of length ε, the drift cannot move f(t) by more than Nε in any given
direction. Therefore, GA∩[(k−1)ε,kε](g) may be covered with Nd as many cubes of Cε(k) as are
required to cover GA∩[(k−1)ε,kε](f). It follows that the covering number of GA(g) with elements of

Cε is at most Nd times that of GA(f). Therefore,

dimMGA(g) ≤ dimMGA(f) and dimMGA(g) ≤ dimMGA(f).

Since f(t) = g(t)− µt, the same argument shows that

dimMGA(f) ≤ dimMGA(g) and dimMGA(f) ≤ dimMGA(g),

and completes the proof.

The stability of Minkowski dimension under finite unions yields the following corollary.

Corollary 2.7. Let f : [0, 1] → Rd be a bounded measurable function, and h : [0, 1] → Rd be
piecewise affine. Put g = f + h. Then, for every subset A of [0, 1], we have

dimMGA(f) = dimMGA(g) and dimMGA(f) = dimMGA(g).

Proof of Theorem 1.3. We only prove the result for the lower Minkowski dimension. The proof
for the upper Minkowski dimension is identical.

Consider Lévy’s construction of Brownian motion as

B = lim
n→∞

Yn = lim
n→∞

n∑
k=1

Xk,
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where (Xk, k ∈ N) is an independent sequence of continuous piecewise affine random paths on [0, 1],
and the convergence is uniform on [0, 1].

For n ∈ N, put Zn = B − Yn−1. Since B + f = Zn + f + Yn−1 and Yn−1 is piecewise affine,
Corollary 2.7 implies that dimMGA(B + f) = dimMGA(Zn + f). In particular, for any a > 0,

{dimMGA(B + f) ≤ a} = {dimMGA(Zn + f) ≤ a} ∈ σ(Xk, k ≥ n).

Since this is true for every n, it follows that

Λa = {dimMGA(B + f) ≤ a} ∈ T =
⋂
n

σ(Xk, k ≥ n)

Therefore by Kolmogorov’s 0-1 law P(Λa) ∈ {0, 1}. It follows that the Minkowski dimension of
GA(B + f) is almost surely constant.

Remark 2.8. An alternative proof of Theorem 1.2 can be obtained by combining the above proof
with Howroyd’s projection theorem [5, Theorem 14].

3 Dimension of the image of B + f

In this section we prove Theorems 1.4 and 1.5. We first recall Theorem 1.1 from Peres and Sousi [10],
since it is going to be used to prove that the Minkowski dimension of the image and the graph of
B + f is larger than that of B.

Theorem 3.1 ([10]). Let (B(s))s≥0 be a standard Brownian motion in d ≥ 1 dimensions and let
(Ds)s≥0 be open sets in Rd. For each s, let rs > 0 be such that vol(B(0, rs)) = vol(Ds). Then for
all t we have that

E[vol (∪s≤t (B(s) +Ds))] ≥ E[vol (∪s≤tB(B(s), rs))] .

Definition 3.2. Let G ⊆ Rd. We call a collection of balls (B(xi, ε))i an ε-packing of G if xi ∈ G
for all i and the balls are pairwise disjoint.

Given an ε-packing of f(A) by P balls with centers (f(ti)) we want to construct an ε-packing of
(B + f)(A). The balls of radius ε centered at (B + f)(ti) might not all be disjoint; the following
lemma controls the number of collisions.

Lemma 3.3. Let (Bt) be a standard Brownian motion in d dimensions, f : [0, 1]→ Rd a bounded
measurable function and A a subset of [0, 1]. Then there exists a positive constant c such that for
all ε > 0, if (B(f(ti), ε))i≤Pε is an ε-packing of f(A), then

max
i≤Pε

E[Ni] ≤ c log(1/ε)d+1,

where Ni = #{j : |(B + f)(ti)− (B + f)(tj)| < 2ε}, for i ∈ {1, . . . , Pε}.

Proof. Let ε > 0 and (B(f(ti), ε))i≤Pε an ε-packing of f(A). We fix i ∈ {1, . . . , Pε}. For every
k ∈ N we define the sets

S(k) = {j : |f(ti)− f(tj)| ∈ [2kε, 2k+1ε)},

S1(k) =

{
j ∈ S(k) : |ti − tj | ≥

(
2kε

log(1/ε)

)2
}
,
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S2(k) = S(k) \ S1(k).

Since f is bounded, it follows that S(k) = ∅ whenever k ≥ c1 log(1/ε), for a positive constant c1.
Furthermore, if j ∈ S(k), then since (f(tj))j is an ε-packing of f(A), the balls {B(f(tj), ε)}j are
disjoint and for all such j the ball B(f(tj), ε) is contained in B(f(ti), (2

k+1 + 1)ε). Therefore

|S(k)| ≤ vol(B(0, (2k+1 + 1)ε))

vol(B(0, ε))
≤ (2k+1 + 1)d. (3.1)

If we write p(j) = P(|(B + f)(ti)− (B + f)(tj)| < 2ε), then by the definition of Ni we have

E[Ni] =

Pε∑
j=1

p(j) =

c1 log(1/ε)∑
k=1

∑
j∈S1(k)

p(j) +

c1 log(1/ε)∑
k=1

∑
j∈S2(k)

p(j). (3.2)

If j ∈ S1(k), then for a positive constant c2 we have

p(j) =
1

(2π|ti − tj |)d/2

∫
B(f(ti)−f(tj),2ε)

exp

{
− |x|2

2|ti − tj |

}
dx

≤ log(1/ε)d

2dkεd(2π)d/2
vol(B(0, 2ε)) = c2

log(1/ε)d

2dk
.

(3.3)

If j ∈ S2(k), then for a positive constant c3 we have by the Gaussian tail estimate if k ≥ 2

p(j) ≤ P(|B(ti)−B(tj)| > |f(ti)− f(tj)| − 2ε) ≤ P
(
|B(ti)−B(tj)| > (2k − 2)ε

)
≤ 2 exp

(
−c3(log(1/ε))2

)
.

(3.4)

Plugging the estimates (3.3) and (3.4) in (3.2) and using (3.1) concludes the proof of the lemma.

Proof of Theorem 1.4. From Proposition 2.1 we infer that a.s.

dimM (B + f)(A) = lim sup
ε→0

logE[VB+f (A, ε)]

log 1
ε

(3.5)

dimM (B + f)(A) = lim inf
ε→0

logE[VB+f (A, ε)]

log 1
ε

. (3.6)

Let Ds = B(f(s), ε) if s ∈ A and Ds = ∅ if s /∈ A. Then applying Theorem 3.1 we get

E[VB+f (A, ε)] ≥ E[VB(A, ε)] . (3.7)

From (3.5), (3.6) and (3.7) we deduce the a.s. inequalities

dimM (B + f)(A) ≥ dimMB(A) and dimM (B + f)(A) ≥ dimMB(A).

It now remains to show that almost surely

dimM (B + f)(A) ≥ dimMf(A) and dimM (B + f)(A) ≥ dimMf(A). (3.8)

First we note that in the definition of upper and lower Minkowski dimension it suffices to take ε
which is tending to 0 along powers of 2.
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We fix k and consider a 2−k-packing of f(A) with Pk(f) balls. Let the centers of the balls be f(ti)
with ti ∈ A for i ∈ {1, . . . , Pk(f)}.

For every i ∈ {1, . . . , Pk(f)} define

Ni = #{j 6= i : |(B + f)(ti)− (B + f)(tj)| < 21−k} and G =

Pk(f)∑
i=1

1(Ni < k2E[Ni]).

We call a point ti good if Ni < k2E[Ni] and bad otherwise. Thus G counts the number of good
points. By applying Markov’s inequality twice we get

P
(
G ≤ Pk(f)

2

)
= P

Pk(f)∑
i=1

1(Ni ≥ k2E[Ni]) ≥
Pk(f)

2

 ≤ 2

k2
. (3.9)

We now want to get a 2−k-packing of (B + f)(A) from the packing of f(A). We do this by
recursively picking good points ti and removing the Ni balls B((B + f)(tj), 2

−k) that intersect
B((B + f)(ti), 2

−k). This leaves us with a 2−k-packing of (B + f)(A) with Ψk balls, which on the
event {G ≥ Pk(f)/2} satisfies

Ψk ≥
Pk(f)

2(1 + k2 maxi E[Ni])
≥ Pk(f)

2(1 + ck2 log(2k)d+1)
,

where the last inequality follows from Lemma 3.3. From (3.9) we now deduce that

P
(

Ψk <
Pk(f)

2(1 + ck2 log(2k)d+1)

)
≤ 2

k2
,

and hence by Borel Cantelli we conclude that a.s. eventually in k

Ψk ≥
Pk(f)

2(1 + ck2 log(2k)d+1)
.

Taking log of both side, dividing by log(2k) and taking lim sup and lim inf as k → ∞ finishes the
proof.

Remark 3.4. We note that dimM (B+f)(A) can be much larger than max{dimM B(A), dimM f(A)}.
We recall an example given in [9, Example 5.4]. Let d = 3 and let f(t) = (f1(t), 0, 0), where f1
is a fractional Brownian motion independent of B of Hurst index α. Then dimM f [0, 1] = 1 a.s.
For α small we have that almost surely dimH(B + f)[0, 1] = 3 − 2α, which is a special case of [2,
Theorem 1]. Since dimM (B + f)[0, 1] ≥ dimH(B + f)[0, 1], we get dimM (B + f)(A) ≥ 3− 2α.

We will now prove Corollary 1.5. We start with a standard result about Hölder continuous functions
and we include its proof here for the sake of completeness.

Claim 3.5. Let g : R+ → R be a γ-Hölder continuous function and Aβ = {n−β : n ∈ N} ∪ {0} for
β ∈ (0,∞). Then

dimMg(Aβ) ≤ 1

1 + γβ
.

Proof. Without loss of generality we can assume that g(0) = 0. Let L be the Hölder constant of g.
For k ∈ N and n ≥ k, we have

|g(n−β)| ≤ Ln−γβ ≤ Lk−γβ.

10



Fix ε > 0. The set {g
(
n−β

)
: n > k} ∪ {0} may be covered with d2Lk−γβ/εe closed balls of

diameter ε. The set {g
(
n−β

)
: n ≤ k} may be covered with k such closed balls. Therefore, the

covering number satisfies

N(ε) ≤
⌈

2Lk−γβ

ε

⌉
+ k.

Taking k of the order ε−1/(γβ+1) shows that

N(ε) ≤ cε−1/(1+γβ),

and hence the result follows immediately.

Proof of Corollary 1.5. By Theorem 1.4 it suffices to prove the inequalities for f = 0. The case
d ≥ 2 follows from [11, Lemma 2.3(a)]. The case d = 1 can then be inferred by projecting a planar
Brownian motion on a line in a random direction and applying [3, Theorem 3]. However, we give
a self-contained proof below.

We set α = dimMA and β = dimMA.

Again we take ε tending to 0 along powers of 2. Let δk = 2−2k/(α+1) and consider a δk-packing of
A with Pδk(A) balls with centers (ti)i≤Pδk (A)

. We call a point ti good if

Ni = #{j 6= i : |B(ti)−B(tj)| < 21−k} < k2E[Ni] ,

and bad otherwise. Let G = Gk denote the number of good points. Then by Markov’s inequality
as in (3.9) we get that

P
(
G ≤ Pδk(A)

2

)
≤ 2

k2
.

We now want to get a 2−k-packing of B(A) from the δk-packing of A. We do this by recursively
picking good points ti and removing the Ni balls B(B(tj), 2

−k) that intersect B(B(ti), 2
−k). This

yields a 2−k-packing of B(A) with Ψk balls, which on the event {G ≥ Pδk(A)/2} satisfies

Ψk ≥
Pδk(A)

2(1 + k2 maxi E[Ni])
. (3.10)

Since the points (ti) are a δk-packing of the set A, it follows that |ti+` − ti| ≥ δk`, and hence we
can bound

E[Ni] =

Pδk (A)∑
j=1
j 6=i

P
(
|(B + f)(ti)− (B + f)(tj)| < 21−k

)
≤

Pδk (A)∑
`=−i+1
`6=0

c2−k√
|`|δk

≤ c′
√
Pδk(A).

Substituting this in (3.10) we get

P

(
Ψk <

Pδk(A)

2(1 + c′k2
√
Pδk(A))

)
≤ 2

k2
,

and hence by Borel Cantelli again we get that a.s. eventually in k

Ψk ≥
Pδk(A)

2(1 + c′k2
√
Pδk(A))

. (3.11)
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Taking log of both sides, dividing by log(2k) and taking lim sup and lim inf as k → ∞ concludes
the proof of the first part of the corollary.

For the second part, let α > 0 and set β = 1/α − 1. It is easy to check that the set Aβ from
Claim 3.5 satisfies dimM Aβ = (1 + β)−1 = α. Now pick γ < 1/2. Since almost all Brownian paths
are γ-Hölder continuous, Claim 3.5 guarantees that

dimMB(Aβ) ≤ 1

1 + γβ
→ 1

1 + β/2
=

2α

α+ 1
as γ → 1/2.

4 Dimension of the graph

In this section we give the proofs of the theorems stated in the Introduction concerning the
Minkowski dimension of the graph of B + f .

We start by proving a lemma analogous to Lemma 3.3 in the case of the graph.

Lemma 4.1. Let (Bt) be a standard Brownian motion in d dimensions, f : [0, 1]→ Rd a bounded
measurable function, and A a subset of [0, 1]. Then there exists a positive constant c such that for
all ε > 0, if (B((ti, f(ti)), 2ε))i≤Pε is a 4ε-packing of GA(f), then

max
i≤Pε

E[Ni] ≤ c log(1/ε)d+1,

where Ni = #{j : |(ti, (B + f)(ti))− (tj , (B + f)(tj))| < 2ε}, for i ∈ {1, . . . , Pε}.

Proof. Let ε > 0 and (B((ti, f(ti)), 4ε))i≤Pε a 4ε-packing of GA(f). We fix i ∈ {1, . . . , Pε}. For
every k ∈ N we define the sets

S(k) = {j : |ti − tj | < 2ε and |f(ti)− f(tj)| ∈ [2kε, 2k+1ε)},

S1(k) =

{
j ∈ S(k) : |ti − tj | ≥

(
2kε

log(1/ε)

)2
}
,

S2(k) = S(k) \ S1(k).

Again since f is bounded, S(k) = ∅ when k ≥ c1 log(1/ε). Furthermore, if j ∈ S(k), then since
(tj , f(tj))j is a 4ε-packing of GA(f), the balls {B(f(tj), ε)}j are disjoint and for all such j the ball
B(f(tj), ε) is contained in B(f(ti), (2

k+1 + 1)ε). Hence

|S(k)| ≤ vol(B(0, (2k+1 + 1)ε))

vol(B(0, ε))
≤ (2k+1 + 1)d. (4.1)

We now set

q(j) = P(|(ti, (B + f)(ti))− (tj , (B + f)(tj))| < 2ε) ≤ P(|(B + f)(ti)− (B + f)(tj)| < 2ε) .

Proceeding as for the estimate for p(j) in Lemma 3.3 gives that if j ∈ S1(k), then for a positive
constant c2

q(j) ≤ c22−dk log(1/ε)d.

12



Similarly to the proof of Lemma 3.3, if j ∈ S2(k) for k ≥ 2, we get for a positive constant c3

q(j) ≤ 2 exp
(
−c3(log(1/ε))2

)
.

Plugging these two estimates above in the expression for E[Ni] and using (4.1) we deduce

E[Ni] ≤ c log(1/ε)d+1,

where c is a positive constant and this concludes the proof of the lemma.

Proof of Theorem 1.7. Let ε > 0 and

Cε,d+1 = {[(`1 − 1)ε, `1ε]× . . .× [(`d+1 − 1)ε, `d+1ε] : `1, . . . , `d+1 ∈ Z}.

By [4, Definition 3.1] the Minkowski dimension of GA(B + f) is determined by counting the boxes
in Cε,d+1 that intersect GA(B+f). We take ε tending to 0 along powers of 2, i.e. take ε = 2−n. Let
the minimal number of boxes in the covering be N(ε) = Nn. Setting Ik = [(k − 1)2−n, k2−n] and

Ak,n = #{boxes in Cε,d intersecting (B + f)(Ik ∩A)}

we have Nn =
∑2n

k=1Ak,n. Just like in the proof of Claim 2.2 we get that there exist positive
constants c1 and c2 such that

c12
nd

2n∑
k=1

VB+f (Ik ∩A, 2−n) ≤ Nn ≤ c22nd
2n∑
k=1

VB+f (Ik ∩A, 2−n) and

c12
(d+1)nVG(B+f)(A, 2

−n) ≤ Nn ≤ c22(d+1)nVG(B+f)(A, 2
−n),

where G(B + f) stands for the process (t, B(t) + f(t))t.

Since the process (s,B(s)) is càdlàg and has independent and stationary increments and (s, f(s))
is càdlàg, Lemma 2.3 together with the above inequalities give that a.s.

dimMGA(B + f) = lim sup
n→∞

log
(∑2n

k=1 E[VB+f (Ik ∩A, 2−n)]
)

log(2n)
+ d.

Fix k ∈ {1, . . . , 2n}. For s ∈ Ik ∩A define Ds = B(f(s), 2−n) and for s /∈ Ik ∩A let Ds = ∅. Then
Theorem 3.1 gives

E
[
VB+f (Ik ∩A, 2−n)

]
≥ E

[
VB(Ik ∩A, 2−n)

]
,

and hence it follows that a.s.

dimMGA(B + f) ≥ dimMGA(B).

The inequality for the lower Minkowski dimension of GA(B + f) follows in exactly the same way.

It now remains to show that a.s.

dimMGA(B + f) ≥ dimMGA(f)

and similarly for lower Minkowski. The proof of that follows in the same way as the proof of
Theorem 1.4. We point out the differences. We call a point (ti, f(ti)) good if Ni < k2E[Ni], where
Ni is as defined in the statement of Lemma 4.1 for ε = 2−k. Then we proceed in exactly the same
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way as in Theorem 1.4 and on the event that the number of good points is at least Pk(f)/2 we get
a 2−k-packing of GA(f) with at least

Pk(f)

2(1 + k2 maxi E[Ni])

balls of radius 2−k. Using Lemma 4.1 and the Borel Cantelli lemma as in Theorem 1.4 concludes
the proof.

The rest of this section is devoted to the proof of Theorem 1.8.

Proposition 4.2. Let f and g : [0, 1]→ R be two continuous functions. Assume that dimM G[0,1](f)
exists. Then,

dimMG[0,1](f + g) ≤ max{dimMG[0,1](f),dimMG[0,1](g)},
dimMG[0,1](f + g) ≤ max{dimMG[0,1](f),dimMG[0,1](g)}.

Furthermore, in both cases, when the dimensions on the right hand side are different, we even have
equality.

Proof. We shall only prove the inequality for the lower Minkowski dimension. The other case is
proved similarly.

Set α = dimM G[0,1](f) and β = dimMG[0,1](g) and consider the collection of squares

Cε = {[(k − 1)ε, kε]× [(`− 1)ε, `ε] : k, ` ∈ Z}.

Let h : [0, 1]→ R be a continuous function. A covering of GA(h) is given by taking all the elements
of Cε that intersect G[0,1](h); and that many are needed. Let Sε(h) be the number of these squares.
Take ε = 2−n and set Ik = [(k− 1)ε, kε] and Ωk,n(h) = d2n(maxs∈Ik h(s)−mins∈Ik h(s))e. Then it
is easy to see that

2n∑
k=1

Ωk,n(h) ≤ S2−n(h) ≤ 2
2n∑
k=1

Ωk,n. (4.2)

It is straightforward to check that

Ωk,n(g)− Ωk,n(f) ≤ Ωk,n(f + g) ≤ Ωk,n(f) + Ωk,n(g). (4.3)

Let (εn) be a subsequence of (2−n) along which logSεn(g)/ log(1/εn)→ β as n→∞. Fix δ ∈ (0,∞).

Then Sεn(g) ≤ ε−β−δn for all n large enough. Since dimM G[0,1](f) exists, it follows that for all n

large enough Sεn(f) ≤ ε−α−δn . Thus for all n sufficiently large we obtain

Sεn(f + g) ≤ 2Sεn(f) + 2Sεn(g) ≤ 4ε−max{α,β}−δ
n .

Taking logarithms of both sides, dividing by log(1/εn) and taking the limit as n → ∞ gives that
for all δ > 0

dimMG[0,1](f + g) ≤ max{α, β}+ δ,

and hence letting δ → 0 gives dimMG[0,1](f + g) ≤ max{α, β}.

It only remains to show the final statement of the proposition. Suppose that α < β. We will show
that

dimMG[0,1](f + g) ≥ β.
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n−1/4

2

n−3/4

Figure 1: Graph of ψn

The other cases are treated similarly.

Take δ > 0 small enough so that β > α+ 2δ. Using (4.2) and the left hand side inequality of (4.3)
we deduce that for all n sufficiently large

Sn(f + g) ≥ 2n(β−δ)

2
− 2n(α+δ),

and hence it easily follows that in this case dimMG[0,1](f+g) ≥ β, which together with the inequality
previously shown completes the proof.

Proof of Theorem 1.8. The theorem follows directly from Proposition 4.2 and Theorem 1.7.

5 Example

Example 5.1. Let ϕ : R+ → R be a function with period 1 defined in [0, 1] via ϕ(x) = max{x, 1−x}.
For n ∈ N we define ψn : [0, 1]→ R+ via

ψn(x) = n−3/4b
√
nϕ(nx)c

adjusted to be càdlàg. Let nk = 26
k

and define f =
∑∞

k=1 ψnk . Since f is the uniform limit of
càdlàg functions, it is also càdlàg. We will show that

dimMG[0,1](f) =
5

3
and dimMG[0,1](B + f) ≥ 7

4
a.s.

The idea motivating this construction is that the graph of f can be covered efficiently due to the
large jumps; B+ f interpolates many of these jumps and hence has a larger Minkowski dimension.
Moreover, the graph of B can be covered efficiently due to cancellation of the upward and downward
movement; adding f to B eliminates much of this cancellation, so that the graph of B + f has
Minkowski dimension greater than the graph of f .
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Claim 5.2. dimMG[0,1](f) = 5
3 .

Proof. Let ε = n
−3/4
` and suppose that we want to cover the graph of f with boxes of side length ε.

We now argue that the number of boxes needed is up to constants the number of boxes needed to
cover the graph of ψn` .

Indeed, since for all x

∞∑
k=`+1

ψnk(x) ≤ 1

2

∞∑
k=`+1

(
26
k
)−1/4

≤ c1
(

26
`
)−3/2

, (5.1)

where c1 is a positive constant, the number of ε-boxes needed to cover the graph of
∑

k≥` ψnk is up
to constants the same as the number of ε-boxes needed to cover the graph of ψn` .

Note that n
3/2
k divides nk+1 for all k. Also for all k < ` the function ψnk is constant on each

standard subinterval of length n
−3/2
`−1 . Thus on a subinterval of length n

−3/2
`−1 adding the functions

ψnk for k < ` to the function
∑∞

k=` ψnk only shifts the graph of
∑∞

k=` ψnk by a constant on each

standard interval of length n
−3/2
`−1 . Since we want to cover the graph of f with boxes of side length

n
−3/4
` and we can fit an integer number of those in the subinterval of length n

−3/2
`−1 , it follows that

the number of ε-boxes needed is the same as the number of ε-boxes needed to cover the graph of∑∞
k=` ψnk .

So it only remains to calculate the number of ε-boxes needed to cover the graph of ψn` . By the
construction of the function ψn` it is easy to see that the number of ε-boxes needed to cover the

graph of ψn` is of order 1

n
−3/4
`

n
−1/4
`

n
−3/4
`

= n
5/4
` .

Therefore the number of boxes of side length n
−3/4
` needed to cover the graph of f is of order n

5/4
` .

From that it follows that

dimMG(f) ≥ 5

3
.

It remains to show dimMG(f) ≤ 5
3 .

Take ε converging to 0 along powers of 2. Let ε = 2−r and k be such that

n
−3/2
k ≤ ε < n

−3/2
k−1 .

We consider two separate cases. To simplify notation we write n = nk.

• If ε < n−3/4, then we need order ε−1
√
n boxes to cover the graph of f . This follows from (5.1),

the fact that ε > n−3/2 and that ε divides n
−3/2
` for all ` < k.

• If ε > n−3/4, then the number of boxes needed to cover the graph of ψn is of order n−1/4/ε2.
Since the contributions of the other functions in the sum do not matter as discussed above,
this is indeed the covering number for the graph of f .

From the two cases above it follows that dimMG(f) ≤ 5
3 and this concludes the proof.

Claim 5.3. dimMG(B + f) ≥ 7
4 a.s.
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Figure 2: Two scales

Proof. Suppose that we want to cover the graph of B + f with boxes of side length n−1` . Then
arguing as above it is enough to find the number of n−1` -boxes needed to cover the graph of B+ψn` .

First we subdivide the interval [0, 1] into subintervals of length n−3/2 + (log n)2n−3/2. Thus the
number of such subintervals we obtain is of order n3/2/(log n)2. For each such subinterval Ij,n we
write sj,n = inf Ij,n and we define the events

An =

{
∀j Bsj,n − inf

t∈Ij,n
Bt ≤

n−3/4(log n)2

2

}
.

Using the Gaussian tail estimate gives

P(Acn) ≤ c1
n3/2

(log n)2
e−c2(logn)

2
,

which is summable. Hence by Borel Cantelli we get that almost surely for all n sufficiently large
we get that in none of the intervals Ij,n Brownian motion goes down by more than n−3/4(log n)2/2.

We now look at the first part of these subintervals Ĩj,n of length n−3/2 and we define the event

Ãj,n =

{
n−3/4 ≤ sup

t∈Ĩj,n
Bt −Bs̃j,n ≤ 2n−3/4

}
,

where s̃j,n = inf Ĩj,n. Then there exists a constant c ∈ (0, 1) so that for all j and n

P
(
Ãj,n

)
≥ c.

The events (Ãj,n)j are independent by the independence of the increments of Brownian motion.
Using the Chernoff bound for Bernoulli random variables we obtain for a positive constant c3 < 1

P

n3/2∑
j=1

1(Ãj,n) ≥ cn3/2

4

 ≥ 1− cn3/2

3 .
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Thus applying Borel Cantelli again we deduce that almost surely for all n large enough at least
cn3/2/4 of the events Ãj,n will happen.

We now take n sufficiently large so that An holds and at least cn3/2/4 of the events Ãj,n occur.

We set n = n` and we consider the subintervals of length n−3/2 that correspond to the events
Ãj,n that occur. In each of these subintervals the function ψn is constant, and by the definition of

the event Ãj,n, it is easy to see that the number of boxes of side n−1 needed to cover the graph
of B + ψn in this time interval is at least of order n−3/4/n−1 = n1/4. Next we skip a time interval
of length n−3/2(log n)2. Since the event An holds, during this time interval the Brownian motion
did not go down by more than (log n)2n−3/4/2. At the same time the function f increased by
n−3/4(log n)2. So it follows that we need at least of order n1/4n3/2/(log n)2 boxes of side length
n−1 to cover the graph of B + ψn. Therefore we deduce that a.s.

dimMG(B + f) ≥ 7

4
.

Remark 5.4. A modification of the example yields a continuous function f and a closed set A in
[0, 1] so that

dimMGA(f) =
5

3
and dimMGA(B + f) ≥ 7

4
.
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